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Abstract

A model for low-energy meson-baryon interaction in the strange sector is presented. The in-

teraction is described in terms of separable potentials with multiple partial waves considered. A

general solution of Lippmann-Schwinger equation for the scattering of spin zero and spin one-half

particles is derived.

Next, the general framework is applied to the KN sector in a simple model with only the S- and

P-waves taken into account. The separable potential is designed to match the chiral perturbation

theory at lowest nontrivial order. It is shown that although a simple model with three free param-

eters works well for the S-wave, it fails to reproduce the P-wave features of kaon-nucleon physics.

Most importantly, the P-wave interaction is too weak to express a resonant behavior that could be

identified as Σ(1385) resonance.
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I. INTRODUCTION

The description of low-energy meson-baryon interaction in the strange sector is a highly

puzzling problem. The direct application of the effective theory approach [1], which was

successful in the pion-nucleon sector, i.e., baryonic chiral perturbation theory (for review

see [2]), is problematic. The key physical issue is the presence of the Λ(1405) resonance

below the K-N threshold [3]. The existence of a resonance implies the need to work to

all orders in perturbation theory and therefore procedures alternative to standard χPT are

required.

A possible way to proceed is via the multi-channel Lippmann-Schwinger equation with the

interaction described by separable potentials [4–6]. The physics based on chiral symmetry

of QCD is reflected in the design of the respective separable potentials. They are designed

to match the amplitudes obtained in chiral perturbation theory up to given order O(pn).

In the hypothetical world of very low-quark masses, amplitudes obtained by iterating the

Lippmann-Schwinger equation with such potentials are equal to the amplitudes derived in

χPT up to a given order in the chiral expansion O(pn). Note that the χPT is constructed as

an effective theory of QCD in the regime of low momenta and low quark masses. However,

in the physical world with a relatively high s quark mass, the connection to the fundamental

theory of strong interactions—the quantum chromodymanics—is more subtle.

The suggested approach has, on the other hand, the advantage that the Lippmann-

Schwinger equation is exactly solvable; the originally complicated system of coupled integral

equations simplifies to an algebraic equation and a set of integrals. Additionally, some

features of nuclear medium, for example, Pauli blocking [7] and/or self-energy effects [8]

can be straightforwardly incorporated into the separable potential model. Kaon-nucleon

amplitudes enriched with in-medium effects may then be used to determine an effective

in-medium kaon-nuclear potential [9, 10], as well as to study other low-energy processes

involving kaon-nuclear interaction, for example, the hypernuclear production [11, 12].

In their recent work, Cieplý and Smejkal [6, 10] were able to fit a large set of low-

energy experimental data (threshold branching ratios, kaonic hydrogen shift and width,

cross sections to various channels for kaon incident momentum up to 200 MeV) with a very

simple model combining the chiral dynamics with separable potential approach considering

only the L = 0 partial wave. They were also able to analyze the properties of Λ(1405)
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resonance. However, the model of Ref. [6] has an important limitation—it considers only

the S-wave contribution. Although this turned out to be sufficient for the kaon incident

momentum up to 200 MeV, the inclusion of higher partial waves becomes necessary if one

wants to go to higher kaon momenta. Moreover, the P-wave interaction is expected to play

an important role in the formation of deeply bound K−-nuclear states [13, 14]. Although

the authors of [14] used the more fundamental model of Ref. [10] for the S-wave interaction,

they relied on purely phenomenological parametrization for P-wave interaction. Thus, the

improvement of the understanding of the P-wave part of meson-baryon interaction in the

strange sector is certainly desirable.

The goal of this paper is to extend the separable potential model of Ref. [6] for meson-

baryon interactions in the strange sector to include the effects of the P-wave. With the P-

wave part included in the separable potential, one should gain access to phenomena which

are inaccessible if only S-wave is included, for example, the angular distribution of the

cross section. Moreover, one might expect that the P-wave resonance Σ(1385) could be

dynamically generated using the P-wave potential in a similar way as Λ(1405), as was

studied by Cieplý and Smejkal.

The paper is organized as follows. The general formalism of spin zero spin one-half particle

scattering is summarized in Sec. 2. In Sec. 3, the general form for a multi-channel separable

potential model is discussed and the solution of the Lippmann-Schwinger equation is derived

for such potentials. In Sec. 4, the potential for kaon-proton scattering is constructed to

match the χPT up to lowest nontrivial order. Fits to the available experimental data and

discussion of obtained results follows in the Sec. 5.

II. FORMALISM OF SPIN ZERO SPIN ONE-HALF SCATTERING

In this section, the formalism describing two-particle scattering—one with spin one-half

and one with spin zero—is summarized. To be concrete, only the interactions that are both

time-reversal and parity invariant are considered; all formulas are given in the center-of-mass

frame of reference.

The most general form of the scattering amplitude is a 2× 2 spin matrix [15]:

f(p → p′) = f̃(p → p′) + i σ · p̂× p̂′ g̃(p → p′) . (1)
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In (1), p and p′ stand for the initial and final CMS momentum. A hat above a vector

indicates a unit vector in the respective direction. The spin non-flip and spin flip amplitudes

are denoted as f̃ and g̃.

Due to parity invariance, the total angular momentum J and orbital angular momentum

L are separately conserved during the scattering. Thus, for a given initial orbital momentum

L (a given partial wave), there are two independent S-matrix elements—one for J = L+1/2,

and one for J = L− 1/2—that fully characterize the scattering process. Therefore, one can

write down the generalized partial wave expansion using the projection operators into the

respective subspaces J = L± 1/2. The amplitude reads:

f(p → p′) =
∑

L

(2L+ 1)
(

fL+(p → p′) ΛL+ + fL−(p → p′) ΛL−
)

PL(p̂ · p̂′) , (2)

where ΛL± is a projection operator to a subspace of total angular momentum J = L± 1/2:

ΛL+ =
1

2L+ 1
(L+ 1 + σ · L) ,

ΛL− =
1

2L+ 1
(L− σ · L) .

Simple algebraic manipulations allow one to find a partial wave expansion for spin flip

and spin non-flip amplitudes (f̃ , g̃) in terms of amplitude projections for given total and

orbital angular momenta (fL+, fL−):

f̃ =
∑

L

[

(L+ 1) fL+ + LfL−
]

PL(p̂ · p̂′) , (3)

g̃ =
∑

L

[

fL+ − fL−
]

P ′

L(p̂ · p̂′) . (4)

Note, that if the spin-orbit coupling is zero, amplitude fL+ is equal to fL−. In this case,

the partial wave expansion for spin non-flip amplitude f̃ coincides with the standard one for

the scattering of two spinless particles and the spin flip amplitude g̃ vanishes.

In this parametrization, the differential cross section for unpolarized beam and target

reads:
dσ

dΩ
(p → p′) = |f̃(p → p′)|2 + sin2(θ) |g̃(p → p′)|2. (5)

If only L = 0 and L = 1 are included—the model which will be investigated later in the

paper—the differential and total cross sections read:

dσ

dΩ
=
(

∣

∣

∣f 0+
∣

∣

∣

2
+
∣

∣

∣2f 1+ + f 1−
∣

∣

∣

2
cos2 θ +

∣

∣

∣f 1+ − f 1−
∣

∣

∣

2
sin2 θ +
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(

f 0+(2f 1+ + f 1−)∗ + (f 0+)∗(2f 1+ + f 1−)
)

cos θ
)

, (6)

σtot = 2π
(

2
∣

∣

∣f 0+
∣

∣

∣

2
+

2

3

∣

∣

∣2f 1+ + f 1−
∣

∣

∣

2
+

4

3

∣

∣

∣f 1+ − f 1−
∣

∣

∣

2
)

. (7)

The angular distribution of the differential cross section is often parameterized in powers

of cos θ:

dσ

dΩ
≈ A0 + A1 cos θ + A2 cos

2 θ + . . . , (8)

A0 =
∣

∣

∣f 0+
∣

∣

∣

2
+
∣

∣

∣f 1+ − f 1−
∣

∣

∣

2
,

A1 = 2Re
[

f 0+(2f 1+ + f 1−)
]

,

A2 =
∣

∣

∣2f 1+ + f 1−
∣

∣

∣

2 −
∣

∣

∣f 1+ − f 1−
∣

∣

∣

2
. (9)

Note that A0, A1, and A2 are the only three coefficients that are non-zero if only S- and P-

waves are considered.

III. SEPARABLE POTENTIALS AND A SOLUTION OF

LIPPMANN-SCHWINGER EQUATION

In this section, a general form of a multi-channel separable potential between spin one-

half and spin zero particles is discussed. It is shown that, even in this relatively complicated

case, the solution of a Lippmann-Schwinger equation simplifies to an algebraic problem. To

cover the most general situation when particle types can change during the process, the

multi-channel approach to the problem is employed from the beginning; individual channels

are labeled (ai), where a stands for the type of spin one-half particle (baryon), and i stands

for the spin zero particle (meson).

Knowing the general form of the scattering amplitude (2), the potential will be taken to

have a form:

V(ai)→(bj)(p → p′) =
∑

L

(2L+ 1)
(

V L+
(ai)→(bj)Λ

L+ + V L−
(ai)→(bj)Λ

L−
)

PL(p̂ · p̂′) gL(ai)(p) g
L
(bj)(p

′) ,

(10)

where gL(ai)(p) is a form factor corresponding to the channel (ai) and the partial wave L.

The Lippmann-Schwinger equation reads:

T(ai)→(bj)(p → p′) = V(ai)→(bj)(p → p′)

+
∑

(ck)

2µ(ck)

∫

d3q
V(ai)→(ck)(p → q) T(ck)→(bj)(q → p′)

p2(ck) − q2 + iǫ
, (11)
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where the sum is over all possible intermediate channels (ck), p(ck) is the on-shell momentum

in the intermediate channel and µ(ck) is its reduced energy.

Having the potential in the separable form (10), it is natural to use the following ansatz

for the T-matrix:

T(ai)→(bj)(p → p′) =
∑

L

(2L+ 1)
(

TL+
(ai)→(bj)Λ

L+ + TL−
(ai)→(bj)Λ

L−
)

PL(p̂ · p̂′) gL(ai)(p) g
L
(bj)(p

′) .

(12)

In order to prove that the separable potential (10) and the T-matrix ansatz (12) actually

transform the Lippmann-Scwhinger equation into an algebraic equation, the crucial thing

is to show that the integral in Eq. (11) actually splits into two pieces, one for J = L+ 1/2

and one for J = L − 1/2, and preserves the separability for each piece. The separation of

angular and radial part of the integral gives:

∑

LL′

∑

(ck)

2µ(ck)

∫

dqq2 (2L+1)(2L′+1)
p2
(ck)

−q2+iǫ
gL(ai)(p) g

L
(ck)(q) g

L′

(ck)(q) g
L′

(bj)(p
′)

∫

dΩq

(

V L+
(ai)→(ck)Λ

L+ + V L−
(ai)→(ck)Λ

L−
)

PL(p̂ · q̂)
(

TL′+
(ck)→(bj)Λ

L′+ + TL′−

(ck)→(bj)Λ
L′−

)

PL′(q̂ · p̂′) .

The orthogonality of Legendre polynomials and the properties of projection operators are

key ingredients in the proof of separability. Finally, one gets two independent sets of matrix

equations in the channel space, one for J = L+ 1/2 and one for J = L− 1/2:

TL±
(ai)→(bj) = V L±

(ai)→(bj) + V L±
(ai)→(ck)G

L
(ck)T

L±
(ck)→(bj) . (13)

GL is a diagonal matrix with elements given by the integral:

GL
(ck) = 4πµ(ck)

∫

dq q2

(

gL(ck)(q)
)2

p2(ck) − q2 + iǫ
. (14)

The relation between the T-matrix elements TL±
(ai)→(bj) and the scattering amplitudes

f±

(ai)→(bj) is

f(ai)→(bj) = −4π
√
µ(ai)µ(bj) T(ai)→(bj) . (15)

From here one straightforwardly obtains all the information about the scattering process

using formulas derived in the previous section.

In the case with only S- and P-waves considered, the potential is of the form:

V(ai)→(bj) = V 0+g0(ai)g
0
(bj) + 3

(

V 1+Λ1+ + V 1−Λ1−
)

g1(ai)g
1
(bj) cos θ

6



= V 0+g0(ai)g
0
(bj) +

[(

2V 1+ + V 1−
)

cos θ +
(

V 1+ − V 1−
)

iσ · p̂× p̂′
]

g1(ai)g
1
(bj) . (16)

Analogous expansions hold for T-matrix and scattering amplitude as well. Overall, there

are three independent equations of the form (13) for T 0+, T 1+, and T 1−.

IV. THE CONSTRUCTIONOF SEPARABLE POTENTIALS FORKAON-PROTON

SCATTERING

The separable potential (16) used in the calculation will be constructed to match the

chiral perturbation theory up to order O(p), the lowest nontrivial order, in this section.

Thus, a brief review of relevant parts of baryon χPT is in order.

The first order chiral Lagrangian [16] reads:

L(1) = i
〈

Bγµ [D
µ, B]

〉

−M0

〈

BB
〉

−D

2

〈

Bγµγ5 {uµ, B}
〉

− F

2

〈

Bγµγ5 [u
µ, B]

〉

. (17)

For meson-baryon scattering, one gets three principally different contributions from dia-

grams summarized in Fig. 1. The first one represents the contact interaction coming from

O(p1) Lagrangian, the so-called Weinberg-Tomozawa term (WT); it is a leading contribu-

tion to the S-wave amplitudes. The other two diagrams correspond to the direct (s-channel)

and crossed (u-channel) processes built from vertexes from O(p1) Lagrangian. At first sight,

these seem to be of order O(p2). However, the non-relativistic baryon propagator 1/k0 is of

order O(p−1) making the leading behavior of the diagram to be O(p1). These diagrams rep-

resent the leading order contribution to the P-wave amplitudes. Some of the amplitudes may

be found in the literature [16–19], and all of them can be reconstructed from the potentials

that will be presented below.

The separable potentials (16) are constructed to match the chiral perturbation theory:

V(ai)→(bj) =
1

4(2π)3

√

√

√

√

1

sµ(ai)µ(bj)

M(ai)→(bj), (18)

where M(ai)→(bj) are Lorenz invariant scattering amplitudes obtained in χPT up to a given

order O(pn); only the leading order O(p1) is considered in this paper.
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FIG. 1. Feynman diagrams representing the Weinberg-Tomozawa, direct (s-channel), and crossed

(u-channel) contributions to the meson-baryon scattering.

Since the S- and P-waves are considered in the model, two form factors are needed; one

for L = 0 and one for L = 1. For simplicity, Yamaguchi-type form factors [20] are used in

the calculation:

g0(ai)(p) =
1

1 + p2

α2
(ai)

, (19)

g1(ai)(p) =
p

(

1 + p2

α2
(ai)

)3/2
. (20)

α(ai) characterize the the range of the interaction in the particular channel.

The use of (16), (18), (19), and (20) immediately leads to the potentials V L±. Recall

that for the L = 1 part, the one power of the momentum p (p′) is already included in the

form factor g1(ai)(p) (20) and therefore does not appear in the respective potentials V 1+ (22),

and V 1− (23). The potentials up to order O(p1) read:

V 0+
(ai)→(bj) = N

[

−1

8

(

Ei +
E2

i −m2
i

2M2
i

+ Ej +
E2

j −m2
j

2M2
j

)

CWT
(ai)→(bj)

]

, (21)

V 1+
(ai)→(bj) = N

[

−1

9

(

1

mi +mj

)

Ccrossed
(ai)→(bj)

]

, (22)

V 1−
(ai)→(bj) = N

[

1

6

(

1

mi +mj

)

Cdirect
(ai)→(bj) +

1

18

(

1

mi +mj

)

Ccrossed
(ai)→(bj)

]

. (23)

The constant N guaranteeing proper relativistic flux normalization reads:

N =
1

2f 2
π

1

(2π)2

√

√

√

√

MaMb

sµ(ai)µ(bj)

. (24)

Matrices C... are summarized in the appendix. They determine how the channels are coupled

between each other.
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A brief comment about the V 1± potentials is in order. In the leading order amplitude

in χPT, there is a sum of meson energies Ei + Ej in the denominator. However, it leads

to a possible unphysical divergence in the deep subthreshold region. This divergence is

trackable back to the form of the fully relativistic baryon propagator, which diverges for

kµk
µ = −M2. The complication here is due to the fact that the calculation is restricted

solely to the tree diagrams at the level of χPT. This divergence, eventually, disappears if one

continues to higher orders. In the presented model, the spurious divergence is avoided by

replacing the meson energy Ei by meson mass mi wherever it appears in the denominator,

as was suggested in Ref. [10].

The potential for the S-wave V 0+ part is identical to the leading part of the potential

used by Cieplý and Smejkal [6] and Kaiser et al. [4]. The P-wave contribution V 1+, V 1−

has not been considered by these authors.

V. FIT TO THE LOW-ENERGY K−-p DATA AND THE DISCUSSION OF OB-

TAINED RESULTS

The comparison of the chirally motivated separable potential model from the previous

section to the experimental low-energy data is presented and discussed here.

The model developed in the previous section contains, in its full complexity, a substantial

number of free parameters. For example, there are in principle 20 different inverse range

parameters α0,1
(ai) characterizing form factors g0,1(ai)(p) (19), (20). More parameters would

appear if one considers the second order chiral Lagrangian. However, it is useful to keep the

analysis simple and straightforward. Thus, the model is restricted to the first order chiral

Lagrangian and the same inverse range parameter is used for all channels: αS for the S-wave

form factors (19), and αP for the P-wave form factors (20). In the leading order χPT, the

decay constant fπ is the same for all mesons in the pseudoscalar octet (pions, kaons, η); its

value is not constrained experimentally and is thus subject to fit. Overall, there are three

free parameters to be specified: inverse ranges αS and αP , and fπ controlling the strength

of the interaction.

From the point of view of the partial wave analysis, the low-energy experimental data

may be divided into three subcategories. First, the threshold branching ratios [21] and

kaonic hydrogen properties [22] are influenced entirely by the S-wave physics. Cross sections
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are influenced by both S- and P-waves (and, naturally, higher partial waves as energy of

the collision increases), yet they are non-zero even if the P-wave is neglected. And finally,

properties of the angular distribution of the differential cross sections require the presence

of the P-wave. All of them are considered in the analysis. Since the Λ(1520), which is a

D-wave resonance, emerges at the kaon incident momentum around 400 MeV, the validity of

the model containing only S- and P-wave is certainly limited to below this value; this paper

considers only the scattering data up to 300 MeV [23–28, 30], since there is both a significant

effect of the P-wave while the D-wave is expected to be negligible. The key novelty of this

paper is the focus on the effects of P-wave interaction, therefore the attention is given

to angular distribution of the differential cross section. The asymmetry in the angular

distribution, which is parameterized by the quantity A1/A0 (9), begins to be observable at

kaon incident momenta above 200 MeV [23, 24, 27, 28]. The experimental data on angular

distributions are, unfortunately, very imprecise and available only for channels π−Σ+, π+Σ−,

K−p, and K
0
n.

In the fitting of free parameters, a simple minimization of χ2 is problematic; the χ2 fit

weights most importantly the data points that are most precise. In this case, the threshold

branching ratios, whose uncertainties are orders of magnitude smaller than uncertainties of

other data points, would dominate the fit, whereas the properties of angular distribution,

which depend dominantly on P-wave physics, would be almost irrelevant because their un-

certainties are big. Since the main focus of this paper is the P-wave interaction, the following

procedure, which emphasizes the P-wave physics, is adopted. First, the threshold charac-

teristics and total cross section at low kaon momenta (at 100 MeV for π−Σ+, and π+Σ−, at

110 MeV for K−p, and K
0
n, and at 120 MeV for π0Λ, and π0Σ0) are fitted with only the

S-wave interaction taken into account. It is justified by the fact that the P-wave interaction

is negligible for such low energies. In this procedure, the free parameters controlling the

S-wave interaction, αS and fπ, are set. Next, with the S-wave potential fixed, the total

cross sections at higher kaon momentum (300 MeV for all channels) and asymmetries in the

angular distribution (A1/A0 for momenta 225, 250, 275, and 300 MeV for channels π−Σ+,

π+Σ−, K−p, and K
0
n) are fitted with full potential in order to get the αP .

Best results were obtained for the following values of free parameters: αS = 736MeV,

fπ = 116.6MeV, and αP = 1353MeV; the overall χ2/N = 4.3. The fact that the χ2/N

is well above 1 is not a problem because the presented model does not aspire to be the
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complete description of nature. The comparison with experimental data is summarized in

Table I, and Figs. 3-4.

TABLE I. Kaon-nucleon threshold data.

fit exp. [21, 22]

γ 2.36 2.36 ± 0.04

Rc 0.637 0.664 ± 0.011

Rn 0.178 0.189 ± 0.015

∆E −296 eV −283± 42 eV

Γ 761 eV 541± 111 eV

As is seen in table I and figure 2, the agreement of the model with the data is satisfactory

for both the threshold data and total cross sections; the χ2/N = 2.9 for the first part of the

fit. Note that it was expected since it was already shown by Cieplý and Smejkal [6] that

the chirally motivated separable potential model considering only the S-wave reproduces the

wide range of low-energy experimental data.

However, the agreement is considerably worse in the P-wave sector. In Fig. 3, the

asymmetries in the angular distribution of the differential cross sections A1/A0 are shown for

all four channels where data are available. Although the experimental data are reproduced

sufficiently well in the π−Σ+, and π+Σ− channels, the model fails for the K−p, and K
0
n

channels. Note that the sign of the asymmetry is correct, but the absolute value is too small.

It suggests that the P-wave potential is too weak.

The notion that the P-wave potential motivated by the O(p1) chiral Lagrangian is too

weak is enforced if one looks at the possible resonance in the πΣ amplitudes (see Fig. 4).

The isoscalar amplitude in the 0+ partial wave clearly shows a resonant structure, which

can be identified with the Λ(1405) (as was discussed more extensively in [6]). On the other

hand, in the isovector 1+ partial wave, where the Σ(1385) resonance lies, there is no resonant

behavior observed.

In order to check this hypothesis, the dependence of the πΣ isovector amplitude on the

strength of the P-wave interaction was studied in a simplest possible way. The P-wave

potential (22), (23) was multiplied by the new parameter Pscale, which controls the strength

of the P-wave interaction, while keeping the parameters fπ, α
S, and αP fixed to the values

11
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FIG. 2. The total cross section for channels π0Λ (a), π0Σ0 (b), π−Σ+ (c), π+Σ− (d), K−p (e), and

K
0
n (f). Experimental data are from [23–28, 30].

obtained in the fit. As is seen in Fig. 5, the resonant structure above the πΣ threshold

appears for PRES
scale ≈ −3.9 and with increasing strength of the potential moves towards

higher energies.

The numerical value of the PRES
scale where the resonant structure appears depends on

the value of αP . With the decreasing value of inverse range parameter αP , the absolute
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and π+Σ− (dashed line, circles) are in the graph (a); channels K−p (full line, boxes), and K
0
n

(dashed line, circles) are in the graph (b).
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FIG. 4. Absolute values of isoscalar πΣ amplitudes for 0+ (a) and isovector πΣ amplitude for 1+

(b) partial waves.

value of PRES
scale increases. Graphs analogous to the one in figure 5 for αP = 1100MeV and

αP = 900MeV are presented in Fig. 6; corresponding values of PRES
scale are −6.7 and −10.5,

respectively.

Note that the model of this paper is based only on the first order chiral Lagrangian. In

their latest version, the model of Cieplý and Smejkal [10] was based on the second order chiral

Lagrangian and had seven free parameters to describe the S-wave physics only. Similarly,

a more sophisticated potential containing the P-wave interaction can be developed if one

considers second order Lagrangian and allows different inverse range parameters for different
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to −4.4 with peaks moving from left to right. Dashed line corresponds to the Pscale = 1.
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FIG. 6. Absolute values of isovector πΣ amplitude for 1+ partial waves obtained with artificially

strengthened P-wave interaction. Figure (a) corresponds to the αP = 1100MeV and values of

Pscale from -6.7 to -7.7. Figure (b) corresponds to the αP = 900MeV and values of Pscale from

-10.5 to -13.0.

channels. Such a model could, in principle, be able to capture the desired resonant behavior

in the 1+ partial wave if the respective low-energy constants coming from the second order

chiral Lagrangian were big enough.

The approach using a more sophisticated model, however, leads to a substantial increase

in the number of free parameters. Note that there is already a certain level of freedom in

the formulation of the model itself. For example, the functional form of the form factors
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(19), (20) is not constrained by any underlying theory and the Yamaguchi-type form was

chosen for simplicity. The vast space of free parameters combined with poor quality of

the data would make any interpretation of any result obtained quite problematic. On the

other hand, better measurements of angular distribution asymmetries or other quantities

that would more firmly constrain the P-wave interaction would certainly gain a more firm

physical ground to the extended model.

The role of chiral perturbation theory is more subtle in the presented model. Since the

KN system is outside the regime of validity of chiral perturbation theory—it was the original

motivation for an alternative approach at the first place—χPT serves only as a guideline in

the construction of the respective potentials. Note, on the other hand, that the very use

of χPT for the P-wave physics in the strange sector may raise an important question. It

was established phenomenologically [21, 31] that the Σ(1385) couples strongly to the πΛ

channel, weakly to the πΣ channel, and negligibly to the KN channel. It suggests that

the SU(3) flavor symmetry is badly broken and therefore the use of chiral physics may be

misguided—even if it serves only as a motivation. Recall, however, that chirally motivated

models were successful in the description of various S-wave phenomena in the strange sector

and thus the use of chiral physics as a guideline for in the construction of P-wave models

seems to be a natural extension. From this point of view, the introduction of a new scaling

parameter Pscale, which on one hand shifts the model away from χPT and on the other hand

improves the agreement with the experimental data, does not seem to be unreasonable.

In summary, it was shown that the model based on the solution of the Lippmann-

Schwinger equation with the interaction described by the separable potential (developed

in Sec. 3) is able to capture the physics of the P-wave interaction. It was also shown that,

although working quite well for the S-wave, the model based on the chiral Lagrangian at

the lowest order (developed in Sec. 4) is not sufficient to even qualitatively reproduce the

meson-baryon interaction in the strange sector for L=1 partial wave. The possible extension

of the model that would be based on the O(p2) chiral Lagrangian is, in principle, possible,

but problematic due to the huge amount of new free parameters to consider.
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APPENDIX

The appendix consists of Tables II, III, and IV, which specify the couplings C...
(ai)→(bj)

among channels.

TABLE II. Coupling matrix CWT
(ai)→(bj).

π0Λ π0Σ0 π−Σ+ π+Σ− K−p K
0
n ηΛ ηΣ0 K0Ξ0 K+Ξ−

π0Λ 0 0 0 0
√
3 −

√
3 0 0 −

√
3

√
3

π0Σ0 0 4 4 1 1 0 0 1 1

π−Σ+ 4 0 2 0 0 0 2 0

π+Σ− 4 0 2 0 0 0 2

K−p 4 2 3
√
3 0 0

K
0
n 4 3 −

√
3 0 0

ηΛ 0 0 3 3

ηΣ0 0 −
√
3

√
3

K0Ξ0 4 2

K+Ξ− 4
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TABLE III. Coupling matrix Cdirect
(ai)→(bj).

π0Λ π0Σ0 π−Σ+ π+Σ− K−p

π0Λ 4D2 0 −4
√
3DF 4

√
3DF 2

√
3D(D − F )

π0Σ0 4D2 4D2 4D2 −2D(D + 3F )

π−Σ+ 4D2 + 12F 2 4D2 − 12F 2 −2D(D + 3F )− 6F (D − F )

π+Σ− 4D2 + 12F 2 −2D(D + 3F ) + 6F (D − F )

K−p (D + 3F )2 + 3(D − F )2

K
0
n ηΛ ηΣ0 K0Ξ0 K+Ξ−

π0Λ −2
√
3D(D − F ) 0 4D2 −2

√
3D(D + F ) 2

√
3D(D + F )

π0Σ0 −2D(D + 3F ) −4D2 0 −2D(D − 3F ) −2D(D − 3F )

π−Σ+ −2D(D + 3F ) + 6F (D − F ) −4D2 −4
√
3DF −2D(D − 3F ) + 6F (D + F ) −2D(D − 3F )− 6F (D + F )

π+Σ− −2D(D + 3F )− 6F (D − F ) −4D2 4
√
3DF −2D(D − 3F )− 6F (D + F ) −2D(D − 3F ) + 6F (D + F )

K−p (D + 3F )2 − 3(D − F )2 2D(D + 3F ) 2
√
3D(D − F ) D2 − 9F 2 − 3(D2 − F 2) D2 − 9F 2 + 3(D2 − F 2)

K
0
n (D + 3F )2 + 3(D − F )2 2D(D + 3F ) −2

√
3D(D − F ) D2 − 9F 2 + 3(D2 − F 2) D2 − 9F 2 − 3(D2 − F 2)

ηΛ 4D2 0 2D(D − 3F ) 2D(D − 3F )

ηΣ0 4D2 −2
√
3D(D + F ) 2

√
3D(D + F )

K0Ξ0 (D − 3F )2 + 3(D + F )2 (D − 3F )2 − 3(D + F )2

K+Ξ− (D − 3F )2 + 3(D + F )2
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TABLE IV. Coupling matrix Ccrossed
(ai)→(bj).

π0Λ π0Σ0 π−Σ+ π+Σ− K−p

π0Λ 4D2 0 4
√
3DF −4

√
3DF −

√
3(D + F )(D + 3F )

π0Σ0 4D2 −12F 2 −12F 2 3(D + F )(D − F )

π−Σ+ 0 4D2 − 12F 2 0

π+Σ− 0 6(D + F )(D − F )

K−p 0

K
0
n ηΛ ηΣ0 K0Ξ0 K+Ξ−

π0Λ
√
3(D + F )(D + 3F ) 0 −4D2

√
3(D − F )(D − 3F ) −

√
3(D − F )(D − 3F )

π0Σ0 3(D + F )(D − F ) 4D2 0 3(D − F )(D + F ) 3(D − F )(D + F )

π−Σ+ 6(D + F )(D − F ) 4D2 −4
√
3DF 0 6(D − F )(D + F )

π+Σ− 0 4D2 4
√
3DF 6(D − F )(D + F ) 0

K−p 0 (D + 3F )(D − 3F ) −
√
3(D − F )(D − 3F ) 6(D + F )(D − F ) D2 − 9F 2 + 3(D2 − F 2)

K
0
n 0 (D + 3F )(D − 3F )

√
3(D − F )(D − 3F ) D2 − 9F 2 + 3(D2 − F 2) 6(D + F )(D − F )

ηΛ 4D2 0 (D + 3F )(D − 3F ) (D + 3F )(D − 3F )

ηΣ0 4D2
√
3(D + F )(D + 3F ) −

√
3(D + F )(D + 3F )

K0Ξ0 0 0

K+Ξ− 0
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