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Abstract

Continuing our effort to build a consistent power counting for chiral nuclear effective field theory (EFT),

we discuss the subleading contact interactions, or counterterms, in the singlet channels of nucleon-nucleon

scattering, with renormalization group invariance as the constraint. We argue that the rather large cutoff er-

ror of the leading amplitude requiresO(Q) of the EFT expansion to be non-vanishing, contrary to Weinberg’s

original power counting. This, together with the ultraviolet divergences of two-pion exchanges in distorted-

wave expansion, leads to enhancement of the 1S0 counterterms and results in a pionless theory-like power

counting for the singlet channels.

∗Electronic address: bingwei@jlab.org
†Electronic address: cjyang@email.arizona.edu

1



I. INTRODUCTION

Power counting is one of the essential ingredients of any effective field theory (EFT), which not

only keeps track of an infinite number of operators and Feynman diagrams but also estimates a pri-

ori the neglected contributions for a given order. Naive dimensional analysis (NDA), a cornerstone

of Weinberg’s original power counting [1] (WPC) for few-nucleon systems, is often employed to

assess the size of coupling constants: each derivative on the Lagrangian terms is always suppressed

by the underlying scale of chiral EFT,Mhi. Though phenomenologically successful [2–6], WPC has

been shown to be inconsistent with the principle of renormalization group (RG) invariance [7–17],

especially in the triplet channels where the singular attraction of one-pion exchange (OPE) calls

for modifications to WPC at as early as leading order (LO) [10]. The issues of RG invariance are

less acute in the singlet channels, since the LO amplitudes of WPC for these channels are indeed

RG invariant [7, 10, 18, 19], if we ignore the complication of chiral extrapolation which will be dealt

with in future publications. But a modification to WPC for the subleading counterterms in the

singlet channels has been argued in Refs. [11, 14, 20] to be necessary. Following our investigation

of the triplet channels [16, 17], we use RG invariance as the guideline to study the subleading

counterterms of the singlet S and P waves.

The EFT expansion of the T -matrix at low energies has the quintessential form

T =
∑

n

(
Q

Mhi

)n

Fn

(
Q

Mlo

)
, (1)

where Q denotes generically external momenta, n the counting index, Mlo low-energy mass scales

and Fn(x) the non-analytic functions from loop integrals. Even though the nonperturbative uni-

tarity requires any nonrelativistic, nonperturbative T -matrix to scale as Q−1, we choose to label

LO as O(1) so that one does not need to change the standard chiral power counting for irreducible

pion exchange diagrams, e.g., OPE is O(1). Subleading orders of the EFT expansion are labeled by

their relative correction to LO, i.e., next-to-leading order (NLO) by O(Q/Mhi) or O(Q) for short,

and next-to-next-to-leading order (NNLO) by O(Q2/M2
hi) or O(Q2), and so on.

In any EFT calculations employing a ultraviolet (UV) momentum cutoff Λ, the cutoff

independence— RG invariance— of the T -matrix is usually imperfect at a given order. There

usually exists a residual cutoff dependence, or a cutoff error, of the T -matrix with a large but finite

cutoff, which vanishes though as Λ → ∞. Seen in this light, RG invariance needs a little more

careful interpretation. Because (i) the cutoff error is part of the theoretical uncertainty at a given

order and (ii) the theoretical uncertainty is, by definition, of the same order as the next-order EFT
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correction, the cutoff error must be smaller than or of the same order as the next-order correction.

This seemingly trivial statement constrains power counting in a non-trivial way when certain order

is considered vanishing. Of our interest is WPC, in which the O(Q) corrections have long been

deemed to be zero; thus, the theoretical uncertainty for LO is considered by WPC to be O(Q2).

It follows that the LO cutoff error should vanish at least as fast as Q2/Λ2:

T (0)(Q; Λ) − T (0)(Q;∞) .

(
Q

Λ

)2

. (2)

While this is the case for the triplet channels [8, 9, 21], we will show that it is not for 1S0, which

forces us to modify WPC for 1S0 at subleading orders even though its LO satisfies RG invariance.

If a counterterm is not required by RG invariance at O(Qn) but is counted O(Qn) in NDA, we

will follow NDA to power count that counterterm. In other words, we do not minimize the number

of counterterms at a given order using RG invariance as the criterion [17, 22]. The rationale for

this is as follows. RG analysis does not study the degrees of freedom that are not built in the

effective Lagrangian, such as non-Goldstone bosons and/or very heavy excited baryon states. To

avoid underestimating the contributions of these degrees of freedom to counterterms, we set the

minimal size of counterterms as the one given by NDA as long as doing so does not violate RG

invariance.

We will treat subleading potentials as perturbations on top of the LO T -matrix, which is

nonperturbative iteration of the LO potential. This is sometimes casually called perturbative

renormalization. Underlying this approach is the point of view that power counting should be

done at the level of physical observables, in our case, the on-shell scattering amplitude. Infrared

enhancement due to nucleon intermediate states should be incorporated into the power counting [23,

24] rather than be used as the pretext to settle for WPC. However, this is not to say that a consistent

power counting for the nonperturbative approach, in which the full iteration of the whole potential

is performed, cannot be found. For the development in this direction, we refer the reader to

Refs. [25–27].

Our paper is structured as follows. In Sec. II, the subleading counterterms are classified into

three categories according to the diagrams that drive their RG evolution. After a short review

of LO in the singlet channels, we discuss in Sec. III the rather large cutoff error of the LO 1S0

amplitude and the consequence of that for power counting. We analyze in Sec. IV how the non-

vanishing O(Q) counterterm and two-pion exchanges contribute to O(Q2). This is followed by a

discussion and a conclusion offered in Sec. V.
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II. EVOLUTION OF SUBLEADING COUNTERTERMS

The LO T -matrix, T (0), arises from the full iteration of OPE (in low partial waves) and a set

of counterterms that ensure the RG invariance, which means that T (0)(k; Λ) is independent of

Λ when Λ ≫ k, where k is the magnitude of the center-of-mass momentum. Subleading orders

are given by perturbative insertions of higher-derivative counterterms and/or irreducible multiple-

pion exchanges into LO. Although renormalization at LO [19, 28] is far more intricate, we expect

to have a better visualization of renormalization at subleading orders by forming a fairly simple

correspondence between a loop diagram and the counterterm to subtract its UV divergences, much

like ones that exist in perturbative EFTs. In Wilson’s language of RG analysis, this counterterm

is the one that “evolves” most significantly when the cutoff of the loop diagram is rescaled from Λ

to a smaller value, Λ′, but remains large in the sense Λ′ ≫ k. It will help our discussion to classify

loop diagrams and their corresponding counterterms into the following three categories.

A. Residual counterterms

The first class of diagrams are actually those of T (0). Of course the LO contact operators, by

definition, are the counterterms to renormalize T (0); however, in order to systematically remove

the residual cutoff dependence of T (0), one must take account of the contact operators with more

derivatives than the leading one. We call those higher-derivative operators the residual countert-

erms for T (0). Even though they are not as important as the LO counterterms or OPE, they

might be more important than multiple-pion exchanges which start to contribute at O(Q2). It is

important for us to find a way to estimate their sizes before calculations are carried out.

The authors of Refs. [11, 20, 29] have attempted to analyze both LO and residual counterterms

using the Wilson RG equation, with OPE as the only long-range force. This is a very difficult

task and several assumptions were made in Refs. [11, 20, 29]. Energy and momentum dependences

of contact operators were assumed to be independent of each other. But we know that, when

treated as perturbation on top of LO, they can be related by the equation of motion. The RG

invariance of the off-shell T -matrix was imposed, though only the on-shell quantities need to be

RG invariant. While this excessive requirement cannot be deemed wrong, one may be concerned

that the resulting power counting demands more counterterms than necessary, only to ensure the

RG invariance of the off-shell part of the T -matrix. 1 What is most debatable is perhaps the

1 Reference [30] showed that the half off-shell partial-wave T -matrix for singular potentials, T (p′, k; k), is well-defined
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existence of an infrared fixed-point solution to the RG equation, around which the power counting

is obtained. Although this appears to be reasonable in the singlet channels, it is clearly at odds

with the running of counterterms in the attractive triplet channels, where a limit cycle-like behavior

was observed [8, 10].

Instead of performing a comprehensive analysis of the RG equation, we impose a narrower

definition for residual counterterms: the correction brought by the residual counterterm is of the

same size as the cutoff error T (0)(k; Λ)−T (0)(k;∞). For example, the LO cutoff error in 3S1 −
3D1

is found to be O(k2M
1/2
lo Λ−5/2) [8, 9, 21]. Thus, the correction due to the 3S1 residual counterterm

is rated as O(Q2M
1/2
lo Λ−5/2), less than the leading two-pion exchange (TPE0), which is O(Q2/M2

hi).

It should now become apparent that we use residual counterterm merely as a mnemonic device

to reflect the order of magnitude of the LO cutoff error. With this notion we can interpret the

inequality (2) as follows: WPC requires the residual counterterm to be no more important than

TPE0. It is indeed true for the triplet channels, but, as we will show, it is not so for 1S0.

B. Primordial counterterms

Better known are the second class of diagrams: irreducible multiple-pion exchanges evaluated

in the plane, or free spherical, wave basis. Primordial counterterms [17] are the contact operators

necessary to subtract the divergences of these pion-exchange diagrams.

On the basis of “naturalness”, the power counting of primordial counterterms should be the

same as that of the pion-exchange diagram in question, which is reliably handled by WPC. For

example, TPE0 is O(Q2) and its primordial counterterm, a second-order polynomial in momenta,

is counted O(Q2) as well.

C. Distorted-wave counterterms

The third class of diagrams are insertions of irreducible multiple-pion exchanges into LO, that

is, pion-exchanges sandwiched between distorted waves— the LO wave functions, ψk. The coun-

terterms to absorb the divergences of these diagrams are called by us distorted-wave counterterms.

as Λ → ∞. But the presumption of RG equations in Refs. [11, 20] seems to be stronger: for any p′ between k and
(finite) Λ, the cutoff dependence of T (p′, k; k) needs to vanish uniformly at a rate independent of p′ so that when
Λ varies the variation of the integral in the Lippmann-Schwinger equation is dominated by the contribution due
to the varied endpoint, as opposed to the contribution due to the functional change of T (p′, k; k) (as a function of
p′).
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Coordinate space provides the best stage for qualitative discussion of distorted-wave UV diver-

gences. Any reasonable UV regulator will roughly separate radial coordinate into two parts: the

inside, 0 < r . Λ−1, and the outside, Λ−1 . r <∞. Details of the regulator decide how sharp the

separation is. When contact interactions are present at LO, such as in both S waves, the inside

and outside part of the LO wave function, ψin
k and ψout

k , are respectively subject to the LO contact

potential and OPE. The LO contact potential and OPE have different short-distance structures,

which result in different short-distance behaviors of ψin
k and ψout

k . For instance, as shown in, e.g.,

Refs. [18, 31], ψout
k (r) in 1S0 has an irregular component diverging like ∼ 1/r near r ∼ Λ−1, which

differs very much from a free spherical wave. On the other hand, since the LO contact potential

is always well-defined upon regularization, the inside wave function ψin
k is not drastically different

from a free spherical wave.

The distorted-wave matrix element of a subleading contact potential, 〈ψk|V
sub
S |ψk〉, is domi-

nated by the integration over the inside region. Since ψin
k (r) behaves similarly to a free wave at

short distance, 〈ψk|V
sub
S |ψk〉 is expected to be as UV singular as its free-wave counterpart, i.e.,

〈plane wave|V sub
S |plane wave〉.

On the other hand, the distorted-wave matrix element of a subleading long-range potential,

〈ψk|V
sub
L |ψk〉, is mostly decided by the integration of ψout

k (r). The irregular component of ψout
k (r),

if present, could make 〈ψk|V
sub
L |ψk〉 more divergent than its free-wave counterpart. Therefore, the

primordial counterterm that renormalizes a given multiple-pion exchange in the plane wave basis

may no longer renormalize the same pion exchange between distorted waves. If it does not, the

distorted-wave counterterm will have to be more singular than its primordial counterpart, that is,

will have more derivatives. This indeed happens to a toy model considered in Ref. [32] and in

3P0,
3P2 −

3F2 [14–16] and 1S0 [14], among possibly other channels of NN scattering. We will

reproduce in Sec. IV the distorted-wave enhancement of the 1S0 subleading counterterms, which

was first shown in Ref. [14].

The distorted-wave multiple-pion exchanges, 〈ψk|V
sub
L |ψk〉, are power counted as the same as

the free-wave matrix elements because it has been established at LO that any number of insertions

of V (0)— the LO potential— does not enhance or diminish the amplitude. Based on, again,

naturalness, it follows that the distorted-wave counterterm is power counted as the same as its

primordial counterpart, even though the distorted-wave counterterm may have more derivatives.
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III. LO AND ITS RESIDUAL COUNTERTERMS

We consider first 1S0. The LO amplitude is constructed by resumming V (0), which is a constant

counterterm C1S0
plus OPE,

V (0)(q) = Vπ(q) +C1S0
, (3)

where

Vπ(q) =
g2A
4f2π

q2

q2 +m2
π

, (4)

with ~p ′ (~p ) the outgoing (incoming) momentum in the center-of-mass frame, ~q ≡ ~p ′− ~p, gA = 1.26

and fπ = 92.4 MeV. We can redefine C1S0
such that the point-like piece embedded in OPE is sepa-

rated from the Yukawa potential and rewrite long and short-range potentials for 1S0, respectively,

as

VY (q) = −
4π

mN

απm
2
π

q2 +m2
π

, V
(0)
S = C(0) , (5)

where απ ≡ g2AmN/16πf
2
π ∼ (290MeV)−1 and 4π/mN is a common factor of nonrelativistic Feyn-

man amplitudes. Here we have dropped the subscript 1S0 to simplify the notation. C has been

formally expanded in anticipation that the running of C(Λ) with respect to Λ could be modified

at each order,

C(Λ) = C(0)(Λ) + C(1)(Λ) + · · · , (6)

though the number of physical inputs to determine C remains one (or stated differently, the bound-

ary condition for the RG flow of C(Λ) remains fixed). Barring fine-tuning, the power counting of

(renormalized) C [20, 24, 33] is decided by the point-like piece of OPE:

CR ∼
4π

mN

1

Mlo
, (7)

where Q ∼ Mlo ∼ α−1
π . The relatively large size of α−1

π , compared with mπ, is crucial for the

singlet-channel success of KSW scheme [23, 34], in which OPE is treated perturbatively. But here

we take the view point that α−1
π is an infrared mass scale because (i) it is still smaller than Mhi

and (ii) the perturbative Yukawa works less well when mπ takes a larger value but still stays within

the validity of chiral EFT.

We will use conventional numerical methods to carry out actual calculations (see Sec. IVC), but

we can study the UV divergences analytically using the elegant machinery developed in Ref. [7].
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FIG. 1: Diagrammatic representation of χ(p; k) and Ik. Here the solid (dashed) line represents the nucleon

(pion) propagator, and the crossed circle does not represent any interaction.

First, we define the resummed Yukawa amplitude:

TY(~p
′, ~p ; k) = VY(|~p

′ − ~p |) +

∫
d3l

(2π)3
VY(|~p

′ −~l |)
TY(~l, ~p ; k)

E − l2

mN
+ iǫ

, (8)

where E ≡ k2/mN is the center-of-mass energy. While the LO P and higher wave amplitudes are

given solely by the resummed Yukawa, the LO S-wave amplitude needs summing up insertions of

C(0) to all orders, which is eventually given by [7]

T (0)(~p ′, ~p ; k) = TY(~p
′, ~p ; k) +

χ(p′; k)χ(p; k)

(C(0))
−1

− Ik
, (9)

where

χ(p; k) = 1 +

∫
d3l

(2π)3
TY(~l, ~p ; k)

E − l2

mN
+ iǫ

, (10)

Ik =

∫
d3l

(2π)3
χ(l; k)

E − l2

mN
+ iǫ

. (11)

Figure 1 shows the diagrams that, when resummed, represent Ik and χ(p; k). The power counting

of Ik and χ(k; k) will follow, e.g., that of the first diagram of their resummation series: Ik ∼ mNQ
4π

and χ(k; k) ∼ 1. Equation (9) is exactly correct only when V (0) is dimensionally regularized [7] or

regularized by a separable cutoff regulator:

V
(0)
Λ (~p ′, ~p ) ≡ fR

(
p′2

Λ2

)
V (0)

(
|~p ′ − ~p |

)
fR

(
p2

Λ2

)
. (12)

For a more general regulator, Eq. (9) is true only at Λ → ∞. We will assume in studying the LO

cutoff error that a separable regulator is used.

Although we cannot calculate analytically Ik, χ(p; k), or TY , the dominant UV divergences can

be captured by noticing that every insertion of VY— combined with the Schrödinger propagator—

suppresses the UV divergences by 1/Λ [7]. Therefore, the most significant cutoff dependences of

Ik are in the first two diagrams of the lower row in Fig. 1: the first is linear and the second is

logarithmic in Λ,

4π

mN
Ik =

4π

mN

(
IΛ + IRk

)
+ β2(k, κπ ,m

2
π)
k2

Λ
+O

(
κπk

2

Λ2

)
, (13)
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with

4π

mN
IΛ ≡ β0 Λ+ β1κπ ln

(
Λ

κπ

)
. (14)

Here IRk is the finite part, κπ = απm
2
π and βi are dimensionless and depend on the details of the

UV regulator. While β0 and β1 are numbers coming out of the first two diagrams, the 1/Λ cutoff

dependence, β2, receives contributions from all the diagrams; therefore, β2 is a nonperturbative

function of k, κπ, and m
2
π. In the spirit of keeping track of 1/Λ cutoff dependences, one finds that

χ(k; k) = χR
k + γ2(k, κπ ,m

2
π)
κπ
Λ

+O

(
κ2π
Λ2

)
, (15)

where χR
k is the finite part and γ2 is another dimensionless function. As for TY , we notice that its

residual cutoff dependence is only O(κπk
2/Λ3).

We would like to have available the coordinate space form of the LO wave function, which will

be useful in analyzing the distorted-wave counterterms for TPEs. Since they are somewhat out of

the main line of our discussion, the relevant expressions concerning the wave function are relegated

to Appendix A.

Introducing the renormalized coupling, CR, such that

C−1
R = (C(0))

−1
− IΛ , (16)

we can rewrite the on-shell T -matrix as

T (0)(~k,~k; k) = TY (~k,~k ; k) +
χ(k; k)2

C−1
R − IRk +O

(
mNk2

4πΛ

) . (17)

2 As Λ → ∞, Eq. (17) is no more than reproducing one of the results in Ref. [7]. However, one can

go further and infer from the cutoff error some information about the subleading 1S0 counterterms.

Using Eqs. (13) and (15), power counting (7), Ik ∼ mNQ
4π , and χ(k; k) ∼ 1, one finds, as promised,

that the cutoff error is O(k2/MloΛ):

χR
k
2

C−1
R − IRk

[
2
γ2

χR
k

κπ
Λ

+ β2
k2

4π
mN

(
C−1
R − IRk

)
Λ

]
. (18)

Therefore, the theoretical uncertainty of T (0) must be O(Q), or equivalently, the residual

counterterm— the two-derivative 1S0 contact operator D/2(p′2 + p2)— is O(Q), following our

2 If we had regularized the infrared end of the logarithmic divergence in IΛ by an arbitrary mass µ instead of κπ,
CR and IRk will depend on µ in such a way that (C−1

R
− IRk ) does not.
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definition of residual counterterms in Sec. IIA. On the other hand, since pion corrections do not

start until O(Q2), a non-vanishing O(Q) can only be one insertion of the D term:

T (1) =
(
1 + T (0)G

)
V

(1)
S

(
GT (0) + 1

)
, (19)

where V
(1)
S denotes the short-range part of the O(Q) potential,

〈1S0|V
(1)
S |1S0〉 = C(1) +

D(0)

2
(p′

2
+ p2) , (20)

and G is the Schrödinger propagator.

If the loop integrals in χ(k; k) (10) and Ik (11) are dimensionally regularized, the LO cutoff

error (18) vanishes. But it is a model-dependent thinking to count on specific regulators to be

superior and to ignore the cutoff error that arise with other regulators.

Higher partial wave amplitudes are decided by TY alone. The quite small cutoff error of TY ,

O(κπk
2/Λ3), means that the residual counterterm for 1P1 is no more important than O(Q2) and

that WPC does not need to change for 1P1:

〈1P1|V
(1)
S |1P1〉 = 0 . (21)

Starting fromO(Q), we no longer enjoy the ease of keeping track of residual cutoff dependence as

we did for the LO 1S0 amplitude. The main technical reason is related to the fact that the separable

cutoff regulator used at LO causes V
(0)
Λ to be non-local in coordinate space at short distance, as

explained in more detail in Appendices A and B. Fortunately, cutoff errors at subleading orders

are not expected to constrain power counting in the way they did for LO, because after multiple-

pion exchanges kick in at O(Q2) we do not expect any subleading order to vanish. However,

the difference between dimensional regularization and cutoff regulators with Λ → ∞ can still be

relevant for power counting, as to be seen in Sec. IV.

In the limit Λ → ∞, one can at least obtain formal expressions for insertions of subleading

contact interactions, which are sufficient to see how divergences are subtracted. Through the steps

shown in Appendix B, one can rewrite the O(Q) 1S0 amplitude (19) in a more comprehensible

form:

T (1) =
1

(
C(0)

)2
χR
k
2

(
C−1
R − IRk

)2
{[
C(1) −D(0)mN Ṽ

(0)(0)
]
+D(0)k2

}
, (22)

where Ṽ (0)(0) (A9) is the formal value of V (0) at the spacial origin. Since C(1) does not incorporate

any new physical information, it is at our disposal to choose the value of C(1) so long as it helps
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renormalization. With

DR ≡
D(0)

C(0)2
C2
R , (23)

we choose the value of C(1) such that

C(1)

(C(0))2
C2
R −mNDRṼ

(0)(0) = 0 . (24)

Now we can express T (1) in terms of renormalized quantities:

T (1) =
DR

C2
R

k2χR
k
2

(
C−1
R − IRk

)2 . (25)

It is obvious that, for T (1) to be O(Q), the scaling of DR must be

DR ∼
4π

mN

1

M2
loMhi

, (26)

in comparison with CR (7). The interpretation of T (1) becomes particularly simple in the chiral

limit where TY vanishes: the D term plays the role of the effective range.

IV. O(Q2)

A. S Wave

At O(Q2) there are two insertions of V
(1)
S and one insertion of each of TPE0 (denoted by V

(0)
2π )

and V
(2)
S , where V

(2)
S , before any higher-derivative counterterm is considered, includes at least the

O(Q2) corrections to C(Λ) and D(Λ): C(2)(Λ) and D(1)(Λ).

Two insertions of V
(1)
S include integrals involving the LO interacting Green function: Gk ≡

G(1 + T (0)G). The contributions of C(2), D(1), and two V
(1)
S ’s are eventually summed up as

T
(2)
S =

χR
k
2

(
C−1
R − IRk

)2

[
D2

R

C4
R

k4(
C−1
R − IRk

) + D2
R

C4
R

C(0)k4 +
(
A+ Bk2

)
]
, (27)

where

A = −mN
D2

R

C4
R

(
C(0)

)2 [
mN Ṽ

(0)(0)δ(3)(0)− δ(3)
′′
(0)
]
+

C(2)

C(0)2
, (28)

B = −
3

4
mN

D2
R

C4
R

(
C(0)

)2
δ(3)(0) +

D(1)

C(0)2
. (29)

For the related computational details of the above equation (and Eqs. (30) and (31)), we refer the

reader to Appendix B. The first term in the bracket of Eq. (27) does not bring more information
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than T (1) (25); it merely restores the unitarity up to O(Q2). The second term has new structure,

which becomes more apparent in the chiral limit where, since VY vanishes, it resembles the shape

parameter of a contact-only theory. We will casually refer to it below as the shape parameter

term even away from the chiral limit. With power counting (7) and (26) and Eqs. (14) and (16),

one sees that the shape parameter term vanishes for cutoff regulators in the large Λ limit where

C(0) ∝ 1/(β0Λ). With A and B made finite by C(2) and D(1), T
(2)
S is well-defined as Λ → ∞.

However, if dimensional regularization with minimal subtraction was used to regularize IΛ (14)

(the first two diagrams of Ik in Fig. 1), we are led to a different opinion on counting the shape

parameter term. In the chiral limit, the Yukawa vanishes and we will have C(0) = CR ∝ 1/Mlo,

which means that the shape parameter term is an O(Q2) contribution in contrast to what happens

with cutoff regulators. Since a consistent power counting does not discriminate against certain

regularization schemes, we must add a (residual) four-derivative counterterm E(0)p′2p2 at O(Q2)

to absorb the regularization-scheme dependence. For finite mπ, the pole term stemming from

dimensional regularization of the second diagram of Ik in Fig. 1 will cause C(0) = 1/(CR
−1 − IΛ)

to vanish. In such a case the disparity between both regularization schemes is no longer a concern

in regard to renormalization. Nevertheless, in order to have an easier transition to the chiral limit,

we will count the residual E as O(Q2) for finite mπ even though it is not strongly required by

renormalizability. (Interestingly, as we will see soon, this decision is not crucial for power counting

after all: E will at any rate be required at O(Q2) as the distorted-wave counterterm for two-pion

exchanges, regardless of the value of mπ.) One insertion of the E term yields

T
(2)
E =

E(0)

C(0)2

χR
k
2

(
C−1
R − IRk

)2
[
k2 −mN Ṽ

(0)(0)
]2
. (30)

Before considering TPE0, we note that the other four-derivative term E (p′4+p4), when treated

as perturbation, is redundant:

T
(2)
E

=
E

C(0)2

χR
k
2

(
C−1
R − IRk

)2
{[
k2 −mN Ṽ

(0)(0)
]2

−mN
~∇2Ṽ (0)(0)

}
. (31)

With Eqs. (25) and (30), T
(2)
E

can be expressed in the large Λ limit as a combination of the C and

E operators. A more general argument is of course the field redefinition inspired by the nucleon

equation of motion [28]. For a general cutoff regulator with finite Λ, p′4 + p4 is not necessarily

equivalent to p′2p2. But their difference for finite Λ, in a consistent power counting, is no more

significant than the cutoff error when either operator, but not both, is used.

The analytic part of V
(0)
2π (q) is a second-order momentum polynomial, i.e., its primordial coun-

terterm, which, when projected onto 1S0, is nothing but the D term. The insertion of the D term

12



into T (0) is shown in Sec. III. We now consider the matrix element of the non-analytic part, which

diverges as r → 0 in coordinate space: Ṽ
(0)
2π (r) ∼ 1/(M2

hir
5). This was first shown in Ref. [14],

though in a slightly different notation than ours.

This is perhaps most readily done in coordinate space where V
(0)
2π is diagonal,

T
(2)
2π = 4π

∫
dr r2ψ2

k(r) Ṽ
(0)
2π (r) , (32)

where ψk(r) is the LO 1S0 wave function. The “outside” part of ψk(r) (Λ
−1 . r) is subject to the

Yukawa and is dominated by the irregular solution Hk(r) (A3) at short distance, which diverges

as 1/r near r ∼ Λ−1. As a consequence, the UV divergence of T
(2)
2π is illustrated by the integration

of the outside wave function from any infrared length down to r ∼ Λ−1,

T
(2)
2π = 4π

∫

∼Λ−1

dr r2ψ2
k(r) Ṽ

(0)
2π (r) + F.T.

∝

(
N

C(0)

)2 χR
k
2

(
C−1
R − IRk

)2
(
ρ0Λ

4 + ρ1k
2Λ2 + ρ2k

4 ln Λ
)
+ F.T. ,

(33)

where N/C(0) is RG invariant (see Appendix A) and “F.T.” refers to finite terms. ρi are functions

of κπ/Λ and have at most logarithmic dependence on Λ. While ρ0Λ
4 and ρ1k

2Λ2 can be respectively

subtracted by C(2) (28) and D(1) (29), the divergence proportional to ρ2k
4 ln Λ needs E(0) (30)

to cancel. That is, the 1S0 distorted-wave counterterm of TPE0— the E term— has two more

derivatives than the primordial counterterm— the D term.

Using the fact that a multiple-pion exchange with O(Qn/Mn
hi) correction to TPE0 behaves as

1/r5+n at short distance and repeating the above procedure, we can eventually conclude that, for

any multiple-pion exchange, the 1S0 distorted-wave counterterm is a momentum polynomial with

two more powers than their primordial counterpart.

We have seen two motivations to promote the E counterterm to O(Q2): (i) to control the

regularization-scheme dependence of two insertions of the D term and (ii) to absorb the distorted-

wave UV divergences of two-pion exchanges.

Unfortunately, the integral in Eq. (33) cannot be evaluated analytically even as Λ → ∞; thus we

cannot express the full O(Q2) amplitude in terms of the previously defined renormalized building

blocks. But the structure of VS at O(Q2) will suffice in the numerical calculations carried out later:

〈1S0|V
(2)
S |1S0〉 = C(2) +

D(1)

2
(p′

2
+ p2) + E(0)p′

2
p2 . (34)

13



B. P wave

The distorted-wave counterterm for TPE0 in 1P1 is the same as the primordial counterterm be-

cause, without an irregular component, the LO P -wave outside solution cannot make the distorted-

wave counterterm more singular than the primordial one. It follows from this, combined with the

observation that the residual counterterm for 1P1 is not larger than TPE0, that WPC does not

need to change for 1P1; a single P -wave counterterm is what is needed for O(Q2) and O(Q3),

〈1P1|V
(2, 3)
S |1P1〉 = C

(0, 1)
1P1

p′p . (35)

C. Numerics

We compare our EFT calculations with the Nijmegen partial wave analysis (PWA) [36]. The

expressions for the delta-less TPEs from Ref. [3] are adopted here. Sharp momentum cutoff is used

in solving the (partial-wave) Lippmann-Schwinger equation for the LO amplitudes and in evalu-

ating the integrals involved in perturbative insertions of the subleading potentials. The analytical

expressions of insertions of subleading counterterms, Eqs. (22) and (27), are not used since they

are exactly correct only as Λ → ∞.

Plotted in Fig. 2 are 1S0 phase shifts versus laboratory energy, Tlab. The LO curve is fitted to

the PWA at Tlab = 5 MeV. The PWA points at Tlab = 25 and 50 MeV are added to determine

D and E, respectively, at O(Q) and O(Q2). A good reproduction of the PWA is achieved up to

Tlab ≃ 100 MeV, which translates into k ≃ 200 MeV.

Unlike in the triplet channels, the analytical arguments for renormalizability in the singlet

channels are quite solid. So it is less crucial to examine numerically the cutoff (in)dependence of

the EFT amplitudes. However, it is still reassuring to see that the O(Q2) curve with Λ = 1 GeV

is closer to the Λ = 2 GeV curve, suggesting the cutoff independence for large Λ.

Although WPC is intact for 1P1, we plot in Fig. 3 1P1 phase shifts, for completeness. The

cutoff independence is rather trivial for 1P1; therefore, only Λ = 1.5 GeV is employed. Since

going to O(Q3) in 1P1 is much easier than in 1S0, we include O(Q3) results as well, in which the

subleading TPE (TPE1) contributes. There is only one counterterm up to O(Q3), C1P1
(34), which

we determine by fitting to the PWA point at Tlab = 50 MeV.

TPE1 has crucial dependences on the ππNN seagull couplings, ci, that have chiral index ν =

1. We show O(Q3) EFT curves, respectively, with two commonly-used sets of ci (in unit of

GeV−1): (I) the dot-dashed line with c1 = −0.81, c3 = −4.7, and c4 = 3.4 [37] and (II) the
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FIG. 2: (Color online) 1S0 phase shifts as a function of laboratory energy. The red dots are from the

Nijmegen PWA [36]. The dark green (light blue) band is the LO (O(Q)) EFT result with Λ = 0.5− 2 GeV.

The dashed, dotted, and dot-dashed lines are O(Q2) with Λ = 0.5, 1, and 2 GeV, respectively.

solid line with c1 = −0.81, c3 = −3.4, and c4 = 3.4 [6, 15]. The impact of the uncertainties of

ci is significant beyond approximately 50 MeV. Since the uncertainties of ci have their roots in

slow convergence of the delta-less description of πN scattering, we expect that the delta-ful pion

exchanges [2, 38, 39], with the πN∆ low-energy constants determined by the πN scattering data

around the delta peak [40–42], will improve the convergence of chiral NN EFT. In fact, aside from

the open issues of power counting counterterms, the delta-ful nuclear forces have been shown to

achieve a more rapid convergence in the two-nucleon [43, 44] and, on a more qualitative level, in

the three-nucleon [45] sectors.

In the light of findings of Ref. [46], a few more remarks about our numerical results are in order.

Reference [46] argues that higher terms of a certain series of irreducible multiple-pion exchanges,

the multiple-scattering series (MSS), are suppressed by a mass scale (MMSS) much smaller than

4πfπ ∼ 1.2 GeV, which was estimated by WPC. Using the conversion of coordinate cutoff to

momentum cutoff [44], Λ = π/(2Rc), we translate the break-down length scale of the MSS found

in Ref. [46] into MMSS ≃ 390 − 620 MeV, depending on the value of c3. Assuming the finding in

Ref. [46] to be correct, MMSS, instead of 4πfπ, may now be the break-down scale of chiral EFT

itself, and one may then be able to choose Λ with a value as low as MMSS. But there seems to

be nothing wrong with choosing a cutoff value that is higher than the actual break-down scale,

provided that subleading orders are treated in perturbation theory. We at least already know

that this is the case for the pionless EFT and single-nucleon chiral perturbation theory. What is
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FIG. 3: (Color online) 1P1 phase shifts as a function of laboratory energy. The red dots are from the

PWA [36]. The dashed and dotted lines are respectively the LO and O(Q2) EFT curves. The dot-dashed

(set I) and solid (set II) lines are O(Q3) curves with different sets of ππNN seagull couplings (see the text

for explanation).

more important is whether the slower-than-expected convergence is reflected at the level of on-shell

amplitudes. Interestingly, the NN phase shifts calculated with delta-less TPEs and with our power

counting, shown in Ref. [16] and in this paper, indeed suggest a break-down scale comparable or

even lower than MMSS, for which the slow convergence of the MSS in the delta-less theory may be

suspected as the culprit.

V. DISCUSSION AND CONCLUSION

We have studied how RG invariance constrains in the singlet channels of NN scattering the

structure of subleading counterterms, with S and P waves as the examples. Our analysis shows a

hierarchy of 1S0 counterterms that resembles the pionless theory while WPC remains unchanged

in 1P1 and higher singlet partial waves.

To facilitate the discussion, the subleading counterterms are classified into three categories ac-

cording to the loop diagrams that drive their evolution (see Sec. II). The residual counterterms

eliminate the small cutoff dependence of the LO amplitude, in order to achieve the exact RG in-

variance. The primordial and distorted-wave counterterms are the short-range operators necessary

to absorb the divergences of multiple-pion exchanges sandwiched between free and LO interacting

states, respectively.

We have argued that RG invariance provides two mechanisms to enhance, relative to WPC,
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O(1) OPE, C1S0
,


C3S1

0

0 0


, C3P0

p′p,


C3P2

p′p 0

0 0




O(Q) D1S0
(p′

2
+ p2)

O(Q2) TPE0, E1S0
p′2p2,


D3S1

(p′
2
+ p2) ESD p

2

ESD p
′2 0


,

D3P0
p′p(p′

2
+ p2), p′p



D3P2
(p′

2
+ p2) EPF p

2

EPF p
′2 0



,

C1P1
p′p, C3P1

p′p

O(Q3) TPE1, F1S0
p′2p2(p′2 + p2)

TABLE I: Power counting for pion exchanges, S and P -wave counterterms up to O(Q3). p (p′) is the

magnitude of the center-of-mass incoming (outgoing) momentum. The two-by-two matrices are for the

coupled channels.

the short-range forces in 1S0. (i) As the residual counterterms for the LO amplitude, they scale

similarly to the contact interactions of the pionless theory [23, 35]: for a generic 1S0 counterterm

C2n with 2n derivatives,

Cres
2n ∼

4π

mN

1

Mn+1
lo Mn

hi

. (36)

(ii) As the distorted-wave counterterms for multiple-pion exchanges, they are enhanced by

O(M2
hi/M

2
lo), but only starting from the four-derivative term,

Cdis
2n ∼

4π

mN

1

M3
loM

2n−2
hi

, n > 2 . (37)

Since the enhancement due to the residual counterterms dominates, we power count 1S0 contact

interaction according to (36), as if the theory were the pionless one. In particular, the O(Q3)

counterterms have the following structure:

〈1S0|V
(3)
S |1S0〉 = C(3) +

D(2)

2

(
p′

2
+ p2

)
+ E(1)p′

2
p2 +

F (0)

2
p′

2
p2
(
p′

2
+ p2

)
. (38)

The numerical implementation of O(Q3) for 1S0 is currently being worked on and will be reported

in later publications. Summarized in Table I is our power counting for the two-nucleon sector in

both singlet and triplet channels for S and P waves.

We scrutinize WPC with a more stringent interpretation of RG invariance: not only should

the cutoff dependence become vanishingly small for Λ & Mhi, but it must vanish sufficiently fast

so that the accuracy claimed by the power counting is consistent with the cutoff error. This

leads to a crucial conclusion in our analysis that, contrary to WPC, O(Q) of the EFT expansion
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does not vanish. Instead, O(Q) is made of one insertion of the two-derivative 1S0 counterterm:

D/2(p′2 + p2). Although we are not the first to propose this, our argument, that the cutoff error

of the LO amplitude is one order lower than TPE0 and has to be corrected by the D term alone,

provides some new insights. For instance, unlike Ref. [7] (also discussed later in Ref. [47]), our

rationale is a priori and does not rely on the numerical value of D in a particular renormalization

scheme.

A full, nonperturbative RG analysis, with OPE as the only long-range force, of the counterterms

was attempted in Refs. [11, 20], in which it was also concluded that the D counterterm is more

important than TPE0. Although the nonperturbative RG analysis appears to be free of any

guesswork for obtaining power counting, the robustness of the conclusions of Refs. [11, 20] is

obscured by the assumptions made therein to derive and solve the RG equation. On the other

hand, our approach can be viewed as the explicit, order-by-order examination of an ansatz— the

proposed power counting— to the RG equation. If RG invariance can be shown to hold at all

orders, which we could not rigorously achieve though, we cannot think of any reason why the

proposed power counting could not be one of the solutions to the RG equation. In other words,

we think that there may be more than one RG-invariant power-countings and only the data or the

underlying theory can tell which one is more efficient.

It is instructive to compare the power counting of 1S0 with that of the attractive triplet channels.

A non-vanishing O(Q) arising in 1S0 but not in the triplet channels has everything to do with the

fact that OPE is regular (1/r) in 1S0 but singular (1/r
3) in the triplet channels. It is interesting that

the singular attraction of OPE costs a few more LO counterterms in the attractive triplet channels

(e.g., 3P0 and 3P2 −
3F2) but in the mean time it avoids the pionless theory-like proliferation of

subleading counterterms.

The distorted-wave enhancement to the singlet-channel short-range forces occurs in only S wave

(1S0), and it affects the power counting to a lesser extent than that of the residual counterterms.

In contrast, the distorted-wave enhancement in the attractive triplet channels takes place in higher

partial waves (3P0,
3P2 −

3F2, etc.) but not in S wave, and it plays more important role in power

counting than the residual counterterms.
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Appendix A: LO wave function

With the regularized LO potential, the S-wave radial wave function is well-defined at the origin

and can be written as

ψk(r) = ψk(0)φk(r) , (A1)

where φk(r) is the regular solution in the sense φk(r) → j0(kr) as r → 0, with j0(ρ) the zeroth

spherical Bessel function.

With regularization ṼY (r)— the Fourier transform of VY (q)— becomes relatively flat on the

inside while it resumes the Yukawa form on the outside. The LO contact potential, V
(0)
S , is smeared

inside and vanishes outside. This means that the inside wave function is largely decided by C(0)(Λ)

and Λ, whereas the outside part is dominated by a combination of the irregular (Hk(r)) and regular

(Jk(r)) solutions to the Yukawa potential,

φk(r) = N (C(0),Λ)
[
Hk(r) + θ(C(0),Λ)Jk(r)

]
, r & Λ−1 . (A2)

Hk(r) and Jk(r) have the following small kr expansions:

Jk(r) =
∑

n=0

ξn (κπr) (kr)
2n ,

Hk(r) =
1

κπr

∑

n=0

δn (κπr) (kr)
2n − 2Jk(r) ln (κπr) ,

(A3)

where ξn(x) and δn(x) are analytic functions around x = 0 and can be further expanded to obtain

the expansions of Jk(r) and Hk(r) in powers of r. N and θ in Eq. (A2) are functions of C(0)(Λ)

and Λ because the inside and outside wave functions need to match near r ∼ Λ−1 when k = 0 or

any other small momentum for which we decide to fit C(0)(Λ).

19



On the other hand, the three-dimensional (in-state) wave function is related to the LO T -matrix

by

ψ~k(~x ) = ei
~k·~x +

∫
d3l

(2π)3
ei
~l·~x T (0)(~l,~k; k)

E − l2

mN
+ iǫ

. (A4)

Therefore, ψk(0) is given by

ψk(0) = 1 +

∫
d3l

(2π)3
T (0)(~l,~k; k)

E − l2

mN
+ iǫ

. (A5)

Since T (0)(~l,~k; k) is generated by the regularized LO potential, V (0)(~p ′, ~p )FR(~p
′/Λ, ~p/Λ), it dies

off in the UV region. So an additional regularization of the integrals in the above equations is

unnecessary. ψ~k(~x ) satisfies the Schrödinger equation,

−~∇2ψ~k(~x ) +mN

∫
d3x′Ṽ

(0)
Λ (~x, ~x ′)ψ~k(~x

′) = k2ψ~k(~x ) , (A6)

where the regularized LO potential is generally non-local at short distance, r ∼ Λ−1,

Ṽ
(0)
Λ (~x, ~x ′) =

∫
d3l

(2π)3
d3l′

(2π)3
FR

(
~l

Λ
,
~l ′

Λ

)
V (0)

(
|~l −~l ′|

)
ei(

~l·~x−~l ′·~x ′) , (A7)

unless the cutoff regulator depends only on the momentum transfer. In the limit Λ → ∞, the

non-local effect disappears and the Schrödinger equation becomes local but formal with the un-

regularized LO potential:

−~∇2ψ~k(~x ) +mN Ṽ
(0)(~x )ψ~k(~x ) = k2ψ~k(~x ) , (A8)

where

Ṽ (0)(~x) = C(0)δ(3)(~x)−
4πκπ
mN

e−mπr

r
. (A9)

One could use a regulator that depends only on the momentum transfer so that the Schrödinger

equation becomes exactly local even for finite Λ. But with such a regulator, it is difficult to

resum C(0) analytically because the bubble diagrams— iterations of only C(0)— no longer form a

geometrical series.

If FR(~x, ~y ) is separable, FR(~x, ~y ) = fR(|~x|)fR(|~y|), the analytical results for LO in Sec. III are

exact for finite Λ. With such a regulator, we can use Eqs. (9), (10), and (11) to obtain

ψk(0) =
1

C(0)

χ(k; k)

(C(0))
−1

− Ik
. (A10)
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Using Eq. (A1), we find the asymptotic form of ψk(r), which must be RG invariant in order for

extracting scattering observables,

ψk(r) =
N

C(0)

χ(k; k)

(C(0))−1 − Ik

[
Hk(r) + θ(C(0),Λ)Jk(r)

]
, r ≫ Λ−1 . (A11)

Recalling that χ(k; k)/[(C(0))−1 − Ik] → χR(k; k)/(C−1
R − IRk ), one concludes that N/C(0) and θ

are both RG invariant as Λ → ∞.

Appendix B: Useful integrals for subleading T -matrix

We briefly describe the computations of the integrals stemming from insertions of subleading

counterterms into the LO T -matrix, such as Eqs.(22), (27), (30), and (31). Note that the results

shown here are only formal expressions for a generic regulator in the large Λ limit.

When evaluating (1 + T (0)G)V
(1)
S (GT (0) + 1) (22), we need to know the following integral

Σ2(k) ≡ k2 +

∫
d3l

(2π)3
l2
T (0)(~l,~k; k)

E − l2

mN
+ iǫ

. (B1)

By differentiating with respect to ~x on both sides of Eq. (A4) and letting ~x = 0 in the end, one

finds

Σ2(k) = −~∇2ψk(0) . (B2)

For finite Λ, ~∇2ψk(0) does not enjoy a simple relation to quantities at the origin, since Ṽ
(0)
Λ (~x, ~x ′)

is generally non-local at short distance, as indicated in Eq. (A6). But as Λ → ∞, one can use

Eqs. (A8) and (A10) to obtain

Σ2(k) =
1

C(0)

[
k2 −mN Ṽ

(0)(0)
] χR

k

C−1
R − IRk

at Λ → ∞ . (B3)

More generally,

Σ2n(k) ≡ k2n +

∫
d3l

(2π)3
l2n

T (0)(~l,~k; k)

E − l2

mN
+ iǫ

= (−1)n~∇2nψk(0) , (B4)

where ~∇2nψk(0) can be related by successive differentiation on Eq. (A8) to Ṽ (0)(~x ) and its deriva-

tives at r = 0.

Integrals involving the LO interacting Green function Gk are encountered in computing Eq. (27):

Πn,m(k) ≡

∫
d3l1
(2π)3

d3l2
(2π)3

l2n1 l2m2 Gk(~l2,~l1) , (B5)
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with

Gk(~l2,~l1) ≡ (2π)3
δ(3)(~l1 −~l2)

E −
l2
1

mN
+ iǫ

+
T (0)(~l2,~l1; k)

(E −
l2
2

mN
+ iǫ)(E −

l2
1

mN
+ iǫ)

. (B6)

The generating function for these integrals is the coordinate space version of Gk:

G̃k(~x2, ~x1) =

∫
d3l1
(2π)3

d3l2
(2π)3

Gk(~l2,~l1)e
i(~l2·~x2−~l1·~x1) , (B7)

and

Πn,m(k) = (−1)n+m~∇2n
x1

~∇2m
x2

G̃k(~x2, ~x1)|~x1=0, ~x2=0 . (B8)

The second derivative of G̃k(~x2, ~x1) is given by

−~∇2
{2,1}G̃k(~x2, ~x1) = −mNδ

(3)(~x2 − ~x1) +
[
k2 −mN Ṽ

(0)(~x{2,1} )
]
G̃k(~x2, ~x1) . (B9)

Using Eqs. (9), (10), (11), and (16), we can write G̃k(0, 0) as

G̃k(0, 0) = Ik +
I2k

(C(0))−1 − Ik
=

1/(C(0))2

C−1
R − IRk

− 1/C(0) , for Λ → ∞ . (B10)

Again, successive differentiation with respect to ~x1,2 on both sides of Eq. (B9) and letting ~x1,2 = 0

leads to Πn,m(k) with larger m and/or n.
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