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Abstract

We consider the astrophysical reaction rates for radiative neutron capture reactions (n, γ) in the

crust of a neutron star. The presence of degenerate neutrons at high densities (mainly in the inner

crust) can drastically affect the reaction rates. Standard rates assuming a Maxwell-Boltzmann

distribution for neutrons can underestimate the rates by several orders of magnitude. We derive

simple analytical expressions for reaction rates at a variety of conditions with account for neutron

degeneracy. We also discuss the plasma effects on the outgoing radiative transition channel in

neutron radiative capture reactions, and show that these effects can also increase the reaction rates

by a few orders of magnitude. In addition, using detailed balance, we analyze the effects of neutron

degeneracy and plasma physics on reverse (γ, n) photodisintegration. We discuss the dependence

of the reaction rates on temperature and neutron chemical potential, and outline the efficiency of

these reactions in the neutron star crust.
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I. INTRODUCTION

Nuclear reactions in the atmosphere and the crust of accreting neutron stars affect im-

portant observational manifestations such as X-ray bursts and superbursts (e.g., Refs. [1–4])

as well as deep crustal heating of neutron stars in X-ray transients (e.g., Refs. [4–7]). In

the vicinity of the neutron drip density (ρ ∼ 4 × 1011 g cm−3 for the cold catalyzed crust

and ρ ∼ 6× 1011 g cm−3 for the accreted crust [5]) and beyond in the inner crust the dense

matter contains an increasing amount of free degenerate neutrons (see, e.g., [8]). Neutron

capture and reverse reactions are important components of nuclear burning under these

conditions [9]. Standard thermonuclear neutron capture rates, which are used in reaction

network simulations of nucleosynthesis in stars or supernova explosions, are obtained (e.g.,

Ref. [10]) assuming the classical Maxwell-Boltzmann distribution of neutrons. However,

free neutrons in the neutron star crust can be degenerate, in particular when the density

exceeds the neutron drip point [8]. For instance, ground-state (cold-catalyzed) matter at

ρ = 6.2×1012 g cm−3 has a neutron Fermi energy of ≈ 2.6 MeV [11]. Consequently neutron

degeneracy needs to be taken into account for neutron capture rates under such conditions.

In addition, the dense stellar plasma of the neutron star crust strongly affects emission,

absorption and propagation of photons [12], and, therefore modifies radiative capture and

photodisintegration reactions, like (n, γ) and (γ, n). Because of the high density, the elec-

tron plasma frequency ωp can be of the order of, or higher than characteristic frequencies

of radiative transitions in nuclei. Under these conditions, well defined elementary electro-

magnetic excitations (photons or plasmons) become either suppressed or forbidden (e.g.,

Ref. [13]) although radiative transitions are not suppressed because they can be realized

by emission (or absorption) of excess energy to (from) the plasma as a collective system

[12]. These plasma physics effects can be important since they may enhance the radiative

transition strength.

In the following Sec. II we discuss the effects of neutron degeneracy on (n, γ) radiative

neutron capture reactions in dense matter. In Sec. III we analyze plasma effects on the

outgoing radiative transition channel of (n, γ) reactions. In Sec. IV we consider the same

neutron degeneracy and plasma physics effects on inverse (γ, n) photodisintegration reac-

tions. We discuss our results in Sec. V and summarize our results in Sec. VI. For brevity,

we use the units in which the Boltzmann constant kB = 1.
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II. REACTION RATES FOR DEGENERATE NEUTRONS

We start with the outline of the (n, γ) radiative capture rates in stellar environments

(e.g., Ref. [10]). Let the cross section σab(E) refer to the reaction X(a) + n → Y (b) + γ,

where a and b label different energy levels of a target nucleus X and a resultant nucleus Y ,

respectively, and E is the center-of-mass energy of the reactants. In stellar matter at local

thermodynamic equilibrium, the total cross section σ∗(E) of the reaction X + n → Y + γ

includes neutron capture on the groundstate and all thermally populated states,

σ∗(E) =

∑

a ga exp
(

−E
(a)
X

/T
)

∑

b σab(E)

∑

a ga exp
(

−E
(a)
X

/T
) , (1)

where E
(a)
X

is the energy of level a, and ga is its statistical weight, which gives the internal

partition function for all thermally excited nuclear levels. The summation in the denomina-

tor normalizes the distribution of target nuclei over the energy levels a.

The astrophysical reaction rate contains the average 〈σ∗v〉 of the total cross section

with the energy distribution f(E) of the interacting particles. For non-relativistic reactants

(considered in this paper) the collision energy is E = µv2/2, where µ is the reduced mass

(very close to the neutron mass mn), and v is the relative velocity of a neutron with respect

to nucleus at large separations. Then

〈σ∗v〉 =
√

2

µ

1

N

∫

∞

0

Eσ∗(E)f(E) dE, (2)

where N is the normalization factor

N =

∫

∞

0

√
E f(E) dE. (3)

We will call 〈σ∗v〉 [cm3 s−1] the reaction rate coefficient. The rate itself (for instance, per

unit volume, cm−3 s−1) is nXnn〈σ∗v〉, where nn and nX are number densities of neutrons

and reacting nuclei, respectively.

Astrophysical reaction rates at typical stellar temperatures are based on a Maxwell-

Boltzmann distribution of the particles, fMB(E) = exp(−E/T ). At high densities in the

neutron star crust, neutrons can become degenerate which modifies the reaction rate. At

these conditions the nuclei are not freely moving particles but are confined in a strongly

coupled Coulomb liquid or a Coulomb crystal (e.g., [8]). Because the neutrons are much
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lighter than the nuclei, the energy distribution function f(E) in Eq. (2) can be approximated

by a Fermi-Dirac distribution fFD(E) = [1 + exp((E − µn)/T )]
−1, where µn is the neutron

chemical potential. In this approximation we neglect recoil effects and nucleus motion. In the

inner crust of the neutron star the nuclei can be bulky and occupy a non-negligible fraction

of volume [14]. Here we employ the model of a free neutron gas with local number density

nn which occupies the space between the nuclei. Though this model is rather accurate near

the neutron drip point, it becomes less accurate at higher densities where free neutrons

constitute a strongly interacting Fermi liquid [11].

Let the average 〈σ∗v〉MB be obtained with the Maxwell-Boltzmann distribution, while

〈σ∗v〉FD be calculated with the Fermi-Dirac distribution. Many calculated reaction rate

coefficients 〈σ∗v〉MB for neutron capture reactions are available in the literature (e.g., [15] and

references therein). In a neutron star crust 〈σ∗v〉FD depends on T and µn (or, equivalently,

on T and nn). For practical applications we introduce the ratio

Rn ≡ 〈σ∗v〉FD
〈σ∗v〉MB

. (4)

These ratios are easier to calculate and approximate than 〈σ∗v〉FD; the derivation of these

ratios will be the main subject of the present paper.

Generally, accurate calculations of 〈σ∗v〉FD and Rn require the cross sections σab(E)

obtained from experiment or nuclear reaction codes. Detailed calculations of 〈σ∗v〉FD would

be a valuable project for the future. Here we restrict ourselves to a simplified approach.

It will allow us to demonstrate the importance of the effects of neutron degeneracy, and

it will be sufficiently accurate for a wide range of temperatures and densities. First, we

neglect the contribution of thermally excited states (setting thus σ∗(E) = σ(E)). This

is a valid approach if the energy of the first excited level of the target nucleus is higher

than the temperature in the neutron star crust (T . 2 × 109 K≈ 0.2 MeV). For threshold

(endothermic) reactions, it should also be higher than the reaction threshold E0. Second,

we note that the reaction rates at low temperatures correspond to cross sections σ(E) which

are characterized by typical power-law behavior that we therefore adopt in our analysis:

σ(E) = σa (E −E0)
ν at E0 ≤ E . Emax. (5)

Here, ν is a power-law index, σa is a normalization constant, E0 is a reaction threshold

(with E0 = 0 for exothermic reactions), Emax is the maximum energy up to which the
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approximation (5) holds. We treat E0, σa, ν, and Emax as input parameters. For a given

reaction, they can be adopted from a nuclear database or calculated using a nuclear reaction

code. In our approximation, the factor Rn depends on T , µn, ν, and E0; the parameter σa

cancels out in the ratio (4); Emax is required to check the validity of the calculated Rn for

given conditions.

The reaction rates are strongly affected by the neutron energy distribution. Typical

energies of non-degenerate neutrons are E . T . In a strongly degenerate gas (µn ≫ T ) the

majority of neutrons belong to the Fermi sea and have much higher energies T ≪ E . µn. In

this case, there is also a smaller (but non-negligible) amount of neutrons, with energies above

µn: µn . E . µn + T . Their distribution fFD(E) ≈ exp((µn − E)/T ) = exp(µn/T ) fMB(E)

is close to Maxwellian and represents the Maxwellian tail of the Fermi-Dirac distribution. In

the following we will demonstrate that these different energy ranges of fFD(E) correspond

to different neutron capture regimes.

For all nuclear reactions shown in the paper we will use the cross sections obtained with

the statistical model Hauser-Feshbach (HF) code TALYS-1.2 [16]. Statistical model theory

[17] uses the concept of averaged transmission coefficients to describe the formation and

subsequent decay of a compound nucleus formed after a projectile impinges on a target

nucleus. In this scenario the reaction sequence for neutron capture becomes X(a) + n →
C∗ → Y (b) + γ, where C∗ is a compound nucleus with many closely spaced energy levels

(high level density). For the neutron star crust conditions the incident neutron has rather

low energy and the primary reaction mechanism is dominated by compound formation. The

partial cross section σab(E) in the HF model is written as the sum over levels c (specified

by energy Ec, spin J , and parity π) of the compound nucleus

σab(E) =
π

k2

∑

c

gc
gnga

T c
n,aT c

γ,b

T c
tot

. (6)

In this case, k is the wave number of an incident neutron, T c
n,a and T c

γ,b are partial trans-

mission coefficients, and T c
tot is the total transmission coefficient of the compound nucleus

in a level c. The latter quantity, T c
tot ≡

∑

o,b T c
o,b, gives the total width of the c level as the

sum over all available outgoing reaction channels o = n, γ, etc. and over levels b of the final

nucleus. Note, that the sum includes compound elastic scattering (when final states are the

same as the initial ones).

The individual neutron transmission coefficient for each allowed channel is obtained by
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solving the Schrödinger equation with an optical potential for the neutron-nucleus inter-

action. The γ-transmission coefficient is calculated for a giant dipole resonance (E1+M1)

approximated by a single Lorentzian or by a combination of Lorentizains [18–20]. The sum

of these contributions determines the γ-ray strength function. Both the neutron and γ-ray

transmission coefficients must be calculated for all accessible states. In practice there is

a huge number of levels, the vast majority of which are experimentally unexplored. For

very neutron-rich nuclei near the drip-line the level density may be much smaller and the

applicability of the HF-model may be questionable.

Other necessary ingredients for a HF calculation include the choice of level density, optical

model, γ-ray strength function and mass model to predict the reaction Q-value. The reaction

cross sections presented here do not include pre-equilibrium effects. The cross sections are

calculated on the basis of Q-values derived from the the Hartree-Fock-Bogoliubov mass

model HFB-17 [21]. The level densities are obtained from the microscopic model of Ref. [22],

and the E1 γ-ray strength function is based on quasi-particle random-phase-approximation

calculations, folded with a simple Lorentzian [23]. The neutron optical potential is supplied

by the global parameterizations of Ref. [24].
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FIG. 1. (color online) Cross sections σ of neutron capture on 39Mg (panel (a)) and 46Mg (panel (b))

plotted (left vertical axis) in double logarithmic scale as a function of (E−E0)/T at T = 0.1 MeV.

In both panels we show also (right vertical axis) the filter functions Ef(E)/N for the three cases:

Maxwell-Boltzmann distribution (dashed lines), and Fermi-Dirac distribution with µn = 1 MeV

(dash-dotted lines) and µn = 5 MeV (dotted lines). See text for details.
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Figure 1 shows the reaction cross sections (left vertical scales) for two neutron capture

reactions – on 39Mg (panel (a)) and 46Mg (panel (b)). The 39Mg(n, γ)40Mg reaction is

exothermic (E0 = 0), while the 46Mg(n, γ)47Mg is endothermic (E0 = 4.06 MeV). For a

better visualization of the approximation (5) σ(E) is shown as a function of (E − E0)/T

on a double logarithmic scale; the temperature is taken to be T = 0.1 MeV. The linear

segments of the curves clearly indicate the power-law behavior of σ(E) at low E. Power-law

indices and maximum energies are ν = −0.6 and Emax ≈ 0.1 MeV for neutron capture on

39Mg; ν = 3.5 and Emax ≈ 6 MeV for neutron capture on 46Mg. This power-law behavior

at low energies is typical for (n, γ) reactions. Figure 1 also shows (right vertical scales) the

so-called filter functions E f(E)/N which enter the integrand of (2) along with σ∗(E). The

dashed lines in both panels correspond to the Maxwell-Boltzmann distributions of neutrons.

We see that the power-law approximation is sufficient for calculating 〈σv〉MB in both cases

(at T = 0.1 MeV). The dash-dotted and dotted lines in Fig. 1 represent the Fermi-Dirac

distribution with µn = 1 MeV and 5 MeV, respectively. We see that for µn = 1 MeV and

the 46Mg target the power-law approximation is definitely valid, while for µn = 5 MeV it

is less accurate. For neutron capture on the 39Mg nucleus, the power-law approximation is

inaccurate at both values of µn.

It is easy to see that the power-law approximation (5) is valid as long as max(E0, µn)+T .

Emax. In this approximation, the factor Rn in Eq. (4) is calculated analytically. Introducing

dimensionless parameters y = µn/T and x0 = E0/T , we obtain,

Rn =
exp x0

x0 + ν + 1

(ν + 1)Fν+1(y − x0) + x0Fν(y − x0)

F1/2(y)
, (7)

where Fν(y) is a Fermi-Dirac integral

Fν(y) =
1

Γ(ν + 1)

∞
∫

0

xν dx

1 + exp(x− y)
, (8)

and Γ(ν + 1) is the Euler gamma-function.

Equation (7) is the main result of our consideration. We expect that this factor is sufficient

to correct the reaction rate for neutron degeneracy in many cases of practical importance.

Let us analyze the limiting cases. For this purpose we will use asymptotes of the Fermi-Dirac

integrals given in the Appendix.

First consider a threshold reaction with typical neutron energies well below the threshold.
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In this case x0 − y ≫ 1 (E0 − µn ≫ T ), and Eq. (7) becomes

Rn =
exp y

F1/2(y)
. (9)

If, in addition, neutrons are strongly degenerate (y ≫ 1), Eq. (9) is further simplified,

Rn =
3
√
π

4
y−3/2 exp y. (10)

The factor Rn in (9) and (10) becomes a function of only one parameter y = µn/T ; it is

independent of ν. This indicates that Eqs. (9) and (10) are valid for any cross sections

σ(E) of threshold reactions, not only for ones with power-law behavior. Indeed, in the

limit x0 − y ≫ 1 the majority of neutrons have energies E < E0; these neutrons cannot

overcome the reaction threshold and cannot be captured by nuclei. The reaction proceeds

owing to a small amount of high-energy (suprathermal) neutrons with E > E0. Recall that

for any neutron degeneracy, their distribution function in Eq. (2) is actually Maxwellian,

fFD(E) ≈ exp (µn/T ) fMB(E). Then the cross sections in the nominator and denominator

of (4) are integrated with the same function fMB(E); equal integrals for any σ(E) cancel out

and do not affect the ratio Rn.

The ratio Rn in Eq. (10) shows a sharp exponential y-dependence at strong neutron de-

generacy. This means that neutron degeneracy exponentially enhances the rates of threshold

reactions (by increasing the amount of high-energy neutrons).

Another limiting case is the one of an (endo- or exothermic) reaction with strongly degen-

erate neutrons with typical energies above the reaction threshold. In this limit y − x0 ≫ 1

(µn−E0 ≫ T ), the reaction is driven by numerous energetic Fermi-sea neutrons and becomes

fast, with

Rn =
3
√
π exp x0

4 Γ(ν + 3)

(y − x0)
ν+1

y3/2
x0 + (ν + 1)y

x0 + ν + 1
. (11)

In particular, for a threshold reaction with strongly degenerate neutrons at E0 ≫ T and

µn ≫ T , Rn is given by (10) for E0 − µn ≪ T and by (11) for µn − E0 ≫ T . These two

asymptotes nearly match each other at |µn − E0| ∼ T providing an accurate description

of Rn in a wide range of µn except for the narrow interval |µn − E0| . T that should be

described by (7).

At µn > E0 the dependence of Rn on the neutron degeneracy parameter y is much weaker

than at µn < E0. In the range of T ≪ µn − E0 ≪ E0 Eq. (11) can be simplified by setting
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y = x0 everywhere but in (y − x0)
ν+1; this gives Rn ∝ (µn − E0)

ν+1. For higher µn ≫ E0

we have Rn ∝ µ
ν+1/2
n .

In order to calculate Rn in intermediate cases from Eq. (7), accurate expressions for

Fermi-Dirac integrals are necessary. These integrals have been extensively studied in the

literature, especially in the field of semiconductor physics and astrophysics (e.g., [25, 26] and

references therein). There are several very accurate approximations for particular integer

and half-integer values of ν. An analytic approximation that can be used for any ν in the

range −1 < ν < 4 was constructed by Aymerich-Humet et al. [27]. It accurately reproduces

the limits of y → ±∞, and its relative error at −1/2 < ν < 5/2 does not exceed 1.2%. For

convenience, we present this approximation in the Appendix.

III. PLASMA EFFECTS

In addition to the effects of neutron degeneracy, the rates of (n, γ) reactions in dense mat-

ter are influenced by electron plasma effects. Under typical conditions in the neutron star

crust, the electrons behave as weakly interacting, strongly degenerate and ultra-relativistic

particles [8]. The importance of plasma effects is characterized by the electron plasma fre-

quency ωp =
√

4πe2ne/m∗

e, where e is the electron charge, ne is the electron number density,

and m∗

e = µe/c
2 is the effective electron mass at the Fermi surface (µe being the electron

chemical potential). The plasma effects modify the radiative transition in the exit channel.

The plasma effects are strong when the frequency ω of a radiative transition becomes compa-

rable to ωp. In particular, no well defined electromagnetic excitations (photons or plasmons)

can propagate at ω < ωp (e.g., Ref. [13]). In this case the radiative transition cannot occur

through the emission of a real photon or plasmon. However, it can occur through a direct

transfer of the excess energy ~ω to plasma electrons via collision-free collective electromag-

netic interactions. For a degenerate electron plasma in the neutron star crust, this effect was

considered in Ref. [12]. It does not suppress, but rather enhances radiative transitions at

ω . ωp. The enhancement factor Rγ(ω) depends on the radiative transition type (electric

or magnetic), on the transition multiplicity ℓ = 1, 2, . . . , and on the ω/ωp ratio. In the

low-frequency limit, ω ≪ ωp, this factor behaves as Rγ(ω) ∼ (ωp/ω)
2ℓ, while at ω ≫ ωp one

has Rγ(ω) → 1, meaning that the plasma effects become less important and the standard

regime of emission of real photons is restored.
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The plasma effects modify the reaction cross section σ(E) and the reaction rate coefficient

〈σv〉. In analogy with Eq. (4) we can formally introduce the total correction factor

Rn,pl =
〈σplv〉FD
〈σv〉MB

, (12)

which takes into account both neutron degeneracy and plasma effects; σ(E) and σpl(E) are

the cross sections excluding and including the plasma effects, respectively. It is convenient

to write

Rn,pl = Rn Rpl, (13)

where Rn takes into account neutron degeneracy alone as discussed in Sec. II, and Rpl

accounts for plasma effects (in the presence of neutron degeneracy).

The inclusion of plasma effects in (n, γ) reaction rates is not straightforward. As dis-

cussed in Sec. II, the rates of interest are usually calculated [10] in the framework of the

HF statistical model [17]. The radiative transition coefficients need to be modified in the

numerator and denominator of Eq. (6). The problem is further complicated by summing

over thermally excited nuclear levels b in Eq. (1). For different levels b the energy and type

of radiative transition can be different (implying different plasma modifications). A correct

inclusion of the plasma effects is therefore a complicated computational project, which is

beyond the scope of our paper. Here, we present a simplified approach which demonstrates

the importance of the plasma effects. It is based on the assumption that the radiative trans-

mission coefficients Tγ are much smaller than other contributions to the total transmission

coefficient Ttot in Eq. (6). In that case the total transmission coefficient Ttot is independent of

the plasma effects. The second assumption is that the radiative exit channel is represented

by a single E1 radiative transition to the ground state, so that no summation over excited

states b is required.

These requirements are realized for threshold (n, γ) reactions involving degenerate neu-

trons where µn is below or slightly above E0. In this case the typical energy of interacting

neutrons is not much higher than E0 which reduces the radiative decay of the compound

states to a single (not multiple) low-energy radiative transition.

Under these assumptions we can describe the plasma effects by multiplying the neutron

capture cross section σ(E) by the factor Rγe1(ω), with ~ω = E − E0, which describes

the enhancement of the radiative transition by the plasma effects. The latter factor was

calculated in Ref. [12] and fitted by a simple analytical expression (Eq. (33) in [12]) with
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an error of about 1%. The modified cross section must be integrated over E to obtain the

reaction rate. To simplify the integration we suggest to use the approximation

Rγe1(ω) ≈ 1 + 3.03
(ωp

ω

)2

. (14)

Although it is rather crude at ω ∼ ωp, with the maximum error 17% at ω = ωp, it reproduces

the correct asymptotic behavior for ω ≫ ωp and ω ≪ ωp. The deviation does not exceed 5%

outside the region of 0.6 < ω/ωp < 1.03. The advantage of using (14) is that it allows an an-

alytic integration of the correction to the reaction rate in the same power-law approximation

for the cross section as used in Sec. II. Because Rγe1(ω) is integrated, the approximation

errors cancel out leaving us with a rather accurate result. The correction factor (12) to the

reaction rate including both neutron degeneracy and electron plasma effects now becomes

Rn,pl =
3.03

ν(ν − 1)

(

~ωp

T

)2
x0 + ν − 1

x0 + ν + 1
R(ν−2)

n +R(ν)
n . (15)

Here, R
(ν)
n is the factor given by Eq. (7) for a power-law index ν.

In the limit E0 − µn ≪ T for a threshold reaction with E0 ≫ T , the expression (15)

is further simplified. Introducing the correction factor Rpl due to the plasma effects in

accordance with Eq. (13), we have

Rpl = 1 +
3.03

ν(ν − 1)

(

~ωp

T

)2

. (16)

In this limit, in addition to a strong exponential enhancement of the reaction rate due to

neutron degeneracy (Sec. II), there is a smaller but significant plasma enhancement. In the

opposite limit of µn − E0 ≫ T (but still for a single radiative transition) we obtain

Rpl = 1 + 3.03
(ν + 2)(ν + 1)

ν(ν − 1)

(ωp

ω

)2 E0 + (ν − 1)µn

E0 + (ν + 1)µn
. (17)

This factor is temperature independent because the typical transition energy is now nearly

fixed by µn and E0, ~ω ≈ µn − E0.

IV. RATES OF INVERSE REACTIONS

If the rate of a forward X(n, γ)Y reaction is known, then the rate for an inverse reaction

Y (γ, n)X can be determined from the detailed balance principle,

n
(eq)
X n(eq)

n 〈σv〉 = n
(eq)
Y λγ, (18)
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where n
(eq)
X , n

(eq)
Y , and n

(eq)
n are number densities of nuclei X , Y , and neutrons, respectively,

in statistical equilibrium between forward and inverse reactions. λγ [s−1] specifies the rate of

the inverse (photodisintegration) reaction (which is nY λγ, cm
−3 s−1). Usually, this reaction

involves only photons γ but in our case it also can involve more complicated excitations as-

sociated with the electromagnetic field and plasma electrons (Sec. III) which are assumed to

be in thermal equilibrium; their effective number density is included in λγ . The equilibrium

number densities of the nuclei should satisfy the condition of chemical equilibrium

µX + µn = µY , (19)

where µX and µY are the chemical potentials of the nuclei X and Y , respectively. Tradition-

ally one assumes ideal non-degenerate gas conditions for the nuclei and neutrons in order

to relate their equilibrium number densities and chemical potentials. In this approximation

Eq. (18) yields the well known relation

λγ =

(

AXmnT

2π~2AY

)3/2
2ZX

ZY

exp

(

−Q

T

)

〈σv〉MB, (20)

where AX and AY = AX + 1 are mass numbers of nuclei X and Y , respectively, while ZX

and ZY are their individual internal partition functions

ZX =
∑

a

ga exp

(

−E
(a)
X

T

)

. (21)

The corresponding function for the neutrons is Zn = 2.

Now we should modify Eq. (20) to account for neutron degeneracy and strong Coulomb

coupling of the nuclei.

Strong Coulomb coupling prevents treating the plasma of atomic nuclei as an ideal gas

(it becomes Coulomb liquid or crystal; e.g., Ref. [8]). A strongly coupled multi-component

plasma of charged particles satisfies (to a very high accuracy) the linear mixing rule ac-

cording to which the main Coulomb thermodynamic quantities (like mean Coulomb energy,

etc.) can be presented as sums of quantities for individual ions. Coulomb coupling of

an individual atomic nucleus X = (AX , ZX) in this plasma is described by the parameter

ΓX = Z2
Xe

2/(aXT ), where aX is the ion sphere radius defined as aX = [3ZX/(4πne)]
1/3. This

allows one to treat a strongly Coupled system of atomic nuclei as an ensemble of weakly

interacting ion spheres. This approximation is well known in the physics of strongly coupled
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Coulomb plasmas [8]. In this case Eq. (20) remains the same but the internal partition

function for each nucleus has to be multiplied by its individual Coulomb partition function

Z(C)
X . A function Z(C)

X depends only on one parameter, ΓX , which, in its turn, is determined

by the nuclear charge number ZX . Because in our case ZX = ZY , we have Z(C)
X = Z(C)

Y , and

the Coulomb corrections for the nuclei X and Y compensate each other in Eq. (20).

Neutron degeneracy can be included in Eq. (20) by implying the correct relation between

the neutron number density and its chemical potential. It is easy to show that for this

purpose it is sufficient to multiply the right-hand side of Eq. (20) by

Rrvs = exp(−y)F1/2(y). (22)

The ratio of the photodisintegration rates for the Fermi-Dirac and the Maxwell-Boltzmann

distributions of neutrons then becomes

〈λγ〉FD
〈λγ〉MB

≡ Rλ = RrvsRn. (23)

If plasma effects are included, then Rn must be replaced by Rn,pl.

Various asymptotes for Rλ are readily obtained from those for Rn, Eqs. (9)–(11). In

particular, for the case of a threshold neutron capture reaction with the neutron chemical

potential well under the threshold, E0 − µn ≫ T , we obtain (neglecting plasma effects)

Rλ = 1 for any dependence of σ on E. The inverse reaction is not affected by neutron

degeneracy which is quite natural. The effect of neutron degeneracy on an (γ, n) reaction

consists of Pauli blocking of the emitted neutrons. However, in our case these neutrons have

energies E = Q + ~ω ≫ µn, above the Fermi level, where the blocking does not occur.

In the opposite limit, µn−E0 ≫ T , the neutrons, emitted in the reverse reaction, have low

energies and are strongly blocked by the Fermi sea neutrons; this exponentially suppresses

the inverse reaction rate:

Rλ =
(y − x0)

ν+1 [x0 + (ν + 1)y]

(x0 + ν + 1) Γ(ν + 3)
exp(x0 − y). (24)

Note that recently Mathews et al. [28] suggested to modify the detailed balance equation

(20) by taking into account the quantum corrections due to induced photon effects in the

photodisintegration rate coefficient λγ. They point out that while calculating λγ one usually

employs the Maxwellian distribution of photons instead of the Planck distribution fPl =

(exp(Eγ/T )−1)−1. Using the Planck distribution, they corrected λγ and concluded that one
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should also correct the detailed-balance ratio λγ/〈σv〉MB. However, in this latter conclusion

the authors erroneously neglected the same corrections in the rate coefficient 〈σv〉MB of the

forward reaction. Specifically, they did not include an extra factor (1+ fPl(Eγ)) (with Eγ =

E+Q) under the integral in their Eq. (6) (similar to Eq. (2) in the present paper) to account

for the induced emission. If that factor would have been introduced, the detailed balance

ratio would be naturally unaffected by quantum corrections. In our analysis we neglect such

corrections in both forward and reverse reaction rates, because they are generally small [28].

V. DISCUSSION
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FIG. 2. (color online) Factor Rn for the 46Mg(n, γ)47Mg reaction as a function of temperature for

µn = 1, 3, and 5 MeV.

Let us illustrate the obtained results. First consider the effects of neutron degeneracy on

threshold reactions neglecting plasma physics effects. Figure 2 shows Rn as a function of T
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for the 46Mg(n, γ)47Mg reaction at µn = 1, 3, and 5 MeV. This reaction has a rather high

threshold, E0 = 4.06 MeV. We see a strong increase of the reaction rate with growing µn.

For µn = 1 and 3 MeV the factor Rn is well described with the power-law approximation by

Eq. (9). For µn = 5 MeV the difference to the power-law approximation becomes noticeable,

but not on the logarithmic scale of Fig. 2.
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FIG. 3. Factor Rn for the 62Ca(n, γ)63Ca reaction as a function of µn at T = 0.1 MeV. Vertical

dotted line indicates the reaction threshold. The inset shows the reaction cross section. Dashed

lines in the figure and inset refer to the power-law approximation.

To illustrate the possible deviations from the power-law approximation, in Fig. 3 we plot

Rn versus µn at T = 0.1 MeV (the main figure) and σ(E) (the inset) for the 62Ca(n, γ)63Ca

reaction (E0 = −Q = 0.78 MeV). The solid lines are obtained by numerical calculations,

while the dashed lines are the results of the power-law approximation. It can be seen that

the latter approximation accurately describes σ(E) up to Emax ≈ 10 MeV. Accordingly,

Eq. (7) closely reproduces the dependence of Rn on µn at µn . 10 MeV; the exponential
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asymptote (10) is valid at µn . 1.5 MeV; the power-law asymptote (11) works well at

1.5 . µn .10 MeV. At µn & 10 MeV the power-law approximation becomes inaccurate

because at such µn the reaction rate is affected by the high-energy segment of σ(E) where

the power-law is invalid.
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FIG. 4. (color online) Factor Rn for the 39Mg(n, γ)40Mg reaction as a function of temperature at

µn = 0.2, 1, and 5 MeV (solid, dashed, and dot-dashed lines, respectively). Shown are results of

numerical integration of calculated cross section σ(E) (thick lines) and results of the power-law

approximation (thin lines).

The situation is different with exothermic reactions. Figure 4 shows the calculated factor

Rn for the 39Mg(n, γ)40Mg reaction. The reaction is exothermic (E0 =0, Q = 1.4 MeV); its

cross section is plotted in the left panel of Fig. 1. The solid, dashed, and dot-dashed lines

in Fig. 4 are calculated for µn = 0.2, 1, and 5 MeV, respectively. Thick lines are obtained

by integration of numerically calculated cross sections; thin lines are obtained using the
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power-law approximation. We see that the effect of neutron degeneracy is much weaker

than for threshold reactions; the factor Rn stays ∼ 1. Notice that for µn = 0.2 and 1 MeV

the Fermi-Dirac averaged rate is smaller than the Maxwell-Boltzmann rate (Rn < 1). The

power-law approximation breaks down even for small values of µn (σ(E) starts to deviate

from power-law at E . 0.2 MeV, see Fig. 1).
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FIG. 5. (color online) Factor Rpl versus µn for the 38Mg(n, γ)39Mg reaction in matter with the

electron plasma frequency ~ωp = 1.5 MeV. Solid, dashed, and dash-dotted curves are plotted for

T = 0.1, 0.5, and 1 MeV, respectively. Thick curves are obtained using computed σ(E) and

accurate approximation of Rγe1(ω); thin curves represent the approximation (15). Vertical dotted

and dash-dotted lines indicate the reaction threshold and plasma frequency, respectively.

Now let us discuss the impact of plasma effects on neutron capture reactions starting with

the threshold reactions. In all cases the plasma effects cause an additional enhancement of

the reaction rates. Figure 5 gives Rpl for the 38Mg(n, γ)39Mg reaction as a function of µn

at the electron plasma frequency ~ωp = 1.5 MeV. The curves are plotted for T = 0.1 (solid
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lines), 0.5 (dashed lines), and 1 MeV (dash-dotted lines). Thick curves are calculated with

numerically determined cross section and an accurate plasma enhancement factor Rγe1(ω)

from Ref. [12]. Thin curves are given by simplified Eq. (15). All curves change their behavior

when µn reaches the reaction threshold E0 = −Q = 0.5 MeV. For µn < E0, the typical energy

released in the radiative transition is ~ω ∼ T , while at µn > E0 it is ~ω ≈ µn−E0. Therefore,

at µn < E0 the factor Rpl is mostly independent of µn, while at µn > E0 it is independent of

T (cf. Eqs. (16) and (17)). A significant plasma enhancement can be observed at µn < E0.

It is most visible for the solid curves (in those segments where T and µn are smaller than

ωp). The plasma enhancement is expected to be especially pronounced in those reactions

which occur in dense plasma and are accompanied by small radiative energy release.

The difference between the thick (more accurate) and thin (less accurate) lines in Fig. 5

is small for T = 0.1 MeV but is higher for T = 0.5 and 1 MeV. This is solely due to the

breakdown of the power-law approximation of σ(E) for the 38Mg(n, γ)39Mg reaction at E &

1.5 MeV. We have checked that using Eq. (14) instead of the more accurate approximation

to Rγe1(ω) from Ref. [12] does not significantly change the results.

For exothermic reactions the simple model used in Sec. III is generally inapplicable. We

expect that plasma effects on these reactions give Rpl ∼ 1.

Finally, in order to illustrate the efficiency of neutron captures, in Fig. 6 we plot the lines

of constant characteristic burning times τ of 46Mg nuclei in the 46Mg(n, γ)47Mg reaction. The

plot is made in the T–µn plane for the three values of τ = 10−9, 1, 109 s. The characteristic

burning time is defined as

τ−1 = nn〈σv〉. (25)

In the region above and to the right of each line burning is faster than on the line (τ is

smaller); in the region below and to the left burning is slower. Lines of different types are

calculated using different reaction rates. The dashed lines are for non-degenerate neutrons,

the solid lines take into account neutron degeneracy, and the dot-dashed lines take into

account neutron degeneracy and plasma effects (assuming ~ωp = 1.5 MeV). Neutrons are

essentially non-degenerate in the region of µn . 0 (in the left part of the µn − T plane).

They are strongly degenerate in the region of µn & T .

As long as neutrons are non-degenerate, the solid and dashed lines naturally coincide.

When neutron degeneracy sets in, it intensifies neutron captures. Then the solid lines (in

sharp contrast with the dashed ones) bend and become nearly vertical. In this regime
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FIG. 6. (color online) Lines of constant effective times τ = 10−9, 1, 109 s of 46Mg burning in the

46Mg(n, γ)47Mg reaction on the T–µn plane. We present calculations using the Maxwell-Boltzmann

neutron capture rate (dashed lines), the rate corrected for neutron degeneracy (solid lines), and

the rate corrected for degeneracy and plasma physics effects (dash-dotted lines). Vertical dotted

line positions the reaction threshold E0 = 4.06 MeV. The double-dot-dashed line corresponds to

equal amounts of 46Mg and 47Mg nuclei assuming statistical equilibrium with respect to neutron

capture and emission reactions.

neutron degeneracy is vitally important. The most remarkable effect occurs in the vicinity

of the threshold (µn = E0 = 4.06 MeV, shown by the dotted vertical line). We see that the

solid lines drop off to zero temperature almost immediately after µn exceeds the reaction

threshold. In this case the reaction is driven by the Fermi sea of degenerate neutrons and

becomes extremely fast.

The purpose of Fig. 6 is primarily to illustrate the efficiency of the 46Mg→47Mg transfor-

mation with respect to neutron capture, neglecting other reactions (reverse reaction, beta
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captures and fusion reactions). Its main and natural result is that 46Mg cannot survive for

a long time against neutron capture when µn exceeds E0.

According to Fig. 6, the 46Mg→47Mg reaction actually occurs in a narrow strip on the

T − µn plane that is confined between the lines τ = 10−9 s and τ = 109 s. Below and to the

left of the τ = 109 line, τ is very large; there will be plenty of 46Mg nuclei which are very

inefficient neutron absorbers. Above and to the right of the τ = 10−9 s line, τ is extremely

short; all 46Mg nuclei are transformed into 47Mg. The shape of this “burning” strip is similar

to that for fusion reactions; see, for instance, Fig. 4 of Ref. [29] that gives the strip for the

C12+C12 fusion reaction in the T − ρ plane. The bend of the carbon burning τ=const lines

at high densities ρ is produced due to the transition from thermonuclear carbon fusion to

pycnonuclear one. It greatly resembles the bend of the τ=const curves with the growth of

µn due to the effects of neutron degeneracy in our Fig. 6.

In addition, the double-dot-dashed curve in Fig. 6 is the line representing equal amounts

of 46Mg and 47Mg nuclei (n
(eq)
X = n

(eq)
Y ) assuming statistical equilibrium with respect to

the neutron capture and reverse reactions. In statistical equilibrium, the matter (in our

simplified model) would mainly contain 46Mg nuclei below this line and 47Mg nuclei above

this line.

VI. CONCLUSIONS

We have considered neutron captures (n, γ) in dense stellar matter taking into account

the effects of neutron degeneracy and plasma physics. The effects of neutron degeneracy

increase the amount of high-energy neutrons and mainly enhance the reaction rates; plasma

physics effect enhance the radiative transition in the outgoing channel and enhance the

reaction rates as well.

The effects of neutron degeneracy on neutron capture reaction rates can be quantified

by introducing the ratio Rn, Eq. (4), of rates calculated for given conditions to those for

non-degenerate neutrons. We have described this ratio by a simple analytic expression (7)

assuming the power-law energy dependence of the reaction cross section (5) at not too high

energies. The derived expression (7) seems sufficient for many applications. Furthermore,

approximating σ(E) by a power-law function (5), one also obtains the power-law index ν

and the maximum energy Emax to which the power-law approximation of σ(E) is valid. E0
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and ν are needed in Eq. (7), while Emax controls the validity of (7).

Our conclusions are as follows:

1. Neutron degeneracy can significantly affect (n, γ) reactions in deep neutron star crust

(Sec. II). In many cases the effects of neutron degeneracy are well described by the fac-

tor Rn given by Eq. (7). For threshold reactions, strong neutron degeneracy enhances

the reaction rate by many orders of magnitude.

2. Plasma physics effects can additionally enhance (n, γ) rates (Sec. III) which is de-

scribed by the factor Rpl. These effects are less dramatic but can reach a few orders

of magnitude.

Furthermore, in Sec. IV we have used the detailed balance principle and calculated the

rates of inverse (γ, n) reactions taking into account neutron degeneracy and plasma effects.

Finally, in Sec. V we discussed the efficiency of (n, γ) reactions in a neutron star crust, with

the conclusion that neutron degeneracy can be most important.

Finally it should be noted that free degenerate neutrons in a neutron star crust can be

in superfluid state. Critical temperature Tcn for the appearance of neutron superfluidity

is very model dependent. Numerous calculations using different techniques (e.g., [30]) give

density dependent Tcn(ρ) with maximum values ranging from ∼ 0.2− 0.3 MeV to ∼ 2 MeV

indicating that superfluidity is most likely. Superfluidity produces a gap in energy spectrum

of neutrons near the Fermi level and modifies matrix elements of neutron-capture reactions.

Both effects on neutron captures are not explored but may strongly modify the reaction

rates.

Our consideration of neutron degeneracy and plasma effects on neutron capture rates

is simplified. A more rigorous (and complicated) analysis of these effects (including also

neutron superfluidity) would be desirable. It would be instructive to perform self-consistent

calculations of the structure of atomic nuclei immersed in a Fermi sea of free neutrons taking

into account a compression of the nuclei by free neutrons (e.g., Refs. [8, 14]). For simplicity,

we have used a model of free neutrons which occupy the space between atomic nuclei. At

densities ρ not much higher than the neutron drip density it is sufficiently accurate (as

follows, for instance, from results of Ref. [11]). In a self-consistent approach, this model

should be replaced by a more elaborated unified treatment of neutrons bound in nuclei and

free outside.
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In any case one should bear in mind that neutron capture reactions in deep neutron

star crust can be affected by neutron degeneracy, plasma physics, and neutron superfluidity.

These effects may have important impact on nuclear burning and nucleosynthesis in the

deep neutron star crust. The effects should be taken into account to correctly simulate and

interpret various observational phenomena in accreting neutron stars such as X-ray bursts

and superbursts as well as quiescent thermal emission of neutron stars in X-ray transients

(e.g., [1, 2, 4] and references therein).
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Appendix: Approximation of Fermi-Dirac integrals by Aymerich-Humet et al.

The asymptotes of Fermi-Dirac integrals (8) at y → ±∞ in non-degenerate and strongly

degenerate limits are easily obtained by retaining the first term in series expansion of the

Fermi-Dirac distribution function over exp(x− y):

Fν(y) = e−y, y → −∞, (A.1a)

Fν(y) =
yν+1

Γ(ν + 2)
, y → +∞. (A.1b)

Aymerich-Humet et al. [27] derived useful approximation for Fermi-Dirac integrals which,

by construction, reproduces the asymptotic limits (A.1). Their approximation reads

Fν(y) =

(

Γ(ν + 2)2ν+1

[b+ y + (|y − b|c + ac)1/c]
ν+1 + e−y

)

−1

, (A.2)

where the fit parameters are

a =

[

1 +
15

4
(ν + 1) +

1

40
(ν + 1)2

]1/2

, (A.3a)

b = 1.8 + 0.61ν, (A.3b)

c = 2 + (2−
√
2)2−ν . (A.3c)

In the range −0.9 < ν < 4 for any y this approximation gives relative error ≈ 1%. It is also

valid for larger ν but become less accurate (to about a 4% at ν = 12).
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