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Neutrino-induced productions (neutrinoproduction) of photons and pions from nucleons and nu-
clei are important for the interpretation of neutrino-oscillation experiments, as they are potential
backgrounds in the MiniBooNE experiment [A. A. Aquilar-Arevalo et al. (MiniBooNE Collabora-
tion), Phys. Rev. Lett. 100, 032301 (2008)]. These processes are studied at intermediate energies,
where the ∆ (1232) resonance becomes important. The Lorentz-covariant effective field theory,
which is the framework used in this series of study, contains nucleons, pions, ∆s, isoscalar scalar (σ)
and vector (ω) fields, and isovector vector (ρ) fields. The lagrangian exhibits a nonlinear realization
of (approximate) SU(2)L ⊗ SU(2)R chiral symmetry and incorporates vector meson dominance. In
this paper, we focus on setting up the framework. Power counting for vertices and Feynman dia-
grams is explained. Because of the built-in symmetries, the vector current is automatically conserved
(CVC), and the axial-vector current is partially conserved (PCAC). To calibrate the axial-vector
transition current (N↔ ∆), pion production from the nucleon is used as a benchmark and compared
to bubble-chamber data from Argonne and Brookhaven National Laboratories. At low energies, the
convergence of our power-counting scheme is investigated, and next-to-leading-order tree-level cor-
rections are found to be small.

PACS numbers: 25.30.Pt; 24.10.Jv; 11.30.Rd; 12.15.Ji

I. INTRODUCTION

Neutrinoproduction of photons and pions from nucle-
ons and nuclei plays an important role in the interpre-
tation of neutrino-oscillation experiments, such as Mini-
BooNE [1]. The neutral current (NC) π0 and photon
production produce detector signals that resemble those
of the desired e± signals. Currently, it is still a ques-
tion whether NC photon production might explain the
excess events seen at low reconstructed neutrino energies
in the MiniBooNE experiment, which the MicroBooNE
experiment plans to answer [2]. Moreover, Pion absorp-
tion after production could lead to events that mimic
quasielastic scattering.

Ultimately, the calculations must be done on nuclei,
which are the primary detector materials in oscillation
experiments. To separate the many-body effects from
the reaction mechanism and to calibrate the elementary
amplitude, we study charged current (CC) and NC pion
production from free nucleons in this work, which serves
as the benchmark. Moreover, NC photon production,
which is not a topic under intense investigation, is stud-
ied within this calibrated framework. In future papers,
we will include the electroweak response of the nuclear
many-body system to discuss the productions from nuclei
in the same framework.

Here we use a recently proposed Lorentz-covariant
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meson–baryon effective field theory (EFT) that was orig-
inally motivated by the nuclear many-body problem [3–
10]. (This formalism is often called quantum hadrody-

namics or QHD.) This QHD EFT includes all the rel-
evant symmetries of the underlying QCD; in particu-
lar, the approximate, spontaneously broken SU(2)L ⊗
SU(2)R chiral symmetry is realized nonlinearly. The mo-
tivation for this EFT and some calculated results are dis-
cussed in Refs. [4, 5, 11–20]. In this EFT, we have the ∆
resonance consistently incorporated as an explicit degree
of freedom, while respecting the underlying symmetries
of QCD noted earlier. (The generation of mesons and
the ∆ resonance through pion-pion interactions and pion-
nucleon interactions has been investigated in [21, 22].)
We are concerned with the intermediate-energy region
(ELab

ν 6 0.5GeV), where the resonant behavior of the
∆ becomes important. The details about introducing ∆
degree of freedom, the full lagrangian, and electroweak
interactions in this model have been presented in [23, 24].
The well-known pathologies associated with introducing
∆ are not relevant in the context of EFT. The couplings
to electroweak fields are included using the external field
technique [25], which allows us to deduce the electroweak
currents. Because of the approximate symmetries in the
lagrangian, the vector currents and the axial-vector cur-
rents satisfy CVC and PCAC. Form factors are generated
within the theory by vector meson dominance (VMD),
which avoids introducing phenomenological form factors
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and makes current conservation manifest.1 We discuss
the power counting of both vertices and diagrams on
and off resonance and consistently keep all tree-level di-
agrams through next-to-leading order. Explicit power-
counting of loop diagrams in this EFT has been discussed
in Refs. [17–19]. Here the contributions of the loops are
assumed to be (mostly) saturated by heavy mesons and
the ∆ resonance, so the couplings of contact interactions
are viewed as being renormalized. The mesons’ role in
effective field theory has also been investigated in [27, 28].

One major goal of this work is to calibrate electroweak
interactions on nucleon level. It is typically assumed
that the vector part of the N → ∆ transition current is
well constrained by electromagnetic interactions [29, 30].
The uncertainty is in the axial-vector part of the cur-
rent, which is determined by fitting to ANL [31] and
BNL [32] bubble-chamber data. The data has large er-
ror bars, which leads to significant model dependence in
the fitted results [26, 33, 34]. Here we choose one re-
cently fitted parametrization [33] and use it to determine
the constants of our VMD parametrization (our basis of
currents is different from the conventional one as used
in [26, 33, 34]). In addition, we make use of other form
factors, the ones in [26] for example. We then compare
results of using different current basis and form factors
with the data at low and intermediate neutrino energies.

There have been numerous earlier studies of neutrino-
production of pions from nucleons in the resonance region
[26, 29, 30, 33, 35–43]. They basically fall into two cat-
egories. The first one [29, 30, 33, 38, 39, 41] assumes
resonance dominance above intermediate energy. The
contributions of resonances are summed incoherently and
hence it is difficult to determine the interference effect. In
the second category, [26, 35, 40, 42, 43], the contributions
are summed coherently including the background, since
either an effective Hamiltonian or lagrangian is utilized.

Our approach belongs to the second category, while dif-
ferences from other models should be mentioned. First,
there exists a finite energy range in which the effective
field theory is valid, so we insist on low-energy calcu-
lations. However, a different attitude has been taken,
for example, in Refs. [26, 42], in which the Born ap-
proximation based on an effective lagrangian has been
extrapolated to the region of several GeV. Second, we
have discussed the consequence of higher-order contact
terms.2 Naturally, these contributions should obey naive
power counting [44, 45]; however, some of them may play

1 Meson dominance generates form factors for contact pion-
production vertices automatically, as shown in diagram (f) in
Fig. 1. In other approaches, for example [26], these form factors
are introduced by hand, which requires specific relations between
the nucleon vector current and the pion vector current form fac-
tors. This is explained in Secs. II B and IV.

2 Some of these terms have also been discussed in Ref. [42]; how-
ever, the interpretation of these terms is different here from that
in [42].

an important role in scattering from nuclei. Third, elec-
troweak interactions of nucleons are calibrated in this
work while the strong interaction has been calibrated
to nuclear properties. This is a unique feature, which
is absent in other models targeting the production from
free nucleons only. Furthermore, the calibration on the
nucleon’s electroweak interaction has impacts on strong
interaction. For example, the ρ π π coupling, introduced
because of VMD in the pion’s vector current, gives rise to
an interesting contribution in the two-body axial current
in a many-body calculation [46]. In our theory with ∆,
it can be quite interesting to investigate similar conse-
quences, for example, the ∆’s role in the two-body cur-
rent, in which meson-dominance couplings can give rise
to relevant interactions.
This article is organized as follows: in Sec. II and III,

we introduce our lagrangian without and with ∆, and cal-
culate several current matrix elements that will be useful
for the subsequent Feynman diagram calculations. The
theory involving ∆ is emphasized. Then the transition
current basis and form factors are discussed carefully.
In Sec. IV, we discuss our calculations for the CC and
NC pion production and for the NC photon production.
After that, we show our results in Sec. V. Whenever
possible, we compare our results with available data and
present our analysis. Finally, our conclusions are sum-
marized in Sec. VI.
In the Appendixes, we present the necessary informa-

tion about chiral symmetry and electroweak interactions
in QHD EFT, form factor calculations, power counting
for the diagram with ∆, and kinematics.

II. LAGRANGIAN WITHOUT ∆ (1232)

In this work, the metric gµν = diag(1,−1,−1,−1)µν.
The convention for the Levi-Civita symbol ǫµναβ is
ǫ0123 = 1. We have introduced upper and lower isospin
indices [23, 24]. In this section, we focus on the la-
grangian without ∆ and study various matrix elements:
〈N |V i

µ, A
i
µ, J

B
µ |N〉 and 〈N ;π|V i

µ, A
i
µ, J

B
µ |N〉. Definitions

of fields and currents can be found in Appendix A.

A. Power counting and the lagrangian

The organization of interaction terms is based on
power counting [5, 17, 18] and Naive Dimensional Anal-
ysis (NDA) [44, 45]. We associate with each interaction
term an index: ν̂ ≡ d + n/2 + b. Here d is the number
of derivatives (small momentum transfer) in the inter-
action, n is the number of fermion fields, and b is the
number of heavy meson fields. The lagrangian is well
developed in Refs. [10, 23, 24, 47]. We begin with the

lagrangian shown in Eq. (1). ∂̃µ is defined in Eq. (A6),
↔

∂̃ν ≡ ∂̃ν − (
←

∂ν − iṽν + iv(s)ν), and the field tensors are

Vµν ≡ ∂µVν − ∂νVµ and ρµν ≡ ∂̃[µρν] + igρ[ρµ , ρν ]. The
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superscripts (0) and (1) denote the isospin.

LN(ν̂63) = N
(
iγµ[∂̃µ + igρρµ + igvVµ] + gAγ

µγ5 ãµ −M + gsφ
)
N

− fρgρ
4M

Nρµνσ
µνN − fvgv

4M
NVµνσ

µνN − κπ
M

N ṽµνσ
µνN +

4βπ
M

NN Tr(ãµã
µ)

+
1

4M
Nσµν(2λ(0)fsµν + λ(1)F (+)

µν )N +
iκ1
2M2

Nγµ

↔

∂̃νN Tr (ãµãν) , (1)

Next is a purely mesonic piece:

Lmeson(ν̂64) =
1

2
∂µφ∂

µφ+
1

4
f2
π Tr[∂̃µU(∂̃µU)†] +

1

4
f2
π m

2
π Tr(U + U † − 2)

−1

2
Tr(ρµνρ

µν)− 1

4
V µνVµν +

1

2gγ

(
Tr(F (+)µνρµν) +

1

3
fµν
s Vµν

)
. (2)

We only show the kinematic terms and photon’s cou-
plings to the vector fields. The latter one is used to
generate VMD. Other ν = 3 and ν = 4 terms in
Lmeson(ν̂64) are important for describing the bulk prop-
erties of nuclear many-body systems and can be found

in [5, 23, 24, 48, 49]. The only manifest chiral-symmetry
breaking is through the nonzero pion mass. Other chiral-
symmetry violating terms and multiple pion interactions
are not considered in this calculation. Finally, we have

LN,π(ν̂=4) =
1

2M2
Nγµ(2β

(0)∂νf
µν
s + β(1)∂̃νF

(+)µν + β
(1)
A γ5∂̃νF

(−)µν)N − ω1 Tr(F
(+)
µν ṽµν) + ω2 Tr(ãµ∂̃νF

(−)µν)

+ ω3 Tr
(
ãµi
[
ãν , F

(+)µν
])

− gρππ
2f2

π

m2
ρ

Tr(ρµν ṽ
µν) +

c1
M2

NγµN Tr
(
ãν F

(+)

µν

)

+
e1
M2

Nγµ ãνN f sµν +
c1ρgρ
M2

NγµN Tr
(
ãν ρµν

)
+
e1vgv
M2

Nγµ ãνN V µν . (3)

Note that LN,π(ν̂=4) is not a complete list of all possible
ν̂ = 4 interaction terms. The terms listed in the first
two rows generate the form factors of currents for nucle-
ons and pions. gρππ is used for VMD. Special attention
should be given to the c1, e1, c1ρ, and e1ρ couplings, since
they are the only relevant ν̂ = 4 terms for NC photon pro-
duction. Further discussion will be given in Secs. IVC
and VD.

B. Contributions to current matrix elements from
irreducible diagrams

To calculate various current matrix elements, we need
to understand the background fields in terms of elec-
troweak boson fields; this connection is given in Ap-
pendix A. Based on the lagrangian, we can calculate the
matrix elements 〈N |V i

µ, A
i
µ, J

B
µ |N〉 and 〈N ;π|V i

µ, A
i
µ,

JB
µ |N〉 (diagram (f) in Fig. 1) at tree level; loops are

not included; only diagrams with contact structure are
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included3. Because of VMD, we can extrapolate the cur-
rent to nonzero Q2 [10, 20]. The results are given below,
and the explicit calculations are shown in Appendix B.
Note that qµ is defined as the incoming momentum trans-
fer at the vertex; in terms of initial and final nucleon mo-

menta, qµ ≡ pµnf −p
µ
ni. Similarly, qµ+pµni = pµnf +k

µ
π for

pion production.
First, matrix elements of nucleon’s vector and baryon

current, and the axial-vector current in pion production
are the following:

3 The expressions for the currents listed below differ from those in
Refs. [10, 46] because contributions from non-minimal and vector
meson-dominance terms are included here.

〈N,B|V i
µ|N,A〉 = 〈B|τ

i

2
|A〉uf

(
γµ + 2δFV,md

1

q2γµ− 6qqµ
q2

+ 2FV,md
2

σµν iq
ν

2M

)
ui ≡ 〈B|τ

i

2
|A〉ufΓV µ(q)ui , (4)

〈N,B|JB
µ |N,A〉 = δAB uf

(
γµ + 2δFS,md

1

q2γµ− 6qqµ
q2

+ 2FS,md
2

σµν iq
ν

2M

)
ui ≡ δAB ufΓBµ(q)ui , (5)

〈N,B;π, j, kπ |Ai
µ|N,A〉 = −

ǫijk
fπ

〈B|τ
k

2
|A〉ufγνui

[
gµν + 2δFV,md

1 ((q − kπ)
2)
q · (q − kπ)gµν − (q − kπ)µqν

(q − kπ)2

]

−
ǫijk
fπ

〈B|τ
k

2
|A〉uf

σµν iq
ν

2M
ui

[
2λ(1) + 2δFV,md

2 ((q − kπ)
2)
q · (q − kπ)

(q − kπ)2

]

≡
ǫijk
fπ

〈B|τ
k

2
|A〉ufΓAπµ(q, kπ)ui . (6)

Here mρ = 0.776 GeV, mv = 0.783 GeV, δF ≡ F (q2) − F (0) (also true for other form factors), and

FV,md
1 =

1

2

(
1 +

β(1)

M2
q2 − gρ

gγ

q2

q2 −m2
ρ

)
, β(1) = −1.35,

gρ
gγ

= 2.48 , (7)

FV,md
2 =

1

2

(
2λ(1) − fρgρ

gγ

q2

q2 −m2
ρ

)
, λ(1) = 1.85, fρ = 3.04 , (8)

FS,md
1 =

1

2

(
1 +

β(0)

M2
q2 − 2gv

3gγ

q2

q2 −m2
v

)
, β(0) = −1.40,

gv
gγ

= 3.95 , (9)

FS,md
2 =

1

2

(
2λ(0) − 2fvgv

3gγ

q2

q2 −m2
v

)
, λ(0) = −0.06, fv = −0.19 . (10)

We can also use this procedure to expand the axial-
vector current in powers of q2 using the lagrangian con-

stants gA and β
(1)
A . In fact, we can improve on this by

including the axial-vector meson (a1µ) contribution to
the matrix elements, which would arise from the inter-

actions: ga1
Nγµγ5a1µN and ca1

Tr
(
F (−)µνa1µν

)
. Here

a1µ = a1iµτ
i/2 and a1µν ≡ ∂̃µa1ν − ∂̃νa1µ, where a1iµ

are the fields of the a1 meson (its mass is denoted as
ma1

= 1.26 GeV). Then we obtain
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〈N,B|Ai
µ|N,A〉 = −Gmd

A (q2) 〈B|τ
i

2
|A〉uf

(
γµ − qµ 6q

q2 −m2
π

)
γ5ui ≡ 〈B|τ

i

2
|A〉ufΓAµ(q)ui , (11)

〈N,B, π, j|V i
µ|N,A〉 =

ǫijk
fπ

〈B|τ
k

2
|A〉uf

(
Gmd

A (0)γµγ
5 + δGmd

A ((q − kπ)
2)
q · (q − kπ)gµν − (q − kπ)µqν

(q − kπ)2
γνγ5

)
ui

≡
ǫijk
fπ

〈B|τ
k

2
|A〉ufΓV πµ(q, kπ)ui , (12)

Gmd
A (q2) ≡ gA − β

(1)
A

q2

M2
− 2ca1

ga1
q2

q2 −m2
a1

, gA = 1.26, β
(1)
A = 2.27, ca1

ga1
= 3.85 . (13)

For the pion’s vector current form factor [5],

〈π, k, kπ|V i
µ|π, j, kπ − q〉 = iǫijk

[
(2kπ − q)µ + 2δFmd

π (q2)

(
kπµ − q · kπ

q2
qµ

)]
≡ iǫijk PV µ(q, kπ) ,

Fmd
π (q2) ≡

(
1− gρππ

gγ

q2

q2 −m2
ρ

)
,
gρππ
gγ

= 1.20 . (14)

To determine the couplings in Eqs. (7), (8), (9), (10),
(13) and (14), we compare our results with the fitted form
factors [5, 50]. We require that the behavior of our vector
and baryon meson-dominance form factors near Q2 = 0
is close to that of fitted form factors [50]. The nucleon’s
axial-vector current used to fit our Gmd

A is parameterized
as GA(q

2) = gA/(1−q2/M2
A)

2 with gA = 1.26 andMA =
1.05GeV [51]. As shown in Ref. [20], the form factors
due to vector meson dominance become inadequate at
Q2 ≈ 0.3GeV2. This is also true for the axial-vector’s
parametrization. This indicates that the EFT lagrangian
is only applicable for El 6 0.5GeV in lepton–nucleon
interactions, above which Q2 exceeds the limit. This will
be clarified in the kinematical analysis of Sec. VA.

III. LAGRANGIAN INVOLVING ∆(1232)

A. Lagrangian

Two remarks are in order here [23, 24]: First, the the-
ory is self-consistent with general interactions involving

ψµ; Second, the so-called off-shell couplings, which have

the form γµψ
µ, ∂̃µψ

µ, ψ
µ
γµ, and ∂̃µψ

µ
, can be consid-

ered as redundant. For the chiral symmetry realization,
∆∗a belong to an I = 3/2 multiplet (a = (±3/2,±1/2)).
Moreover in the power counting of vertices, the ∆ is
counted in the same way as nucleons.

Consider first L∆ (ν̂ 6 3), shown in Eq. (15), which
is essentially a copy of the corresponding lagrangian for
nucleons.

L∆ =
−i
2

∆
a

µ {σµν , (i 6 ∂̃ − hρ 6ρ− hv 6V −m+ hsφ)} b
a ∆bν + h̃A∆

a

µ 6 ã b
aγ

5∆µ
b

− f̃ρhρ
4m

∆λ ρµνσ
µν∆λ − f̃vhv

4m
∆λVµνσ

µν∆λ − κ̃π
m

∆λṽµνσ
µν∆λ +

4β̃π
m

∆λ∆
λ Tr(ãµ ãµ) , (15)
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To produce the N ↔ ∆ transition currents, we con- struct the following lagrangians (ν̂ 6 4):

L∆,N,π = hA∆
aµ
T † iAa ãiµNA + C.C. , (16)

L∆,N,bg =
ic1∆
M

∆
a

µ γνγ
5 T † iAa F

(+)µν
i NA +

ic3∆
M2

∆
a

µ iγ
5 T † iAa (∂̃νF

(+)µν)iNA +
c6∆
M2

∆
a

λ σµνT
† iA
a (∂̃λF

(+)µν
)iNA

− d2∆
M2

∆
a

µ T
† iA
a (∂̃νF

(−)µν)iNA − id4∆
M

∆
a

µ γν T
† iA
a F

(−)µν
i NA − id7∆

M2
∆

a

λ σµνT
† iA
a (∂̃λF (−)µν)iNA

+ C.C. , (17)

L∆,N,ρ =
ic1∆ρ

M
∆

a

µ γνγ
5 T † iAa ρµνi NA +

ic3∆ρ

M2
∆

a

µ iγ
5 T † iAa (∂̃νρ

µν)iNA +
c6∆ρ

M2
∆

a

λ σµν T
† iA
a (∂̃λ ρµν)iNA

+ C.C. . (18)

Here T † iA
a = 〈32 ; a|1, 12 ; i, A〉, which are (complex conju-

gate of) CG coefficients.

B. Transition currents

We can express the transition current’s matrix element
as the following:

〈∆, a, p∆|V iµ(Aiµ)|N,A, pN 〉 ≡
T † iAa u∆α(p∆) Γ

αµ

V (A)(q)uN (pN ) . (19)

Based on the lagrangians, we find (note that σµνǫ
µναβ ∝

iσαβγ5)

Γαµ
V =

2c1∆(q
2)

M
(qαγµ− 6qgαµ)γ5 + 2c3∆(q

2)

M2
(qαqµ − gαµq2)γ5 − 8c6∆(q

2)

M2
qασµν iqνγ

5 , (20)

Γαµ
A = −hA

(
gαµ − qαqµ

q2 −m2
π

)
+

2d2∆
M2

(qαqµ − gαµq2)− 2d4∆
M

(qαγµ − gαµ 6q)− 4d7∆
M2

qασµν iqν , (21)

ci∆(q
2) ≡ ci∆ +

ci∆ρ

2gγ

q2

q2 −m2
ρ

, i = 1, 3, 6,

c1∆ = 1.21 , c3∆ = −0.61 , c6∆ = −0.078 ,
c1∆ρ

gγ
= −4.58 ,

c3∆ρ

gγ
= 2.32 ,

c6∆ρ

gγ
= 0.30 . (22)

Similar to the ci∆(q
2), we can introduce axial-vector me-

son exchange into the axial transition current, which
leads to a structure for the di∆(q

2) similar to ci∆(q
2).

There is one subtlety associated with the realization of
hA(q

2): with our lagrangian, we have a pion-pole con-
tribution associated with the hA coupling, and all the

higher-order terms contained in δhA(q
2) ≡ hA(q

2) − hA
conserve the axial transition current. With the lim-
ited information about manifest chiral-symmetry break-
ing, we ignore this subtlety and still use the form of the
c1∆(q

2) to parameterize hA(q
2):
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hA(q
2) ≡ hA + h∆a1

q2

q2 −m2
a1

, hA = 1.40 , h∆a1
= −3.98 , (23)

di∆(q2) ≡ di∆ + di∆a1

q2

q2 −m2
a1

, i = 2, 4, 7,

d2∆ = −0.087, d4∆ = 0.20, d7∆ = −0.04 , d2∆a1
= 0.25 , d4∆a1

= −0.58 , d7∆a1
= 0.12 . (24)

To determine the coefficients in the transition form fac-
tors shown in Eqs. (22) (23) and (24), we compare ours
with one of the conventional form factors used in the lit-
erature. In Refs. [26, 33] for example, the definition for

〈∆, 12 |j
µ
cc+|N,− 1

2 〉 [= −
√
2/3 uα(p∆) (Γ

αµ
V + Γαµ

A )u(pN )]
is

uα(p∆)

{[
CV

3

M
(gαµ 6q − qαγµ) +

CV
4

M2
(q · p∆ gαµ − qαpµ∆) +

CV
5

M2
(q · pN gαµ − qαpµN)

]
γ5

+

[
CA

3

M
(gαµ 6q − qαγµ) +

CA
4

M2
(q · p∆ gαµ − qαpµ∆) + CA

5 g
αµ +

CA
6

M2
qµqα

]}
u(pN ) . (25)

We use the “Adler parameterization” [35] in Ref. [33] to
fit our meson-dominance form factors. Now suppose the
baryons are on shell, we can represent the conventional
basis as linear combinations of our basis. For example:

qασµν iqνγ
5 = (m−M)(qαγµ − gαµ 6q)γ5

− (qαpµ∆ − q · p∆gαµ)γ5 − (qαpµN − q · pNgαµ)γ5 . (26)

Similar relation holds with γ5 deleted on both sides and
(m − M) changed to (m + M). We can find out the
relation between form factors associated with the two
basis:

c1∆ =

√
3

2

[
CV

3

2
+
m−M

2M

(CV
4 + CV

5 )

2

]
, (27)

c3∆ =

√
3

2

(CV
4 − CV

5 )

4
, c6∆ =

√
3

2

(CV
4 + CV

5 )

16
,

(28)

hA =

√
3

2
CA

5 , d2∆ =

√
3

2

CA
4

4
, (29)

d4∆ = −
√

3

2

(
CA

3

2
+
m+M

2M

CA
4

2

)
, d7∆ =

√
3

2

CA
4

8
.

(30)

We assume that these relations hold away from the res-
onance. It can be shown that at low energy, the dif-
ferences in observables due to using the two bases, with
these relations applied, are negligible. Moreover, the q2

dependence of these ci∆ and di∆ form factors can be real-
ized in terms of meson dominance. We then require that
the meson-dominance form factors be as close as possible
to the ones indicated in Eqs. (27) to (30), and we get
the couplings shown in Eqs. (22) (23) and (24). However
we should expect the leading-order meson-dominance ex-
pressions would fail above Q2 ≈ 0.3GeV2.

IV. FEYNMAN DIAGRAMS

Tree-level Feynman diagrams for pion production due
to the vector current, axial-vector current, and baryon
current are shown in Fig. 1. In this section, we calculate
different matrix elements for pion production and photon
production. The Feynman diagrams for photon produc-
tion can be viewed as diagrams in Fig. 1 with an outgoing
π line changed to a γ line. It turns out that diagram (e)
in Fig. 1 is negligible in NC photon production, since it
is associated with 1− 4 sin2 θw [42].
First let’s outline the calculation of the interaction am-

plitude M . Consider CC pion production (in the one-
weak-boson-exchange approximation):

M = 4
√
2GFVud 〈J (lep)

Liµ 〉〈J (had)iµ
L 〉π . (31)

where i = +1,−1. In Eq. (31), GF is the Fermi con-
stant, Vud is the CKM matrix element corresponding to u

and d quark mixing, and 〈J (had)iµ
L 〉π ≡ 〈NB, πj|J iµ

L |NA〉
(the definitions of currents can be found in Appendix A).
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C

C

C

C C

C

(a) (b) (c) (d) (e) (f)

C

C

C

C C

C

FIG. 1: Feynman diagrams for pion production. Here, C
stands for various types of currents including vector, axial-
vector, and baryon currents. Some diagrams may be zero
for some specific type of current. For example, diagrams (a)
and (b) will not contribute for the (isoscalar) baryon current.
Diagram (e) will be zero for the axial-vector current. The
pion-pole contributions to the axial current in diagrams (a)
(b) (c) (d) and (f) are included in the vertex functions of the
currents.

〈J (lep)
Liµ 〉 ≡ 〈l(l̄)|JLiµ|νl(ν̄l)〉 is the well-known leptonic-

charged-current matrix element. For NC pion pro-

duction, we need to set Vud = 1, 〈J (had)iµ
L 〉π →

〈J (had)µ
NC 〉π , and 〈J (lep)

Liµ 〉 → 〈J (lep)
NCµ〉 in Eq. (31). Here

〈J (lep)
NCµ〉 is the leptonic-neutral-current matrix element,

and 〈J (had)µ
NC 〉π ≡ 〈NB, πj|Jµ

NC |NA〉. For NC photon

production, we have a similar expression as NC pion pro-

duction with 〈J (had)µ
NC 〉π → 〈J (had)µ

NC 〉γ , while 〈J (had)µ
NC 〉γ ≡

〈NB, γ|Jµ
NC |NA〉.

Now consider the power counting for 〈J (had)µ〉π(γ) in
Eq. (31) for various processes. The order of the diagram
(ν) is counted as [47]: ν = 2L+2−En/2+

∑
i#i(ν̂i−2),

where L is the number of loops, En is the number of ex-
ternal baryon lines, ν̂i ≡ di+ni/2+ bi is the order of the
vertex (ν̂) mentioned in Sec. II A, and #i is the number
of times that particular vertex appears. However, there is
a subtlety related with power counting of diagrams with
∆, which has been carefully discussed in Ref. [52]. Com-
pared to the normal power counting mentioned above,
in which baryon’s propagator scales as 1/O(Q), for dia-
grams involving one ∆ in the s channel, we take ν → ν−1
in the resonance regime and ν → ν + 1 away from the
resonance. Details can be found in Appendix C.

Finally, the CVC, conservation of baryon current, and
PCAC can be easily checked for the matrix elements
shown in the following.

A. Diagram (a) and (b)

Diagram (a) and (b) in Fig. 1 lead to currents (kπ is
the outgoing pion’s momentum):

〈V iµ(Aiµ)〉π = − ihA
fπ

T a
Bj T

† iA
a ufk

λ
π SFλα(p) Γ

αµ

V (A)(p; q, pi)ui −
ihA
fπ

T ai
B T
†A
ja ufΓ

µα

V (A)(pf ; q, p)SFαλ(p) k
λ
π ui . (32)

Here Γαµ

V (A)(p; q, pi) are defined in Eq. (19) while

∆’s momentum p = q + pi. Γ
µα

V (A)(pf ; q, p) ≡
γ0Γ†αµ

V (A)(p;−q, pf)γ0 while p = −q + pf . In the follow-

ing, we always have this definition of Γ. The ∆’s propa-
gator, SFµν(p), is shown in Appendix D. The subscript
j denotes the isospin of the outgoing pion. For vector
current, in diagram (a) νnr > 3 in the lower-energy re-
gion and νr > 1 in the resonance region; in diagram
(b) νnr > 3. For axial-vector current, in diagram (a)
νnr > 2, νr > 0; in diagram (b) νnr > 2. In the power
counting, the higher-order terms in ν come from includ-

ing form factors at the vertices. Moreover, the baryon
current matrix element is zero (〈Jµ

B〉π = 0) in both dia-
grams.

Now we examine the NC matrix element 〈J (had)µ
NC 〉γ .

First, based on the relations given in Eq. (A18), we define

Γαµ
N (p; q, pi) ≡ (

1

2
− sin2 θw)Γ

αµ
V (p; q, pi) +

1

2
Γαµ
A (p; q, pi) ,

(33)
Then we find (k is the outgoing photon’s momentum and
ǫ∗λ(k) is its polarization)

〈Jµ
NC〉γ = eT a

0B T
†0A
a uf ǫ

∗
λ(k)Γ

λα

V (pf ;−k, p)SFαβ(p)Γ
βµ
N (p; q, pi)ui

+eT a0
B T †Aa0 ufΓ

µα

N (pf ; q, p)SFαβ(p)Γ
βλ
V (p;−k, pi) ǫ∗λ(k)ui . (34)

For the vector current in the NC, in diagram (a) νnr > 4,
νr > 2; in diagram (b) νnr > 4. For the axial-vector

current, in diagram (a) νnr > 3, νr > 1; in diagram (b)
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νnr > 3.

B. Diagrams (c) and (d)

These two diagrams lead to currents:

〈V iµ(Aiµ)〉π = − igA
fπ

〈B|τj
2

τ i

2
|A〉uf 6kπγ5SF (p)Γ

µ

V (A)(q)ui −
igA
fπ

〈B|τ
i

2

τj
2
|A〉ufΓµ

V (A)(q)SF (p) 6kπγ5ui . (35)

For the nucleon propagator, p = q+pi in diagram (c) and
p = −q + pf in diagram (d). Γµ

V (A)(q) has been defined

in Eq. (4). For both currents in both diagrams ν > 1.

For the baryon current we just need to change τ i

2 Γ
µ
V (q)

to Γµ
B(q) in the Eq. (35), and ν > 1.

For NC photon production, we get

〈Jµ
NC〉γ = e uf ǫ

∗
λ(k)

(
(
τ0

2
) C
B Γλ

V (−k) +
δ C
B

2
Γλ
B(−k)

)
SF (p)

×
(
(
τ0

2
) A
C

[
(
1

2
− sin2 θw)Γ

µ
V (q) +

1

2
Γµ
A(q)

]
− δ A

C

2
sin2 θw Γµ

B(q)

)
ui

+ e uf

(
(
τ0

2
) C
B

[
(
1

2
− sin2 θw)Γ

µ
V (q) +

1

2
Γµ
A(q)

]
− δ C

B

2
sin2 θwΓ

µ
B(q)

)

× SF (p) ǫ
∗
λ(k)

(
(
τ0

2
) A
C Γλ

V (−k) +
δ A
C

2
Γλ
B(−k)

)
ui , (36)

where we use the shorthand ( τ
0

2 ) A
B = 〈B| τ0

2 |A〉. For all
three currents, power counting gives ν > 1. However, this
naive power counting does not give an accurate compari-
son between the ∆ contributions and the N contributions
at low energies, as we discuss later.

C. Diagrams (e) and (f)

The two diagrams lead to a vector current:

〈V iµ〉π =
gA
fπ

ǫijk〈B|τ
k

2
|A〉 Pµ

V (q, kπ)

(q − kπ)2 −m2
π

uf (6q− 6kπ)γ5 ui +
ǫijk
fπ

〈B|τ
k

2
|A〉ufΓµ

V π(q, kπ)ui . (37)

Here, Pµ
V (q, kπ) is defined in Eq. (14), Γµ

V π(q, kπ) is de-
fined in Eq. (12), and ν > 1.

For the axial-vector current, diagram (e) does not con-
tribute, and we find
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〈Aiµ〉π =
ǫijk
fπ

〈B|τ
k

2
|A〉ufΓµ

Aπ(q, kπ)ui +
ǫijk
fπ

〈B|τ
k

2
|A〉 qµ

q2 −m2
π

uf
(6q+ 6kπ)

2
ui

+
ǫijk
fπ

〈B|τ
k

2
|A〉 4κπ uf

(
σµν ikπν
2M

+
qµ

q2 −m2
π

σαβikπαqβ
2M

)
ui

+
δ i
j

fπ
δA
B (−4iβπ)

1

M

(
kµπ − q · kπ qµ

q2 −m2
π

)
ufui

+
δ i
j

fπ
δA
B

−iκ1
4

1

M2
uf

(
qν(pf + pi)

{νγµ} − q · (pf + pi) q
µ

q2 −m2
π

(6q+ 6kπ)
)
ui . (38)

Here, Γµ
Aπ(q, kπ) is given in Eq. (6). The terms in first

row lead to ν > 1 contributions. The contributions due
to κπ, βπ, and κ1 are at ν = 2. We use values fitted
in [53] for these couplings. In the last row, A{µBν} =

AµBν +AνBµ.
For the baryon current, diagrams (e) and (f) do not

contribute: 〈Jµ
B〉π = 0.

For the NC photon production matrix element we find

〈Jµ
NC〉γ = δAB

−iec1
M2

ǫµναβ ufγνkαǫ
∗
β(k)ui + δAB

−iec1qµ
M2(q2 −m2

π)
ǫλναβ ufγλqνkαǫ

∗
β(k)ui

+ (
τ0

2
) A
B

−iee1
2M2

ǫµναβ ufγνkαǫ
∗
β(k)ui + (

τ0

2
) A
B

−iee1qµ
2M2(q2 −m2

π)
ǫλναβ ufγλqνkαǫ

∗
β(k)ui .

Here ν = 3; for ν < 3, there are no contact vertices
contributing in this channel. By power counting, we ex-
pect that at low energy, these terms can be neglected
compared to the ν = 1 terms. However according to
Ref. [42], these terms may play an important role in co-
herent photon production. Meanwhile, it is claimed in
Ref. [42] that the origin of these contact vertices are due
to the anomalous interactions of the ω and ρ. But they
can also be induced by the off-shell terms in the ∆ la-
grangian. Moreover, we can construct meson-dominance
terms by using the interaction terms in the last row of
Eq. (3) and photon-meson coupling in Eq. (2), which
leads to different off-shell behavior of the vertex com-
pared to that of the anomaly term.

V. RESULTS

In this section, after introducing the kinematics, we
discuss our results for CC and NC pion production, and
also NC photon production, and compare them with
available data whenever possible.

p

p

p

pq

p

θ

li

lf

nf

ni

π

lf

ex

ey

ez

FIG. 2: The configuration in the isobaric frame.

A. Kinematics

Fig. 2 shows the configuration in the isobaric frame,
i.e., the center-of-mass frame of the final nucleon and
pion. The momenta are measured in this frame, except
those labeled as pL, which are measured in the Lab frame
with the initial nucleon being static. Detailed analysis of
the kinematics is given in Appendix E. The expression
for the total cross section is (|M |2 is the average of total
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interaction amplitude squared)

σ =

∫ |M |2
32Mn

1

(2π)5
|~pπ|

Eπ + Enf

|~p L
lf |

|~p L
li |

dΩπdE
L
lfdΩ

L
lf

=

∫ |M |2
64M2

n

1

(2π)5
|~pπ|

Eπ + Enf

π

|~p L
li |EL

li

dΩπdM
2
πndQ

2 .

(39)

Based on the equations in Appendix E, we can make the
following estimates. For CC pion production, when EL

ν =
0.4 (0.5)GeV, (Mπn)max ≅ 1.17 (1.24)GeV, Q2

max ≅

0.2 (0.3)GeV2. We can see that above EL
ν = 0.4GeV, the

interaction begins to be dominated by the ∆ resonance.
However, when EL

ν = 0.75GeV, (Mπn)max ≅ 1.4GeV,
and higher resonances, for example P11(1440), may play
a role. The exception is νµ + p −→ µ− + p + π+: only
I = 3/2 can contribute, and the next resonance in this
channel is the ∆(1600), which is accessible only when
EL

ν > 1.8GeV. For NC pion production and photon
production (EL

γ > 0.2GeV), when EL
ν = 0.3 (0.5)GeV,

(Mπn)max ≅ 1.2 (1.35)GeV, Q2
max ≅ 0.1 (0.3)GeV2.

Here above EL
ν = 0.3GeV, the interaction begins to be

dominated by the ∆. However, when EL
ν = 0.6GeV,

(Mπn)max ≅ 1.4GeV, and higher resonances may play a
role.
From this analysis, we expect our EFT to be valid at

EL
ν 6 0.5GeV, since only the ∆ resonance can be ex-

cited, and Q2 6 0.3GeV2 where meson dominance works
for various currents’ form factors [20]. To go beyond
this energy regime when we show our results, we require
Mπn 6 1.4GeV and use phenomenological form factors
that work when Q2 > 0.3GeV2.

B. CC pion production

In this section, we compare calculated cross sections of
CC pion production with ANL [31] and BNL [32] mea-
surements. In both experiments, the targets are hydro-
gen and deuterium. (All the other experiments use much
heavier nuclear targets in (anti)neutrino scattering, and
to explain this, we must examine many-body effects.)
The beam is muon neutrino, the average energy of which
is 1GeV and 1.6GeV for ANL and BNL respectively. In
the ANL data, there is a cut on the invariant mass of the
pion and final nucleon system: Mπn 6 1.4GeV, while no
such cut is applied in the BNL data. Based on the pre-
vious phase-space analysis, this cut clearly reduces the
number of events when Eν is above ∼ 0.5GeV. This can
be seen by comparing the two data sets in three differ-
ent channels shown in Figs. 3 and 4: the ANL data lies
systemically below the BNL data. Since the data stretch
above 0.5 GeV, in the the Figs. 3 and 4, we show the
“CFF” results (using conventional form factor in [33])
and the “HFF” results (using the form factor in [26]
with the reduced CA

5 (0)), with the Mπn constraint ap-
plied. In these calculations, Fmd, Gmd, c∆, and d∆ are

substituted by the form factors in the literature. The re-
sults of our framework, i.e. using the meson-dominance
form factor born out of the lagrangian, are shown as
“MDFF” calculations, and are extrapolated beyond 0.5
GeV limit also. The extrapolations of both “CFF” and
“MDFF” calculations enable us first to compare our re-
sult with similar calculations in [26] 4, and second to
see how meson-dominance form factors fail at higher
energy. By comparing “CFF” with “MDFF” calcula-
tion, we can see in the ‘MDFF’ calculation, the meson-
dominance form factors are inadequate to reproduce the
conventional form factors above Eν = 0.5GeV (although
it seems “MDFF” results are closer to the data). Hence
in the following Fig. 5, we only show the ‘MDFF’ results
with Eν 6 0.5 ∼ 0.6GeV, for which Mπn 6 1.4GeV
holds automatically. Since we believe the EFT is appli-
cable in this low-energy regime, in these plots, we show
results including Feynman diagrams up to order ν = 1
and ν = 2.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0.2  0.4  0.6  0.8  1  1.2  1.4

σ 
(1

0-3
9 cm

2 )

Eν(GeV)

νp->µ−pπ+

CFF only ∆
HFF only ∆

MDFF only ∆
CFF up to ν=1
HFF up to ν=1

MDFF up to ν=1
ANL with cut

BNL without cut

FIG. 3: (Color online). Total cross section for νµ + p −→

µ− + p + π+. “Only ∆” indicates that only diagrams with ∆
(both s and u channels) are included. “Up to ν = 1” includes
all the diagrams at leading order. The “CFF” calculations
are done with one of the conventional form factors [33]. The
“HFF” calculations make use of form factor used in [26] with
the reduced CA

5 (0). The “MDFF” calculations are based on
the EFT lagrangian with meson dominance. In the ANL data,
Mπn 6 1.4 GeV is applied, while no such cut is applied in the
BNL data. For all calculations, Mπn 6 1.4 GeV is applied.

In Fig. 3, we show the data and calculations for
νµ + p −→ µ− + p + π+. As mentioned above, in the
“CFF only ∆” calculation, we make use of one set of
conventional form factors and include the Feynman dia-
grams with the ∆ in both s and u channels. In the “CFF
up to ν = 1”, we use the same form factors and include

4 the calculation in [26] without reduction of CA
5
(0) should be

close to “CFF” calculation [33], although the details of the form
factors are different.
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all the Feynman diagrams up to leading order. These two
calculations are quite similar to those done in Ref. [26]
without reducing CA

5 . Indeed, our results are consistent
with theirs. (In Ref. [26], only the s channel contribution
is included in the calculation with “only ∆”.) Next, we
show two different “HFF” calculations: one with only ∆
(in s and u channel) and the other with all the diagrams
up to ν = 1. Finally we also show two “MDFF” calcu-
lations up to different order, so that we can compare the
“MDFF” approach with the “CFF” approach.

First, we can see that both “CFF” and “MDFF”
with only ∆ diagrams are consistent with the data at
Eν 6 0.5GeV. Introducing other diagrams up to or-
der ν = 1 is still allowed by the data at low energy,
although they indeed increase the cross section notice-
ably. Second, In Ref. [26], a reduced CA

5 (0) is intro-
duced, primarily to reduce the calculated cross sections
above Eν = 1GeV, which can be seen by comparing
“CFF” calculations with “HFF” calculations. However,
since we are only concerned with the Eν 6 0.5GeV re-
gion, in which we see satisfactory agreement between our
calculations and the data, we will keep the CA

5 (0) fitted
from the ∆’s free width. Furthermore, in the original
spectrum-averaged dσ/dQ2 data of ANL [31], the contri-
butions from Eν 6 0.5GeV neutrinos are excluded, so
comparing calculations with data at low energy is not
feasible at this stage, and we will not show our dσ/dQ2

here.

In Fig. 4, we show the data and calculations for
νµ + n −→ µ− + n + π+ and νµ + n −→ µ− + p + π0.
We can see that the situations in these two processes are
quite similar to that in Fig. 3: the results of the “CFF”
and “MDFF” approaches are consistent with the data at
low energy. Again the differences between the two ap-
proaches with the same diagrams begin to show up when
the neutrino energy goes beyond 0.5GeV. Although the
pion production is still dominated by the ∆, if we com-
pare cross sections (due to the same calculation) in the
Figs. 3 and 4, we see other diagrams introduce signifi-
cant contributions and violate the naive estimate of the
ratio of the three channels’ cross sections based on isospin
symmetry and ∆ dominance. Moreover, the reduction of
CA

5 significantly reduces cross section in these two chan-
nels if we compare the two “HFF” calculations with the
corresponding “CFF” calculations.

In Fig. 5, we begin to investigate the convergence of
our calculations in different channels in neutrino and an-
tineutrino scattering. We show the “MDFF” calculations
based on our EFT lagrangian up to different orders. We
see that the power counting makes sense systematically
in different channels: including N intermediate state and
contact terms up to ν = 1 changes the “only ∆” calcula-
tion non-negligibly. Far below resonance, the ∆ contri-
bution is less important compared to other diagrams, and
it begins to dominate around 0.4GeV. This is consistent
with the power counting discussed in Sec. IV. Moreover,
the ν = 2 terms do not change the “up to ν = 1” re-
sults significantly. All the calculations of neutrino scat-

 0
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HFF only ∆

MDFF only ∆
CFF up to ν=1
HFF up to ν=1

MDFF up to ν=1
ANL with cut

BNL without cut

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0.2  0.4  0.6  0.8  1  1.2  1.4

σ 
(1

0-3
9 cm

2 )

Eν(GeV)

νn->µ−pπ0

(b) CFF only ∆
HFF only ∆

MDFF only ∆
CFF up to ν=1
HFF up to ν=1

MDFF up to ν=1
ANL with cut

BNL without cut

FIG. 4: (Color online). Total cross section for νµ + n −→

µ− + n + π+ and νµ + n −→ µ− + p + π0. In the ANL data,
Mπn 6 1.4 GeV is applied, while no such cut is applied in the
BNL data. The curves are defined as in Fig. 3.

tering are consistent with the limited data from ANL.
We can see the cross section for antineutrino scattering
is generally smaller than that of neutrino scattering, due
to the relative sign chosen between V iµ and Aiµ in the
Feynman diagrams having ∆. The sign between V iµ and
Aiµ in other diagrams is well defined in our lagrangian.
The relative sign between ∆’s contribution and other di-
agrams’ is also well determined by the relation between
hA and CA

5 in Eq. (29), although it has been investigated
phenomenologically in Ref. [26].

C. NC pion production

In this section, we discuss the results for NC pion
production in (anti)neutrino scattering. In Fig. 6, the
results in the ‘MDFF’ approach are shown for calcula-
tions including diagrams of different orders. The chan-
nels are explained in each plot. Since all of the avail-
able data for NC pion production are spectrum-averaged,
and neutrinos with Eν 6 0.5GeV have small weight in
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FIG. 5: (Color online). Total cross section for CC pion production due to neutrino and antineutrino scattering off nucleons.
“Only ∆” indicates that only diagrams with ∆ (both s and u channels) are included. “Up to ν = 1” includes all the diagrams
at leading order. “Up to ν = 2” includes higher-order contact terms, whose couplings are from Ref. [53]. In the ANL data,
Mπn 6 1.4 GeV. For calculations, Mπn 6 1.4 GeV is applied.

such analyses, we do not compare our results with data.
Here we focus on the convergence of our calculations;
introducing the ν = 2 terms does not change the total
cross section significantly. However, we also see the vi-
olation of isospin symmetry in the “up to ν = 1” and
“up to ν = 2” calculations in each plot, if we com-
pare each pair of channels in Fig. 6. In principle, if
there is no baryon current contribution in NC produc-
tion, we should see that the two channels in each plot

yield the same results. For example the isospin symme-
try implies 〈p, π0|V 0µ, A0µ|p〉 = 〈n, π0|V 0µ, A0µ|n〉 and
〈p, π0|Jµ

B |p〉 = −〈n, π0|Jµ
B|n〉. So with “only ∆”, we

can not see the difference between the two cross sec-
tions, since the (isoscalar) baryon current cannot induce
transitions from N to ∆. After introducing nonresonant
diagrams, we would expect them to be different, as con-
firmed in the first plot in Fig. 6 for example. This analysis
can be applied to other channels, and we clearly see the
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FIG. 6: (Color online). Total cross section for NC π production due to neutrino and antineutrino scattering off nucleons. The
curves are defined as in Fig. 5, and the channels are also indicated.

nonresonant contributions.

D. NC photon production

In this section we focus on NC photon production. The
results are shown in Fig. 7. Besides NC π0 production,
this process is another important background in neutrino
experiments. One important difference between NC pho-
ton production and CC and NC pion production, is that
all of the ν = 2 terms do not contribute in this process.
Therefore, we include the two ν = 3 terms in NC photon
production, namely the e1 and c1 couplings in Eq. (39),
besides terms due to the form factors. Moreover, these
two couplings are singled out in Ref. [42] as the low-
energy manifestations of anomalous interactions involv-
ing ρ and ω, and are believed to give important contribu-
tions in coherent photon production from nuclei. Here we
also investigate the consequences of these two couplings.
We emphasize that from the EFT perspective, the only
way to determine these two couplings is by comparing the
final theoretical result with data, rather than by calcu-
lating them from anomalous interactions, which are not
necessarily the only high-energy physics contributing to
these two operators. For example, as we discussed before,

an off-shell coupling between N , π, and ∆ can introduce
the same matrix element as the c1 term. Changing the
off-shell couplings would also change the contact term
to make the theory independent of the choice of off-shell
couplings. Nevertheless, to perform concrete calculations
without precise information on the coupling strengths, we
use the values from Ref. [42] (c1 = 1.5, e1 = 0.8).

We can see the convergence of our calculations in
Figs. 7. The two couplings introduced in the “up to
ν = 3” calculations increase the total cross section in
both channels for both neutrino and antineutrino scatter-
ing, although the change is quite small. This constructive
behavior is consistent with the results in Ref. [42].

Naive power counting, however, does not give an accu-
rate comparison between the ∆ contributions and the N
contributions at very low energy. First, the neutron does
not have an electric charge, so its current should appear
at higher order than the naive estimate. Second, for the
proton, due to the cancellation between the baryon cur-
rent and the vector current, the neutral current is mainly
composed of the axial-vector current, which reduces the
strength of the neutral current. Because of these two,
the contributions of Compton-like diagrams are smaller
than the power counting indicates.
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FIG. 7: (Color online). Total cross section for NC photon production due to neutrino and antineutrino scattering off nucleons.
“Only ∆” indicates that only diagrams with ∆ (both s and u channels) are included. “Up to ν = 1” includes all the diagrams
at leading order. “Up to ν = 3” includes higher-order diagrams.

VI. SUMMARY

Neutrinoproduction of photons and pions from nu-
cleons and nuclei produce important backgrounds in
neutrino-oscillation experiments and therefore must be
understood quantitatively. In this work, we stud-
ied the productions from free nucleons in a Lorentz-
covariant, chirally invariant, meson–baryon EFT. For
(anti)neutrino energy around 0.5GeV, the ∆ resonance
is important. We therefore included the ∆ degrees of
freedom explicitly in our EFT lagrangian, in a manner
that is consistent with both Lorentz covariance and chiral
symmetry.

It is well known that in a lagrangian with a finite num-
ber of interaction terms, including the ∆ as a Rarita–
Schwinger field leads to inconsistencies for strong cou-
plings, strong fields, or large field variations. In a mod-
ern EFT with an infinite number of interaction terms,
however, these pathologies can be removed, if we work
at low energies with weak boson fields. This is clarified
in our previous work [23]. Ambiguous and so-called off-
shell couplings involving ∆ have also been shown to be
redundant in the modern EFT framework, because these
couplings produce terms that can be absorbed into the
contact terms in the EFT lagrangian. Thus the ∆ res-
onance can be introduced in our EFT lagrangian in a
consistent way.

Because of the symmetries built into our lagrangian,
the vector and baryon currents are conserved and the
axial-vector currents satisfy PCAC automatically, which
is not true in some other approaches to this problem
(special constraints among different form factors have
to be introduced by hand to conserve vector current in
other approaches). Needless to say, the conserved vec-
tor and baryon currents are crucial for computing pho-
ton production. We discussed in detail how the meson-
dominance mechanism works in our matrix element cal-
culations, which is the key ingredient in current conserva-

tion. By using vector and axial-vector transition currents
that were calibrated in pion production at high energies,
we found results for pion production at lower energies
(ELab

ν 6 0.5 GeV) are consistent with the (limited) data.
This is also true when vertices described by meson domi-
nance were used. On the other hand, the couplings intro-
duced to generate meson dominance are relevant in other
problems. For example, the interactions in the Eq. (18)
lead to proper description of vector transition current
at nonzero Q2 and meanwhile it is relevant to two-body
currents: suppose a photon is absorbed by one nucleon
producing a ∆ which then interacts with other nucleon
through the interactions mentioned above.
Moreover, we studied the convergence of our power-

counting scheme at low energies (∆ needs to be counted
differently in different energy regions) and found that
next-to-leading-order tree-level corrections are small.
This power counting scheme is different from the canon-
ical one, because it can be used in nuclear many body
problem. For example, the lowest order in this scheme is
the mean-field approximation, if the calculation is done
for the property of the nuclear ground states. The dis-
cussion on this can be found in [17–19]. It is certainly
interesting to see how the power counting that we have
for scattering off nucleon works in the scattering off nu-
clei.
Finally, we computed NC photon production and ex-

plored the power counting in this problem. The difference
between the NC photon production and pion production
is that at ν = 2, no diagrams contribute in photon case,
while there are several in pion production. So we pro-
ceeded to include ν = 3 diagrams induced by two contact
interactions, c1 and e1 terms. They have been studied in
[42], and are believed to be the low energy manifestation
of anomalous ρ and ω interactions. We pointed out the
existence of other sources including off-shell couplings of
∆ and possible meson-dominance terms. Nevertheless
by using two couplings strength calibrated to anomalous
ρ and ω interactions [42], we found that, at least for a
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nucleon target, their contributions are very small, as ex-
pected based on power counting.

We are currently using this QHD EFT framework to
study the electroweak response of the nuclear many-body
system, so that we can extend our results to photon and
pion neutrinoproduction from nuclei, which are the true
targets in existing neutrino-oscillation experiments.
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Appendix A: Chiral symmetry and electroweak
interactions in QHD EFT

Details on this can be found in [23, 24]. We intro-
duce background fields including v

µ ≡ v
iµτi/2 (isovector

vector), vµ(s) (isoscalar vector), aµ ≡ a
iµτi/2 (isovec-

tor axial-vector), where i = x, y, z or + 1, 0,−1. They
couple to the corresponding currents in QCD. We define
rµ = v

µ + a
µ, lµ = v

µ − a
µ. Under SU(2)L ⊗ SU(2)R ⊗

U(1)B symmetry transformations, these fields should
change in the following way: lµ → L lµL† + iL ∂µL†

(L = exp[−iθLi(x)
τ i

2 ]), r
µ → RrµR† + iR ∂µR† (R =

exp[−iθRi(x)
τ i

2 ]), v
µ

(s) → v
µ

(s)−∂µθ. Here, θLi(x), θRi(x),

and θ(x) are the rotation angles. We can construct
field strength tensors: fLµν ≡ ∂µlν − ∂ν lµ − i [lµ , lν ] →
LfLµνL

†, and fRµν and fsµν in the same way.

Now we discuss nonlinear transformations of dynami-
cal degrees freedom in our model:

U ≡ exp

[
2i
πi(x)

fπ
ti
]
→ LUR† , (A1)

ξ ≡
√
U = exp

[
i
πi
fπ

ti
]
→ Lξh† = h ξR† , (A2)

ṽµ ≡ −i
2
[ξ†(∂µ − ilµ)ξ + ξ(∂µ − irµ)ξ

†] ≡ ṽiµt
i

→ h ṽµh
† − ih ∂µh

† , (A3)

ãµ ≡ −i
2
[ξ†(∂µ − ilµ)ξ − ξ(∂µ − irµ)ξ

†] ≡ ãiµt
i

→ h ãµh
† , (A4)

∂̃µU ≡ ∂µU − ilµU + iUrµ → L ∂̃µUR
† , (A5)

(∂̃µψ)α ≡ (∂µ + i ṽµ − iv(s)µB) β
α ψβ

→ exp [−iθ(x)B] h β
α (∂̃µψ)β , (A6)

ṽµν ≡ −i[ãµ , ãν ] → h ṽµνh
† , (A7)

F (±)
µν ≡ ξ†fLµν ξ ± ξfRµν ξ

† → hF (±)
µν h† , (A8)

∂̃λF
(±)
µν ≡ ∂λF

(±)
µν + i[ṽλ , F

(±)
µν ] → h ∂̃λF

(±)
µν h† .(A9)

In the preceding equations, ti are the generators of re-
ducible representations of SU(2). The fπ ≈ 93 MeV is
pion-decay constant. We generically label non-Goldstone
isospin multiplets including the nucleon, ρ meson, and ∆
by ψα = (NA, ρi,∆a)α. B is the baryon number of the
particle. The transformations of the isospin and chiral
singlets Vµ and φ are trivial. The dual field tensors are

defined as F
(±)µν ≡ ǫµναβF

(±)
αβ , which have the same

chiral transformations as the ordinary field tensors. The
objects shown here are the building blocks for construct-
ing lagrangian.

Electroweak interactions of quarks in the Standard
Model [23, 24, 54, 55] determine the form of the back-
ground fields in terms of the vector bosons W±µ , Zµ, and
Aµ:

lµ = −e τ
0

2
Aµ +

g

cos θw
sin2 θw

τ0

2
Zµ − g

cos θw

τ0

2
Zµ

− gVud

(
W+1

µ

τ+1

2
+W−1µ

τ−1
2

)
, (A10)

rµ = −e τ
0

2
Aµ +

g

cos θw
sin2 θw

τ0

2
Zµ , (A11)

v(s)µ = −e 1
2
Aµ +

g

cos θw
sin2 θw

1

2
Zµ , (A12)

where g is the SU(2) charge, θw is the weak mixing angle,
and Vud is the CKM matrix element corresponding to u
and d quark mixing.

If we define the interactions with background fields as

Lext ≡ viµV
iµ − aiµA

iµ + v(s)µJ
Bµ

= JL
iµ l

iµ + JR
iµ r

iµ + v(s)µJ
Bµ , (A13)

and define electroweak interactions as

LI = −eJEM
µ Aµ − g

cos θw
JNC
µ Zµ

− gVud J
L
+1µW

+1µ − gVud J
L
−1µW

−1µ , (A14)
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and use Eqs. (A10) to (A12), we can see

JL
iµ ≡ 1

2
(Viµ +Aiµ) , (A15)

JR
iµ ≡ 1

2
(Viµ −Aiµ) , (A16)

JEM
µ = V 0

µ +
1

2
JB
µ , (A17)

JNC
µ = JL0

µ − sin2 θw J
EM
µ . (A18)

Here, JB
µ is the baryon current, defined to be coupled

to v
µ

(s). These relations are consistent with the charge

algebra Q = T 0 + B/2. (B is the baryon number.) V iµ

and Aiµ are the isovector vector current and the isovec-
tor axial-vector current, respectively. We do not discuss
“seagull” terms of higher order in the couplings because
they do not enter in our calculations [10, 24].

Appendix B: Form factors for currents

Here we use matrix elements of the various currents
to define the form factors produced by the lagrangian
[5]. By using information presented in Appendix. A and
the lagrangian in Sec. II, we can determine the matrix
elements.

〈N,B|V i
µ|N,A〉 =

[
ufγµui +

β(1)

M2
uf (q

2γµ− 6qqµ)ui −
gρ
gγ

q2gµν − qµqν
q2 −m2

ρ

ufγ
νui

]
〈B|τ

i

2
|A〉

+

[
2λ(1) uf

σµν iq
ν

2M
ui −

fρgρ
gγ

q2

q2 −m2
ρ

uf
σµν iq

ν

2M
ui

]
〈B|τ

i

2
|A〉 , (B1)

〈N,B|JB
µ |N,A〉 =

[
ufγµui +

β(0)

M2
uf (q

2γµ− 6qqµ)ui −
2gv
3gγ

q2gµν − qµqν
q2 −m2

v

ufγ
νui

]
δAB

+

[
2λ(0) uf

σµν iq
ν

2M
ui −

2fvgv
3gγ

q2

q2 −m2
v

uf
σµν iq

ν

2M
ui

]
δAB , (B2)

〈N,B;π, j, kπ |Ai
µ|N,A〉 = −

ǫijk
fπ

〈B|τ
k

2
|A〉ufγνui

[
gµν +

β(1)

M2
(q · (q − kπ)gµν − (q − kπ)µqν)

− gρ
gγ

q · (q − kπ)gµν − (q − kπ)µqν
(q − kπ)2 −m2

ρ

]

−
ǫijk
fπ

〈B|τ
k

2
|A〉uf

σµν iq
ν

2M
ui

[
2λ(1) − fρgρ

gγ

q · (q − kπ)

(q − kπ)2 −m2
ρ

]
. (B3)

Now we consider 〈N,B|Ai
µ|N,A〉 and

〈N,B;π, j|V i
µ|N,A〉. In the chiral limit, we find

〈N,B|Ai
µ|N,A〉 =− 〈B|τ

i

2
|A〉ufγνγ5ui

[
gA

(
gµν − qµqν

q2

)
− β

(1)
A

M2
(q2gµν − qµqν)

−2ca1
ga1

q2gµν − qµqν
q2 −m2

a1

]
, (B4)

〈N,B;π, j, kπ |V i
µ|N,A〉 =

ǫijk
fπ

〈B|τ
k

2
|A〉ufγνγ5ui

[
gAgµν − β

(1)
A

M2
(q · (q − kπ)gµν − (q − kπ)µqν)

− 2ca1
ga1

q · (q − kπ)gµν − (q − kπ)µqν
(q − kπ)2 −m2

a1

]
. (B5)
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Suppose there is only one manifestly chiral-symmetry-
breaking term, i.e., the mass term for pions; then the
pion-pole contribution associated with the gA coupling
in 〈N,B|Ai

µ|N,A〉 will become gA[gµν −qµqν/(q2−m2
π)],

while the other parts in 〈N,B|Ai
µ|N,A〉, as well as

the whole 〈N,B;π, j|V i
µ|N,A〉, will remain unchanged.

However, we must realize that there are other pos-
sible chiral-symmetry-breaking terms contributing to

〈N,B|Ai
µ|N,A〉. For example, (m2

π/M)Niγ5(U − U †)N

can contribute to 〈N,B|Ai
µ|N,A〉 as

−2m2
π

M2

qµ 6qγ5
q2 −m2

π

〈B|τ
i

2
|A〉 .

To simplify the fitting procedures, we use the following
form factors (Gmd

A can be found in Eq. 13):

〈N,B|Ai
µ|N,A〉 = −Gmd

A (q2)〈B|τ
i

2
|A〉uf

(
gµν − qµqν

q2 −m2
π

)
γνγ5ui , (B6)

〈N,B;π, j, kπ |V i
µ|N,A〉 =

ǫijk
fπ

〈B|τ
k

2
|A〉ufγνγ5ui

[
gAgµν + δGmd

A ((q − kπ)
2)
q · (q − kπ)gµν − (q − kπ)µqν

(q − kπ)2

]
. (B7)

Finally, we calculate the pion form factor 〈π, k|V i
µ|π, j〉:

〈π, k, kπ|V i
µ|π, j, kπ − q〉 = iǫijk(2kπ − q)µ + 2i

gρππ
gγ

ǫijk
q2

m2
ρ

1

q2 −m2
ρ

(q · kπqµ − q2kπµ)

q2 → m2
ρ in numerator −→ iǫijk (2kπ − q)µ + 2i

gρππ
gγ

ǫijk
1

q2 −m2
ρ

(q · kπqµ − q2kπµ) . (B8)

Appendix C: power counting for diagram with ∆

Including ∆ resonances in calculations, we have a new
mass scale δ ≡ m − M ≈ 300 MeV. We must also
consider the order of the ∆ width Γ. Formally, it is
counted as O(Q3/M2); however, numerical calculations
with Eq. (D2) indicate that it should be counted as
O(Q3/M2 × 10). Because of these two issues, we have
to rethink the power counting of diagrams involving δ in
two energy regimes. One is near the resonance, while the
other is at lower energies, away from the resonance. In
the resonance region, the ∆ propagator scales like

SF ∼ 1

iΓ
+O

(
1

M

)
≈ 1

10i O(Q3/M2)
≈ 1

i O(Q2/M)

∼ 1

O(Q)

M

iO(Q)
, (C1)

where the O(1/M) comes from non-pole terms. In the
lower-energy region,

SF ∼ 1

2[δ −O(Q)]− 10i O(Q3/M2)
+O

(
1

M

)

∼ 1

O(Q)

O(Q)

2δ
+O

(
1

M

)
≈ 1

O(Q)

O(Q)

M
. (C2)

So compared to the normal power counting mentioned
above, in which the nucleon propagator scales as 1/O(Q),
for diagrams involving one ∆ in the s channel, we take
ν → ν − 1 in the resonance regime and ν → ν + 1 away
from the resonance.

Appendix D: Renormalized ∆ propagator

In this work, ∆’s propagator [47] is dressed as
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Sµν
F (p) ≡ − 6p+m

p2 −m2 −Π(p2) + imΓ(p2)
P ( 3

2
)µν − 1√

3m
P

( 1

2
)µν

12 − 1√
3m

P
( 1

2
)µν

21 +
2

3m2
(6p+m)P

( 1

2
)µν

22

+O(Γ/m)× non-pole terms, (D1)

Γ(p2) =
π

12mp4
h2A

(4πfπ)2
(p2 +M2 + 2Mm)×

[
(p2 −M2)2 − (p2 + 3M2)m2

π

]√
(p2 −M2)2 − 4p2m2

π . (D2)

Here:

P ( 3

2
)µν = gµν − 1

3
γµγν +

1

3p2
γ[µpν] 6p− 2

3p2
pµpν ,

(D3)

P
( 1

2
)µν

11 =
1

3
γµγν − 1

3p2
γ[µpν] 6p− 1

3p2
pµpν , (D4)

P
( 1

2
)µν

12 =
1√
3p2

(−pµpν + γµpν 6p) , (D5)

P
( 1

2
)µν

21 = −P ( 1

2
)νµ

12 , (D6)

P
( 1

2
)µν

22 =
1

p2
pµpν . (D7)

We take m = 1232 MeV as the Breit–Wigner mass [56]
and set Π = 0. Note that Γ is implicitly associated with
a factor of Θ[p2− (M +mπ)

2]. And no singularity exists
in this propagator at p2 = 0.

Appendix E: kinematics

Following a standard calculation, we find the total
cross section:

σ =

∫ |M |2
4|pLli · pLni|

(2π)4δ(4)

(
∑

i

pLi

)
d3~pL

lf

(2π)32EL
lf

d3~pL
π

(2π)32EL
π

d3~pL
nf

(2π)32EL
nf

=

∫ |M |2
4|pLli · pLni|

(2π)4δ(q0 + p0ni − p0nf − p0π)
1

(2π)32Enf

d3~pL
lf

(2π)32EL
lf

d3~pπ
(2π)32Eπ

=

∫ |M |2
32Mn

1

(2π)5
|~pπ|

Eπ + Enf

|~pL
lf |

|~pL
li |

dΩπ dE
L
lf dΩ

L
lf . (E1)

The variables without ‘L’ superscript are measured in
isobaric frame (∆ is static there). It is quite complicated
to calculate the boundary of phase space in terms of the
integration variables in the preceding equations. Later,
we will work out the boundary of phase space in terms
of the invariant variables Q2 and Mπn in the center-of-
mass (CM) frame of the whole system, so we would like
to have the following:

Q2 = −M2
lf + 2EL

li (E
L
lf − |~pL

lf | cos θLlf ) , (E2)

M2
πn = (qL + pLni)

2 = −Q2 +M2
n + 2Mn(E

L
li − EL

lf ) ,

(E3)

dQ2dM2
πn = 4MnE

L
li |~pL

lf |dEL
lf d cos θ

L
lf . (E4)

By using the invariance of the cross section with respect
to rotations around the incoming lepton direction, we
have

∫
dΩL

lf =
∫
d cos θLlf 2π, and thus

σ =

∫ |M |2
64M2

n

1

(2π)5
|~pπ|

Eπ + Enf

π

|~pL
li |EL

li

dΩπ dM
2
πn dQ

2 .

(E5)

In the isobaric frame, there is no constraint on the di-
rection of the outgoing pion due to the kinematics. Thus
the boundary of Ωπ is the whole solid angle in the iso-
baric frame. Now let’s work out the boundary of phase
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space in the CM frame. We have

M2
A ≡ p2A = (pLni + pLli)

2 = (Mn + EL
li)

2 − (EL
li )

2

=M2
n + 2MnE

L
li , (E6)

M2
πn ≡ (pπ + pnf )

2 = (pCA − pClf )
2

=M2
A +M2

lf − 2MAE
C
lf . (E7)

Here, EC
lf is the final lepton’s energy in the CM frame.

From now on, all the quantities in the CM frame will be
labeled in this way. So, for given EL

li , i.e., MA, we can
see that

Mn +Mπ 6Mπn 6MA −Mlf . (E8)

By using Eq. (E7), we find

(EC
lf )max(min) =

M2
A +M2

lf − (M2
πn)min(max)

2MA

. (E9)

Then, for given EL
li and Mπn (or EC

lf ), using Q2 =

−M2
lf + 2EC

liE
C
lf − 2EC

li |~plf |C cos θClf (where θClf is the
angle between the outgoing lepton’s direction and the
incoming lepton’s direction in the CM frame, and EC

li =
(M2

A−M2
n)/2MA is the initial lepton’s energy in the CM

frame), we finally arrive at

[Q2(EC
lf )]min = −M2

lf +
2EC

liM
2
lf

EC
lf +

√
(EC

lf )
2 −M2

lf

, (E10)

[Q2(EC
lf )]max = −M2

lf + 2EC
li

(
EC

lf +
√
(EC

lf )
2 −M2

lf

)
.

(E11)

These equations give a description of the phase-space
boundary in terms of the invariants Mπn and Q2.
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