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We consider the transition, (γ∗π0(η, η′) → γ) and electromagnetic (γ∗π± → π±) form factors
in a wide range of energy-momentum transfer, s. We employ dispersion relations to connect the
time-like and space-like region. We discuss the role of resonances and QCD, partonic contributions.
We find that the former give sizable contributions in the currently available range of s and for the
latter we consider the role of reggeized fermion exchange.
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I. INTRODUCTION

Electromagnetic form factors of hadrons provide a
clean tool to study their internal structure. At the real
photon point, gauge invariance guarantees that the form
factor is normalized to the net charge of the hadron under
consideration. All form factors were found to decrease
with the virtuality of the photon, the fact that is inter-
preted as the evidence for a non-trivial internal structure
of hadrons. At low virtualities, a successful description is
based on the picture in which the photon couples to pi-
ons, the lightest hadronic degree of freedom. This picture
includes hadronic resonances in the timelike region.

In this paper we examine the charged pion electromag-
netic form factor F2π(s), defined by the matrix element

〈π+(p′)π−(p)|Jµ|0〉 = e(p′ − p)µF2π(s), (1)

and the transition from factors between a neutral pseu-
doscalar meson P = π0, η, η′ and a real photon, FPγ(s)
determined by,

〈P (p′)γ(λ, p)|Jµ|0〉 = ie2εµναβε
∗ν(λ)p′αpβFPγ(s). (2)

Here Jµ is the electromagnetic current, s = (p′ + p)2 is
the four-momentum transfer squared i.e. mass squared
of the virtual photon with s > 0(s < 0) corresponding to
the time-like (space-like) photons, respectively. Current
conservation implies F2π(0) = 1 and, in the chiral limit,
axial anomaly determination of the π0 → 2γ decay leads
to the expectation Fπγ(0) ≈ 1/(4π2fπ) = 0.274 GeV−1

with fπ = 92.4 MeV being the pion decay constant,
which is in excellent agreement with the experimental
value of F expπγ (0) ≈ 0.267 GeV−1. The measured values
for the normalization of the η, η′ transition form factors
are F expηγ (0) ≈ 0.272 GeV−1 and F expη′γ (0) ≈ 0.341 GeV−1,
respectively. These can also be analyzed within the chi-
ral framework, however, due to the large η, η′ masses and
the η − η′ mixing such analyses are not as firm as in the
case of the π0 from factor.

At short distances quark/gluon interactions are asymp-
totically free, and a rigorous prediction of perturba-

tive QCD (pQCD) is that at high energy or momen-
tum transfer, |s| � µ2, these form factors are deter-
mined by hard scattering of the external photon with a
small number of the QCD constituents [1–5]. The avail-
able data on the pion electromagnetic form factor ranges
up to |s| ∼< 10 GeV2 [6–16] and is approximately a fac-
tor of two above the asymptotic pQCD prediction. A
strikingly large discrepancy with the pQCD prediction
is observed in the pion transition form factor recently
measured by BaBar [17]. For momentum transfers as
large as −s ≈ 40 GeV2 the measurement disagrees with
pQCD not only in normalization but also in the overall
s-dependence. While pQCD predicts sFπγ(s) → 2fπ =
const. as |s| → ∞ [4, 5], the data suggest that the mag-
nitude of −sFπγ(s) grows with |s|. On the other hand,
BaBar collaboration also measured the η and η′ transi-
tion form factors [18, 19] up to −s ≈ 40 GeV2 in the
spacelike region and at s ≈ 112 GeV2 in the timelike re-
gion, and these two form factors seem to be consistent
with the pQCD expectations. This situation is often re-
ferred to as the ”BaBar puzzle”, in that from the pQCD
prospective, it is unclear how the pion and the eta can
exhibit such a different behavior.

One concludes that in the currently available range
of energy or momentum transfers non-perturbative
mechanisms must play an important role. In this paper
we discuss a parametrization of such effects which is
based on s-channel unitarity. For large, positive s,
inelastic channel contributions play a similar role to
the wee partons in the Feynman mechanism [20] for
spacelike photons. Possible matching with pQCD is not
addressed here, but we refer to [21] for discussion of
this issue.

For moderate values of photon virtuality it is also nec-
essary to consider contributions from resonances. Cross-
ing symmetry implies that form factors are the boundary
values of an analytic function defined in the complex-
s plane with a unitarity cut running over the positive
s-axis from the two pion production threshold branch
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point sth = 4m2
π. Thus, to relate space-like and time-like

region, it is natural to use dispersion relations (DR). In
the time-like region the electromagnetic (transition) form
factor describes the amplitude for production of a spin-1,
π+π− pair (π0γ, ηγ, η′γ) in the external electromagnetic
field of the virtual photon. In the space-like region form
factors are usually interpreted in terms of parton three-
momentum distribution in a hadron (and/or photon).
Analyticity demands these apparently distinct physical
pictures to be smoothly connected. The dominant fea-
ture of the spin-1, π+π− amplitude is the isovector ρ(770)
resonance that also dominates the electromagnetic form
factor. The pion transition form factor in the time-like
region is sensitive to both ρ, and the isoscalar, ω(782) res-
onance. Analytical continuation to the space-like region
implies that for −s ∼< 1GeV2, i.e. in the hadronic range,
the quark wave function is dual to the vector-meson ex-
change in the crossed channel.

The paper is organized as follows. In the following sec-
tion we relate the space-like and time-like regions through
dispersion relations, discuss the resonance contribution
and specifics of the model for the wee parton contribu-
tion. We give explicit formulas for the pion form factors.
For the η and η′ form factors analogous expressions can
be derived and we only discuss those when presenting
the numerical results. Summary and outlook is given in
Section III

II. PION FORM FACTORS FROM
DISPERSION RELATIONS

A. Resonance contribution

We begin with the discussion of the pion transition
form factor Fπγ(s). Its discontinuity across the unitary
cut is given by

ImFπγ = t∗2π,πγρ2πF2π + t∗3π,πγρ3πF3π +
∑
X

t∗X,πγρXFX

(3)
and is illustrated in Fig. 1. In the last term the sum runs
over all possible intermediate states X 6= 2π, 3π. Here,

FIG. 1: Illustration of the various contributions to the dis-
continuity of the pion transition form factor, cf Eq. (3)

tX,πγ (FX) represents the amplitude for X → π0γ (γ∗ →

X), respectively, whereas ρX represents the product of
the phase space and kinematical factors, and for the 2π
intermediate state it reads (sth = 4m2

π)

ρ2π(s) =
s(1− sth/s)3/2

96π
. (4)

Provided that ImFπγ vanishes at s → ∞, its real part
can be reconstructed for any s from the unsubtracted
dispersion relation,

Fπγ(s) =
1

π

∫
sth

ds′
ImFπγ(s′)

s′ − s
. (5)

The two lowest mass intermediate states, X = 2π, 3π
that are dominated by the ρ(770) and ω(782) resonances,
respectively, are expected to almost saturate the cut in
the hadronic range sth < s ∼< 1GeV2. The ω(782) in the
isoscalar 3π channel is narrow, with the width to mass
ratio,

Γω/mω ∼ 10−2 (6)

and its contribution to Fπγ can be well approximated by
a Breit-Wigner distribution,

F (3π)
πγ (s) =

c
(3π)
πγ m2

ω

[m2
ω − s− imωΓω(s)]

, (7)

with

c(3π)
πγ =

gωπγ
mωgω

= 0.495Fπγ(0), (8)

obtained from ω → πγ and ω → e+e− decay widths
yielding gωπγ = 1.81 and gω = 17.1, respectively.

The contribution from the ρ(770) to the 2π interme-
diate state determines both the t2π,πγ scattering ampli-
tude and the pion electromagnetic form factor, F2π for
s ∼< 1GeV2, and when represented in a form analogous
to Eq. (7), yields

c(2π)
πγ =

gρπγ
mρgρ

= 0.613Fπγ(0), (9)

with ρ → πγ and ρ → e+e− decay widths leading to
gρπγ = 0.647 and gρ = 4.96. At s = 0 the sum of the ρ
and ω resonance contributions to Fπγ exceeds the mea-
sured value by 10-15%. The reason for this discrepancy
is that the isovector contribution is broader than that of
ω(782), and the effects of a finite width have to be taken
into account properly. This can be achieved by using a
unitary parametrization (cf. [22, 23]),

F2π(s) = P (s)Ω(s),

t2π,πγ(s) = C−1(s)Ω(s). (10)

Here Ω(s) is the Omnes-Muskelishvilli function [24, 25]
that is computed from the phase of the vector-isovector
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elastic ππ scattering amplitude. Close to the resonance
position it resembles the Breit-Wigner form,

Ω(s ∼ m2
ρ) ∼

m2
ρ

m2
ρ − s− imρΓρ(s)

. (11)

The polynomials P (s) and C(s) are determined from fits
to the electromagnetic form factor and the solution to
the DR for the t2π,πγ amplitude, respectively:

P (s) = 1 + 0.1s/m2
ρ (12)

C(s) = 4π2f3
π [1 + 1.27s/m2

ρ + 1.38s2/m4
ρ − 0.50s3/m6

ρ]

In the energy range 1 GeV2 <∼ s <∼ µ2, with µ2 = 2 − 5
GeV2 being the upper mass range of resonance contri-
butions to KK̄ and other, few-hadron inelastic channels,
are expected to contribute. For simplicity, in the follow-
ing we ignore their contribution. Above the resonance
region, s ∼> µ2, however, a possible determination of the
multi-hadron contribution to the inelastic sum in Eq. (3)
may be given in terms of the quark/gluon intermediate
states, much like in the derivation of QCD sum rules (cf.
[26]). Those will be discussed below in Sec. II B.

In the case of the pion electromagnetic form factor, the
discontinuity across the unitary cut reads

ImF2π = t∗2π,2πρ2πF2π + t∗KK̄,2πρ2KFK +
∑
X

t∗X,2πρXFX

(13)
where the sum is over the intermediate states X in
γ∗ → X → 2π excluding X = 2π,KK̄ which are in-
cluded explicitly. Eq. 13 is illustrated in Fig. 2

FIG. 2: Discontinuity of the pion electromagnetic form factor.
The summation in the last diagram extends over all isovector,
P -wave states except for the two pion state whose contribu-
tion is shown explicitly.

The two channels X = 2π and X = KK̄ are phe-
nomenologically most significant in the hadronic do-
main [27]. The unitarity relation now involves both
ImF2π and ReF2π (cf. the first term on the r.h.s of
Eq. (13)) and above the inelastic threshold it can be
solved algebraically [28]. Alternatively we can compute

F2π using Eq. (13) and the Cauchy representation. It is
convenient to write the form factor in the form

F2π(s) = N(s) /D(s) (14)

with the numerator containing inelastic cuts. Then
the dispersion relations for N(s) and D(s) follow from
Eq. (13) and give, [28]

N(s) =
∑
X 6=2π

1

π

∫
si

ds′
D(s′)Re

[
t∗X,2π(s′)ρX(s′)FX(s′)

]
[1− it∗2π,2π(s′)ρ2π(s′)](s′ − s)

D(s) = exp

(
− s
π

∫
sth

ds′
φ(s′)

(s′ − s)s′

)
, (15)

with the phase φ obtained from the elastic amplitude,

tanφ =
Ret2π,2πρ2π

1− Imt2π.2πρ2π
. (16)

As discussed earlier, the dominant feature of the pion
electromagnetic form factor is the ρ(770) resonance.
Close to the resonance peak there is also a contribution
from the isospin-violating ω → 2π decay. Here we do not
attempt to reproduce the details of the ρ−ω interference
region. The next relevant feature is the large variation in
magnitude of |F2π| at

√
s ∼ 1.7 GeV which is also seen

in the elastic 2π → 2π amplitude and is attributed to the
contribution from the inelastic ρ′′(1700) resonance decay-
ing to KK̄. We thus approximate the sum over inelastic
channels in Eq. (15) by the single KK̄ channel.

B. Multi-particle contribution
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FIG. 3: Hadron multiplicity vs. pseudorapidity in e+e− col-
lisions in arbitrary units.

In a high energy e+e− collision, a highly virtual time-
like photon converts into a quark and an antiquark that
travel in the opposite directions (in the rest frame of the
virtual photon). These highly energetic quarks radiate
gluons. If the leading mechanism is an emission of a
small number of gluons, as expected in pQCD, with hard
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n=0

n+2

8

= RIm

FIG. 4: The appearance of the reggized quark propagator (shown in the right diagram of Fig. 5) is illustrated on the example
of the process qq̄ → gg. Regge behavior comes about as a result of a resummation of an infinite ladder, qq̄ → qq̄+n→ gg with
n extra gluons or quarks and antiquarks in the intermediate state.

FIG. 5: Sum over multi-particle intermediate states (left di-
agram) is represented by the qq̄ → πγ (right diagram), or
qq̄ → ππ in the case of electromagnetic form factor, ampli-
tude which at high energies s→∞ is given by a Regge limit
of a fermion (spectator quark) exchange.

gluon emission being power-suppressed, multi-particle
production would result from a fire-ball decay of jets
producing a broadening of the peaks around the initial q
or q̄ jet in the rapidity distribution, as shown in Fig. 3.
To obtain the mid-rapidity plato that is observed in
experiments, one needs to radiate a large number of
gluons and qq̄-pairs that neutralize color between the
opposite side jets. They form hadron showers that fill
in the mid rapidity region in Fig. 3. To account for
this mechanism we recall that in QCD it was shown
that multi-particle production corresponds to ladder
exchanges. In particular for qq̄ → gg scattering these
lead to an effective qq̄ → gg amplitude with a Reggeized
quark exchanged in the t-channel [29–39], as illustrated
in Fig. 4.

In the following, we will estimate the contribution
of this mid-rapidity plato to the unitarity relations of
Eqs. (3), (13) for the electromagnetic and transition form
factors. Since the electromagnetic form factor FX of a
composite state decreases with energy-momentum trans-
fer, asymptotically the highly virtual photon will couple
to a single quark-antiquark pair. Thus, the contribution
of interest to the r.h.s of Eqs. (3), (13) is given by the
X = qq̄, quark-antiquark intermediate state. Its form
factor is Fqq̄ = 1 (in units of the quark charge) and the
qq̄ state contributes to ImFπγ via the qq̄ → πγ, P -wave
scattering amplitude, tqq̄,πγ as illustrated in Fig. 5. For
the electromagnetic form factor, instead of tqq̄,πγ the am-
plitude tqq̄,ππ enters.

In the kinematically relevant domain s � t ∼ b−1, t

being the momentum squared carried by the exchanged
quark and b ≈ few GeV−2 the typical slope of the prod-
uct of residues of the exchanged quark (βπ, βγ), the am-
plitude tqq̄,πγ is expected to have a Regge behavior

tqq̄,πγ(s, t) = βπ(t)βγ(t)sαq(t) ≈ βπγebtsαq . (17)

The qq̄ contribution shown in Fig. 5 may be contrasted
with the one which represents the asymptotic contri-
bution in the leading twist pQCD. In the latter, the
qq̄ → πγ scattering amplitude, shown by the vertical
line in the diagram on the right in Fig. 5, is given by a
free quark propagator exchanged between the final state
pion and photon. The difference between the free and
the Regge propagator represents the multi-parton pro-
duction which grows proportional to ln s and builds up
the ladder shown in Fig. 4 (the cut in s of the ladder in
Fig. 4 is the multi-particle amplitude).

However, just like the BFKL ladder model represents
only a part of the Pomeron, the ladder shown in Fig. 4
may give only a partial contribution to the quark Regge
trajectory αq(t) ≈ αq(0) + α′qt. Thus, in the following
we choose to employ a phenomenological approach and
use the phenomenological relation between the quark tra-
jectory and that of the leading Regge exchange in ππ
scattering, i.e. the ρ or f2 exchange that are nearly de-
generate, cf. [40], αρ(t) ≈ αf2(t). Identifying reggeized ρ
and f2-exchanges with reggeized qq̄-exchanges, leads to
[41]

αq(t) ∼
αρ(t)

2
+

1

2
≈ 0.75 + 0.45

t

GeV 2
. (18)

It is worth noting that the dominance of quark-exchange
(or, more precisely, quark interchange) mechanism has
previously been observed in hard scattering processes
with hadrons [42]. The hard scattering data are com-
patible with αq(t = −1 GeV2) ≈ 0.3 − 0.4 [43], which
is consistent with Eq. (18). After projecting onto spin-1
partial wave (we refer the reader to Appendix for greater
detail), the energy dependence of the asymptotic, qq̄ con-
tribution to ImFπγ is therefore predicted to behave as
(modulo terms ∼ O(ln s)),

sImF (qq̄)
πγ (s)→ c(qq̄)πγ (s/GeV 2)αq(0)−1/2. (19)

The important point is that as long as αq(0) > 1/2, as
implied by Eq. (18), the form factor, sFπγ(s) will increase
with energy in agreement with the BaBar measurement.
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C. Results

Combining the resonance contributions of Eqs. (7),(10)
with the asymptotic form of Eq. (19) starting at s > µ2,
we fit the the available pion transition form factor data

using Eq. (5) with the single free parameter c
(qq̄)
πγ (for

several values of µ) as shown in Fig. 6. Our results for

0 10 20 30 40
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VDM + Regge (μ²=1 GeV²)
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2fπ

FIG. 6: (Color online) Our results for |sFπγ(s)| in the space-
like region for µ2 = 1 GeV2 (dashed red line), 5 GeV2 (dash-
dotted red line), 10 GeV2 (double-dash-dotted red line), are
confronted with the experimental data from [17, 46]. The
hadronic (unitarized VDM) contribution is shown separately
(solid black line). For comparison, the asymptotic limit
|sF asπγ(s)| = 2fπ is shown (blue dotted line).

the pion transition form factor are shown in Fig. 6. It is
worth noting that even at largest values of −s the bare
qq̄ production gives only about 50% (dash-dotted line in
Fig. 6) of the form factor with the remaining half coming
from the resonances. In Fig. 7, we show our results for
the electromagnetic pion form factor Fπ in the range -
40 GeV2 ≤ s ≤ 10 GeV2. We confront them with the
available experimental data for the electromagnetic form
factor for -10 GeV2 ≤ s ≤ 10 GeV2 and the transition
form factor for -40 GeV2 ≤ s ≤ −0.8 GeV2 (both are
normalized to 1 at s = 0). First, we note that in the
space-like region the data for the two form factors looks
identical.

One can see that our model describes all the available
data throughout the shown kinematics. There might be
an indication of a resonance missing in our calculation in
the region 2 GeV2 <∼ s <∼ 3 GeV2, probably coupled to
the KK̄ state. However, due to large error bars of the
data its impact on the overall quality of the fit is expected
to be negligible. This serves as an evidence that the s-
dependence is in both cases driven by the same mech-
anism. In the case of the electromagnetic form factor,

-30 -20 -10 0
s (GeV²)

0.001

0.01

0.1

1

10

|F
!(

s)
|²

 pion e.-m. FF
πγ transition FF
VDM + Regge (μ²=1 GeV²)
VDM + Regge (μ²=10 GeV²)

FIG. 7: (Color online) Our results for the pion electromag-
netic form factor for µ2 = 1 GeV2 (solid line) and µ2 = 10
GeV2 (dashed line) vs. experimental data on the time-like
and space-like e.-m. form factor from [6–16] (blue circles).
Red squares show the pion transition form factor data from
[17, 46] normalized to Fπγ(0) = 1.

our result is a prediction for the s-dependence at large
|s|, where no data exist so far. In particular, we predict
that, as for the transition form factor case, |s F2π(s)| has
to rise asymptotically roughly as s1/4, unless the mech-
anisms discussed here become reduced by Sudakov form
factors and pQCD asymptotics takes over.

Recently, the BaBar collaboration also released data on
transition form factors of η and η′ [18]. Unlike the pion
transition form factor these seem to have less pronounced
rise with |s|. In Fig. 8 we display our results for the η and
η′ transition form factors. We display the two contribu-
tions separately: the unitarized VDM (with gρηγ = 1.23,
gωηγ = 0.35, gφηγ = 0.7, gρη′γ = 1.05, gωη′γ = 0.35,
gφη′γ = 0.72 and the unitarization of the ρ contribution
similar as for the π0γ form factor), and its sum with the
Regge contribution. We turn on the discontinuity rep-
resented by the asymptotic contribution above µ2

R = 5
GeV2 and fit the only remaining free parameter: the

normalization βη(η′)γ = c
(qq̄)
η(η′)γ , cf. Eq. (19). A unified

description of all three transition form factors is achieved

with c
(qq̄)
πγ : c

(qq̄)
ηγ : c

(qq̄)
η′γ = 0.067 : 0.038 : 0.025. Note that

rather than the absolute size of the Regge contribution
that is similar for π0, η, η′, it is its size relative to the
hadronic contribution that determines the s-dependence
of the respective transition form factor. In fact, we ob-
serve that at s = −40 GeV2 the hadronic contributions
scale as −sFhadPγ (s) ≈ 0.13 (0.16, 0.21) for P = π0(η, η′),
respectively.

To better understand the origin of these numerical re-
sults, we recall that η and η′ can be represented as a
mixture of the isoscalar and strange states [47, 48],

|η〉 = cosφ|I = 0〉 − sinφ|ss̄〉
|η′〉 = sinφ|I = 0〉+ cosφ|ss̄〉, (20)
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FIG. 8: (Color online) Top panel: experimental data for
|sFηγ(s)| in the space-like region from Refs. [18, 46] and high-
s time-like data from Refs. [19] in comparison with unitarized
VDM (solid line) and our full model (VDM + Regge) with
µ2 = 5 GeV2 (dashed line). Bottom panel: the same for
|sFη′γ(s)|.

with the mixing angle φ = θ+arctan
√

2 and the isoscalar
state |I = 0〉 = 1√

2

{
uū+ dd̄

}
. The octet-singlet mixing

angle θ varies, depending on the analysis, from −20◦,
see e.g. Ref. [47], to −13◦ [48], thus 34◦ <∼ φ <∼ 41◦.
SU(3) octet and singlet states are defined as |8〉 =
1√
6

{
uū+ dd̄− 2ss̄

}
and |0〉 = 1√

3

{
uū+ dd̄+ ss̄

}
, re-

spectively. Also the octet and singlet states decay con-
stants will in general differ from the purely isovector π0

[47],

f8 ≈ 1.30fπ

f0 ≈ 1.04fπ. (21)

Finally, in the calculation of the triangle graph,
isoscalar combination of the quark charges instead of the
isovector leads to a relative factor of 5

3 with respect to the

π0 case. Using Eq. (B2) from the Appendix, Eqs.(20,21)
and φ = 41◦, and neglecting the strange quarks contri-
bution (we expect the s-quark to have a lower Regge in-
tercept and to be subleading asymptotically), we obtain

the following estimate:

ImFηγ(s)

ImFπγ(s)
∼ 1.03

b̃2πγ

b̃2ηγ

ImFη′γ(s)

ImFπγ(s)
∼ 1.16

b̃2πγ

b̃2η′γ
, (22)

where b̃Pγ = bPγ +α′q ln(s/s0) for P = π0, η, η′, with bPγ
the t-slope of the Regge residue in the qq̄ → Pγ reaction,
and α′q the slope of the u, d-quark Regge trajectory. It
can be seen that for moderate s (that is when bPγ terms
dominate, see Eq.(A6) in the Appendix) the ratios can
correspond to the fit values

c(qq̄)πγ : c(qq̄)ηγ : c
(qq̄)
η′γ = 0.067 : 0.038 : 0.025 for

bπγ : bηγ : bη′γ = 1 : 1.35 : 1.76 . (23)

These parameters can in principle be deduced from
the t-dependence of γγ → ππ and γγ → π0η(γγ → π0η′)
differential cross sections at high energies. We plan to
investigate this question in an upcoming work.

III. SUMMARY

We presented a calculation of the electromagnetic and
transition form factors of the pion, η and η′. We used
dispersion relations to provide a unified description of
the pion form factors in the time-like and space-like
regions. In the hadronic energy range, we accounted
for hadronic, resonance contribution in a fully unita-
rized manner. For asymptotic contributions, we stressed
the role of reggeization of the quark exchange which
enhances energy dependence. We relate the parame-
ters of such an exchange to ππ scattering data and de-
duce that the quark-Regge intercept is approximately
αq(0) − 1/2 ∼ 1/4. Using this value as input for the
asymptotic behavior of the pion form factors, we obtain
for both sF (s) ∝ s1/4, in agreement with the recent
BaBar data. We notice that when the transition form
factor is renormalized so that Fπγ(0) = 1 its dependence
on s in the space-like region is consistent with that of
the electromagnetic form factor, as shown by the open
circles in Fig. 7. We use the normalization of the Regge-
behaved tqq̄,2π and tqq̄,Pγ as the only free parameter, and
are able to describe all available data on pion, η and η′

form factors.
The effect of multi-particle intermediate state on ex-

clusive amplitudes has been considered in the past in
the context of exclusive, hadronic B-meson decays [49].
The authors of [49] have found that final state inter-
actions, due to multi-particle exchanges are important.
Our model is close in spirit to that one, except the final
state interactions are included at the parton level.

An example of a model based on analytical structure of
the pion transition form factor that describes the BaBar
data is [51]. The authors postulate an infinite sum over
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FIG. 9: Contributions of the reggeized quark exchanges to the imaginary parts of the pion electromagnetic form factor (diagram
a), transition form factor (diagram b) and elastic ππ-scattering (diagram c).

resonances in the s-channel of the γ∗ → γπ0 process.
Through Veneziano-like duality it leads to power-like
Regge behavior of the transition form factor. We no-
tice that both the model of Ref. [51] and ours obey the
Terazawa-West bound [52, 53]. It is an intersting ques-
tion, how that Veneziano-like approach is related to that
of the present study: while Ref. [51] deals with duality
and analyticity in terms of hadronic contributions, we ad-
dress these properties at the level of quark subprocesses.
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Appendix A: Asymptotics of the qq̄ → ππ-scattering
amplitude with reggeized quark exchange from the

elastic ππ amplitude

Here we consider the contribution of the reggeized
quark exchanges as a model for the Reggeon (as opposed

to the Pomeron that is due to pure gluon exchanges) part
of the asymptotic behavior of the meson-meson scatter-
ing amplitude. For the sake of simplicity and to avoid too
many parameters that remain unconstrained, we will use
the following form of the Regge propagator of the quark,

P±R (s, t = q2) = PR(s, t)(q/±
√
q2)

PR(s, t) = πα′q

(
s

s0

)αq(t)− 1
2

. (A1)

Here ± refers to the parity of the exchanged Reggeon (we
refer the reader to [50] for a comprehensive discussion and
details concerning fermion Regge exchanges). Note that
the square root develops an imaginary part when taken in
the s-channel scattering regime, q2 ≤ 0; this square root
has to be kept to ensure that the exchanged reggeized
quark has a definite parity.

Correspondingly, we model the amplitudes for the processes qq̄ → {ππ;πγ; γγ} by the following Regge-behaved
expressions:

Tq(k)+q̄(−k′)→πa(p)+πb(p′) =

(
βπ
2fπ

)2

ebππtv̄(−k′)p/′γ5τ
bP±R (s, t)p/γ5τ

au(k)πaπb

Tµq(k)+q̄(−k′)→πa(p)+γ(q′) = ieeq
βπ
2fπ

ebπγtv̄(−k′)γµP±R (s, t)p/γ5τ
au(k)πa

Tµνq(k)+q̄(−k′)→γ(p)+γ(q′) = −e2e2
qe
bγγtv̄(−k′)γµP±R (s, t)γνu(k)

The parameter βπ appearing above quantifies by how much the qπqR coupling differs from the pointlike chiral coupling
1/(2fπ), this latter corresponding to βπ = 1. Using Eqs. (A2,A1) (and massless quarks) we compute the imaginary
part of the ππ-scattering amplitude (cf. Fig. 9,c) from

1

2i
[Tππ(s+ iε, t)− Tππ(s− iε, t)] = −Nc

1

2

[
βπ
2fπ

]4 ∫
d4l

(2π)4
2πδ(l2)2πδ((l − q)2)PR(s, t2)P ∗R(s, t1)ebππ(t1+t2)

×Tr[(l/+mq)p/γ5(l/− p/±
√
t2)p/′γ5(l/− k/− k/′)(−k/′γ5)(l/− k/∓

√
t1)(−k/γ5)], (A2)
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where we defined t1 = (l− k)2 and t2 = (l− p)2, t = (k − p)2, s = (k + k′)2 = (p+ p′)2, and t2 ≈ t1 + t+ 2
√
tt1 cosφ

for small negative t, t1. The calculation of the trace in the above leads to Tr[. . . ] = st1t2(t1 + t2 − t) + 2t21t
2
2, where

only the first term contributes to the leading s behavior. Next, we change the variables d cos θl ≈ 2
sdt1 (θl being the

polar angle of the intermediate quark with the momentum l) and write

ImTππ(s, t) = −
Ncβ

4
π(πα′q)

2

256πf4
π

(
s

s0

)2αq(0)−1 ∫ 0

−s
dt1

1

2π

∫ 2π

0

dφ e(bππ+α′
q ln s

s0
)(t1+t2)t1t2(t1 + t2 − t)

=
3Ncβ

4
ππα

′
q
2

1024f4
π b̃

4
ππ

(
s

s0

)2αq(0)−1

e
2
3 b̃ππt, (A3)

where b̃ππ = bππ + α′q ln s
s0

. To arrive at the above re-
sult, the exact forward limit was calculated analytically;
then, for −t ≤ 1 GeV2 the integral was performed nu-
merically and the resulting t-dependence was fitted by an
exponential. This result should be confronted with the
contribution of the (nearly degenerate) ρ, f2 exchange to
the ππ scattering amplitude (e.g., from Ref. [40])

ImρTππ = βρ

(
s

s0

)αρ(t)

eBρt (A4)

with

βρ = 1.02

αρ(t) ≈ 0.52 + 0.9t

Bρ ≈ 2.4 GeV−2 (A5)

We find good agreement for the following values of pa-
rameters:

αq(t) =
αρ(t) + 1

2
≈ 0.76 + 0.45t

bππ = 3.6 GeV−2

βπ = 1.12 (A6)

The obtained values for bππ and βπ are very approximate,
and are quoted here mostly to demonstrate that the fit
returns reasonable values, i.e. βπ ∼ 1, bππ ∼few GeV−2.
However, one should keep in mind that the values of Ref.
[40] for the normalization βρ and the t-slope Bρ bear a
significant uncertainty. The main result of this Appendix
is in the value of the quark Regge intercept αq(t).

Appendix B: Asymptotics of the pion
electromagnetic and transition form factors

For the pion electromagnetic form factor, Fig. 9, a)
after the trace calculation we obtain,

ImF2π(s) =
Nc(eu − ed)β2

ππα
′
q

16πf2
πs0

∫ 0

−s
dt2e

b̃ππt2t22

(
s

s0

)αq(0)− 3
2

=
3β2

πα
′
q

8f2
πs0b̃3ππ

(
s

s0

)αq(0)− 3
2

(B1)

Similarly, for the pion transition form factor Fig. 9, b)

ImFπγ(s) = −
Nc(e

2
u − e2

d)βππα
′
q

8πfπs0

∫ 0

−s
dt2e

b̃πγt2t2

(
s

s0

)αq(0)− 3
2

=
Ncβπα

′
q

24fπs0b̃2πγ

(
s

s0

)αq(0)− 3
2

(B2)

We next make use of Eq. (A3) rewritten in the form

√
ImTππ(s, t = 0) =

3
√
πβ2

πα
′
q

32f2
π b̃

2
ππ

(
s

s0

)αq(0)− 1
2

,(B3)

to obtain our estimates for the asymptotic behavior of
the pion form factors:

ImF2π(s) =
4
√

ImTππ(s, t = 0)
√
πb̃ππs

ImFπγ(s) =
4fπ
√

ImTππ(s, t = 0)

3βπ
√
πs

(B4)

Using estimates for the numerical values of the param-
eters, obtained in the previous section, we predict the
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asymptotic behavior of the pion form factors to be

ImF2π(s) ≈ 0.63

1 + 0.125 ln(s/s0)

(
s

s0

)− 3
4

ImFπγ(s) ≈ 0.067

(
s

s0

)− 3
4

, (B5)

where for simplicity we assumed that the Regge residue
at the qRγq vertex is equal to that at the qπq vertex,
bπγ ≈ bππ. Note that this is a prediction that does not

depend on the explicit value of the quark Regge trajec-
tory intercept. This result was obtained by identifying
the ρ exchange with the double quark-Regge exchange.
In principle, one may hope to deduce the slope of that
residue without such assumptions from the asymptotics
of a photo-induced reaction, such as γγ → ππ or from
light-by-light scattering. However, data for these reac-
tions at high energies are not available, so we choose the
assumption that the two slopes are similar for the time
being.
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