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Nuclear structure quantum Monte Carlo methods such as Green’s function or auxiliary field
diffusion Monte Carlo have used phenomenological local real-space potentials containing as few
derivatives as possible, such as the Argonne-Urbana family of interactions, to make sampling simple
and efficient. Basis set methods such as no-core shell model and coupled-cluster techniques typically
use softer non-local potentials because of their more rapid convergence with basis set size. These
non-local potentials are usually defined in momentum space and are often based on effective field
theory. Comparisons of the results of the two types of methods can be difficult when different
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I. INTRODUCTION

Quantum chromodynamics (QCD) is the fundamental theory that underlies the description of atomic nuclei, where
quarks and gluons are the degrees of freedom. However, despite four decades of studying QCD, little connection has
been made between QCD and low-energy many-body nuclear dynamics. The most direct computational application
of QCD, lattice QCD, has made much progress in the past decades but remains some distance away from being
a practical tool for computing many-body nuclear observables. For recent reviews of the outlook for lattice QCD
calculations as they apply to nuclear physics see references [1, 2]. While direct applications of effective field theory
have made progress[3–6] the characterization of atomic nuclei in terms of phenomenological two- and three-body
nucleon interactions remains the standard starting point for most nuclear structure calculations.
Quantum Monte Carlo is one of the most successful methods for nuclear matter and nuclear structure calculations.

Green’s function Monte Carlo has solved for many low lying states of nuclei for A ≤ 12[7, 8] and auxiliary-field
diffusion Monte Carlo can calculate much larger nuclei and nuclear and neutron matter[9–11]. These methods have
used phenomenological local real-space potentials containing as few derivatives as possible, such as the Argonne-
Urbana family of interactions[12–14], to make sampling easy and efficient. See reference [8] for a review of Green’s
function Monte Carlo results.
However, there are other successful approaches that can reach A = 12 and beyond. Basis-set methods such as the

no-core shell model[15, 16] and coupled-cluster techniques[17–19] have typically used softer non-local potentials as
these have more rapid convergence with basis-set size. These potentials are typically defined in momentum space and
are often derived from chiral effective field theory such as the next-to-next-to-next-to-leading order (N3LO) interaction
of reference [20].
Comparison of the results of basis set methods with Monte Carlo calculations can be difficult when different

potentials are used. Quantum Monte Carlo methods use propagation in imaginary time to project out the low-
energy states of a quantum many-particle system. The propagation is performed by first writing the many-body
short-imaginary-time propagator. Accurate methods use a pair-product approximation[21, 22] where the many-body
propagator is written in terms of the propagator for each pair of particles. In order to perform a quantum Monte
Carlo calculation using an arbitrary pair potential, we need to calculate the pair propagator in imaginary time.
The aim of this paper is to show how to evaluate this real-space imaginary-time pair propagator needed to perform

quantum Monte Carlo calculations using non-local potentials (section II), to demonstrate the consistency of the
propagators using different potentials at large imaginary times (section III), and to discuss how to use these propagators
to calculate the properties of nuclei and nuclear matter using these non-local potentials with quantum Monte Carlo
methods (section IV).

II. METHODS

Non-local potentials are typically generated in momentum space from an effective field theory. With a potential
defined in momentum space, V (k, k′), it is natural that we proceed by constructing a Hamiltonian in momentum
space as well. Our normalization and completeness conventions for our continuous real-space and momentum-space
basis states are

1 =

∫

d3r|r〉〈r| =

∫

d3k

(2π)3
|k〉〈k|. (1)

r is the separation vector of the two nucleons and p = ~k the conjugate momentum. The overlaps between the states
are

〈r|k〉 = eik·r. (2)

We work in the standard channel basis where J2, Jz, L
2, S2, Sz, T

2 and Tz are good quantum numbers, with the
total spin, S = S1+S2, the total angular momentum J = L+S, and total isospin T = T1+T2. We choose our basis
states as |rJMLSTTz〉 and |kJMLSTTz〉 , with normalization and completeness given by (suppressing J , S, T , and
Tz)

1 =
∑

LM

∫ ∞

0

r2dr|rLM〉〈rLM |

=
∑

LM

∫ ∞

0

k2dk

(2π)3
|kLM〉〈kLM |. (3)



3

The overlaps are

〈rLM |kL′M ′〉 = 4πiLjL(kr)δLL′δMM ′ . (4)

For numerical work, we compactify our real space to a sphere of radius R. We choose the Dirichlet boundary

condition on the sphere which forces our momentum-space spectrum to be discrete with k
(L)
n R being the zeros of

the spherical Bessel functions, jL(k
(L)
n R) = 0. Below we often drop the superscript (L) when its value is clear from

context. The discrete momentum states |knLM〉 are chosen with unit normalization so that

〈rLM |knL
′M ′〉 =

√

2

R3j′L(knR)
2
jL(knr)δLL′δMM ′ . (5)

Our transformations can now be treated as orthogonal-matrix multiplications.
The momentum-space Hamiltonian for the uncoupled channels where L = J (for a given set of the quantum numbers

- J , M , L, S, T , and Tz - which we suppress below) is

〈km|H |kn〉 =
~
2k2n
2mr

δmn + V (km, kn), (6)

with mr the reduced mass. For the coupled channels where the potentials couple the L = J ± 1 states together the
Hamiltonian is

〈kmL|H |knL
′〉 =

(

~
2k(−) 2

n

2mr
δmn + V−−(k

(−)
m , k

(−)
n ) V−+(k

(−)
m , k

(+)
n )

V+−(k
(+)
m , k

(−)
n )

~
2k(+) 2

n

2mr
δmn + V++(k

(+)
m , k

(+)
n )

)

, (7)

where the superscripts (−) and (+) correspond to L or L′ having values of J − 1 and J + 1. We then construct the
momentum-space, imaginary-time propagator by diagonalization of the Hamiltonian, giving

〈km|e−Hτ |kn〉 =

Nk
∑

i=1

〈km|ψi〉e
−Eiτ 〈ψi|kn〉, (8)

for the uncoupled channels, and

〈kmL|e
−Hτ |knL

′〉 =

Nk
∑

i=1

〈kmL|ψi〉e
−Eiτ 〈ψi|knL

′〉, (9)

for the coupled channels. The {|ψi〉} are eigenvectors of the Hamiltonian with corresponding eigenvalues {Ei}. Nk

is the number of discrete momentum states we keep. We ensure that Nk is large enough such that the propagators
converge. An estimate of how large kmax should be can be given by considering the kinetic energy alone. We want

kmax such that exp
(

−
~
2k2

max

2m τ
)

can be neglected. In practice, we check the convergence by doubling our estimate for

kmax and ensuring our results do not change to the desired precision. With these methods, it is easy to ensure that the
numerical truncation errors are completely negligible. For example, for the results shown here, we use kmax = 40 fm−1

(Nk ∼ 80), and the propagators have truncation errors less than 10−10.
After transforming to real space, we have the matrix elements

〈rJMLSTTz|e
−Hτ |r′JML′STTz〉. (10)

However, for use in Monte Carlo codes, we want the propagators in a 3D real-space basis: |rθφSMSTTz〉 .

|rθφSMSTTz〉 =
∑

JMLML

CJM
SMSLML

YLML
(θ, φ) |rJMLSTTz〉 . (11)

C is a Clebsch-Gordan coefficient, Y a spherical harmonic.
In quantum Monte Carlo calculations, the particle positions are typically sampled from the central part of the

propagator. The non-central parts are then included in the spin-isospin samples (auxiliary field diffusion Monte
Carlo) or sums (Green’s function Monte Carlo). We will sample the propagators for these non-local potentials in the
same way. Here, we define the central part of the propagator as the trace over all spins and isospins. For convenience



4

we also choose a particular coordinate system where the initial separation lies along the z axis, and the final separation
is in the xz plane such that we may take θ = φ = φ′ = 0 and we can visualize the central part of the propagator as a
function of r− r′ and θ′. For any particular application, we can always rotate into this configuration, propagate, and
rotate back. The central part of the propagator is then written as

G(r, r′, θ′; τ) =
∑

SMSTTz

〈rSMSTTz|e
−Hτ |r′θ′SMSTTZ〉. (12)

III. CONSISTENCY OF THE PROPAGATORS AT LARGE IMAGINARY TIMES

In the limit of large imaginary times, we expect that the propagators for different potentials should agree. The
propagators are essentially density matrices for the two nucleon system:

ρ =

∑

i |ψi〉 e
−Eiτ 〈ψi|

∑

i e
−Eiτ

; trρ = 1, (13)

corresponding to thermal equilibrium at the temperature kBT = τ−1. Now, since any measurable quantity can be
written as an expection of a Hermitian operator O which can be obtained via 〈O〉 = tr(ρO), the density matrices
(propagators) we obtain for the various potentials contain all the measurable information for this system. If the
position or momentum of the nucleons could be determined with arbitrary precision, the density matrix would be in
principle measurable. Since the position and momentum are not well defined for arbitrary values, the propagator is
not completely measurable. If the various potentials we use are phase-shift equivalent - meaning they reproduce the
physical scattering data at or below Elab ≈ 350 MeV (ECM ≈ 175 MeV) - then we would expect that starting at
imaginary times τ ≈ (175 MeV)−1, the various propagators should begin to agree more and more. In fact, we find
that for τ ≈ (50 MeV)−1, the higher-energy modes not constrained by current experimental data do not contribute
substantially to the propagator.
We see from Eq. 13 that at τ ≈ (175 MeV)−1, energies of 175 MeV and above are suppressed by a factor of

1/e. Therefore, it is not surprising that at τ ≈ (50 MeV)−1, where energies of 175 MeV and above are suppressed
by a factor of 1/e3 ≈ 0.0498 we find relatively good agreement between the propagators with different potentials.
This result is analogous to the renormalization group results leading to the Vlow k potential of reference [23] and the
similarity renormalization group results of reference [24], where the high energy modes are integrated out.
Figures 1-9 demonstrate these findings for three potentials: Argonne v18 (AV18)[12], N

3LO, and N3LO(600)[20].
For the diagonal cases, where we take k = k′, we define a quantum potential, Vq(k, k; τ) through the equation

〈k|e−Hτ |k〉 = 〈k|e−H0
τ
2 e−Vq(k,k;τ)τe−H0

τ
2 |k〉, (14)

with H0 the free-particle Hamiltonian

H0 = T =
p2

2m
. (15)

In the off-diagonal cases (k 6= k′) we choose a particular k value and plot against k′. For visual comparison, we
subtract the free-particle propagator, g(k, k′) − g0(k, k

′), since at the point k = k′, the kinetic energy component is
large and obscures the result.
Figs. 1-4 show the quantum potential in the singlet (1S0), uncoupled triplet (3P0), and coupled triplet (3S1 and

3D1) channels. The imaginary times chosen correspond to a typical time step used in Green’s function Monte Carlo
calculations, τ = (2000 MeV)−1 and imaginary times that roughly corresponds to center of mass energies of 350 MeV,
175 MeV, and 50 MeV. As we have discussed above, the imaginary time of τ = (50 MeV)−1 is the time at which
the effects attributable to energies of 175 MeV and above are effectively integrated out. It is interesting to note
that the agreement of the quantum potentials is only good up to k ≈ 2 fm−1: this is the approximate momentum

value, k, one would associate with the corresponding kinetic energy: ~
2k2

2m = 175 MeV. This relationship (better and
better agreement - but only up to some cutoff - as the potential is evolved) is precisely what is found in similarity
renormalization group and Vlow k approaches.
It is tempting to interpret τ as an evolution parameter for the quantum potential in the same sense that the similarity

renormalization group approach has s or λ (see, for example, [24]). However, it is not clear if a direct comparison
is at all trivial. In the similarity renormalization group approach, the evolution parameter s (and therefore λ, since
λ = 1/s1/4) is defined through the rather simple evolution equation for the potential

dHs

ds
=
dVs
ds

= [[Gs, Hs], Hs], (16)
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where Gs is a Hermitian operator that generates the transformation. (Gs is often chosen to be T , the kinetic energy).
If we view our quantum potential akin to the similarity renormalization group’s Vs, our defining equation is

e−Hτ = e−T τ
2 e−Vq(τ)τe−T τ

2 . (17)

We can expand this using the Baker-Campbell-Hausdorff relation which gives an infinite series of nested commutators.
The lowest order terms in an expansion in τ are

Vq(τ) = V − τ2

12

(

[V, [V, T ]]− 1
2 [T, [T, V ]]

)

+ · · · (18)

where the double commutators are suggestive of Eq. 16, but clearly not the same. The differential equation satisfied
by Vq(τ) is not a simple, compact expression.
Figs. 5-9, show the off-diagonal elements of the singlet (1S0), uncoupled triplet, (3P0), and coupled triplet (3S1,

3D1,
and 3S1-

3D1) channel propagators. As discussed above, they are shifted by the free-particle result to make comparisons
easier. What we can see from these figures is a general trend towards universality with at least two caveats. First,
the propagators tend to converge most rapidly around the point where k = k′. Our interpretation of this result is
that low momentum transfer behavior is constrained by the phase-shift equivalence of the various potentials whereas
higher momentum transfer behavior is not. Second, some channels converge better than others. For example, Fig.
8 has still not converged at τ = (50 MeV)−1, and indeed, does not appear to converge well until τ = (10 MeV)−1.
This may be due to this channel’s sensitivity to the tensor part of the interaction which the different potentials treat
differently. These differences may point to true, quantifiable distinctions between the potentials.
Even though the potentials give propagators with the same sort of long imaginary time behavior, the many-body

physics of the nucleus may not allow the use of the propagators in this regime. As mentioned above, in Green’s function
Monte Carlo calculations, the imaginary time step needed to accurately approximate the many-body Green’s function
by the pair-product is τ = (2000 MeV)−1. For larger time steps, commutator terms in the Trotter breakup spoil the
approximation. Since, in the pair product approximation, these commutators occur only when three nucleons are
close together, this indicates that, three-body effects will also be important. That is, to be able to use the propagators
in the limit where they become model independent, would likely require that three- and more-body terms in both the
interaction and the propagators be included. This likely means that use of potentials like Vlow k for many-nucleon
calculations will need to include many-body interactions.

IV. QUANTUM MONTE CARLO WITH NON-LOCAL POTENTIALS

We now turn to the central parts of the propagators for the non-local N3LO and N3LO(600) potentials we have been
considering throughout. Since the central part of the propagator is sampled in a quantum Monte Carlo calculation it
should be positive-definite to avoid sign problems.
Figs. 10 and 11 plot the central part of the propagator in real space, where the coordinates x′ and z′ are such that

the origin corresponds to the final separation equal to the initial separation. That is, the relative coordinates are
equal: r = r′. The precise transformation between the original coordinates, r, r′, and θ′ and the new coordinates, x′

and z′ is given by

r′ 2 = x′ 2 + (r + z′)2 (19a)

cos θ′ =
r + z′

√

x′ 2 + (r + z′)2
, (19b)

and can be visualized in Fig. 12.
The structure we can see is a Gaussian-like peak about the initial separation as well as an antisymmetric trough

at the position that corresponds to the two nucleons undergoing a position interchange: r′ = −r. The antisymmetric
point is built in from tracing over the spins and isospins as in eq. (12), and would be present even for Argonne v18.
This point gives no extra difficulty – since it comes from the fermion character of the nucleons, it will be dealt with
in the same way that the fermion sign problem is dealt with in Green’s function or auxiliary field diffusion Monte
Carlo. That is, a path constraint[25] is imposed that eliminates the fermion sign problem. The constraint can then
be released and forward walking steps taken[25, 26] to improve the results and check the effect of the constraint.
However, if we zoom in on the shifted origin, as in Figs. 13, and 14, setting any positive parts of the propagator to

zero, and make sure we are clear of the antisymmetric region, we find that the propagators appear to be “ringing”, much
like Friedel oscillations. These negative parts may make it more difficult to perform quantum Monte Carlo calculations
and keep the sign problem under control. However, these negative parts are quite small, of order 10−1 fm−3, whereas
the peak of the propagator is of order 102 fm−3. In fact, a typical slice through the propagator in the x′ direction
looks like Figs. 15 and 16. In many cases, the negative parts are negligible.
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A straightforward method to take the small negative regions into account, is to first set any negative part (not
associated with the antisymmetry) to zero, run a quantum Monte Carlo calculation until it converges, and then add
the negative parts back in, in a perturbative fashion, using forward walking exactly as for the fermion sign problem.
The extra sign changes from the propagator are handled in the same way as sign changes from the fermion character.
We can estimate the fraction of walkers in the initial time step that may be given negative weights by comparing

the integral of the absolute value of the propagators to the integral of the propagators. That is, we estimate the
fraction of walkers with negative weights, f by

f =

∫

d3r′ 12 [|G(r, r
′; τ)| −G(r, r′; τ)]

∫

d3r′|G(r, r′; τ)|
. (20)

We calculate the integral over the upper half volume to exclude the interchange. For N3LO with an initial separation
of 1.0 fm, we find f ∼ O(10−2). If we now take the very conservative estimate for the alpha particle that all 6 pairs
may be this close at one time and that the negative weights are acceptable so long as the fraction of walkers with
negative weights is less than 1/e, we find we can take approximately 10 steps for N3LO (with time step (2000 MeV)−1).
Green’s function Monte Carlo typically uses forward walking of about 10 to 20 steps of (2000 Mev)−1[25, 26]. Therefore
forward walking will allow us to remove any bias from the negative parts of the propagator. This can be compared to
forward walking keeping the propagator constraint, but releasing the fermion constraint to separate the two effects.
In the above analysis, we have assumed that the imaginary time step used will be the same as that used in Green’s

function Monte Carlo calculations with the Argonne family of potentials. Since the N3LO potentials are softer, the
relevant commutators terms will be smaller, and longer time steps may be possible. For longer time steps there is
much less ringing, and the calculations will be substantially easier.

V. CONCLUSIONS

We have shown how to calculate the imaginary time pair propagators needed for quantum Monte Carlo calculations
of nuclei and nuclear matter using non-local potentials in momentum space. The method is general enough to handle
any non-local potential in momentum or real space, but in this paper, we focus on those derived from effective field
theory (N3LO).
We find that the propagators display a universal behavior at large imaginary times, consistent with our expectations

from renormalization group methods and the fact that the potentials are phase-shift equivalent, meaning that they
reproduce the scattering data at or below lab energies of 350 MeV.
The central propagators sampled during Monte Carlo simulations for local potentials are expected to be positive-

definite. Without this property, sign problems can develop. We find that for N3LO with a 500 MeV or 600 MeV
cutoff in momentum space, the central propagator is not positive definite. However, the negative parts consist
of “rings” reminiscent of Friedel oscillations and their magnitude is quite small compared with the overall shape
of the central propagator. Since these potentials were developed in momentum space, no attempt was made to
influence their behavior in position space. It may be possible to modify the N3LO potentials in such a way that
they continue to reproduce the Nijmegen data with a low χ2, are still relatively soft, but have reduced ringing
behavior. A modification of the choice of the regulator function used in the calculation of the N3LO potentials:

V (k, k′) → V (k, k′)e−(k/Λ)2ν e−(k′/Λ)2ν , where Λ is the cutoff value, and ν is the order of the calculation, (ν = 4 for
N3LO) may help. In any case, quantum Monte Carlo calculations should still be possible by using a modified path
constraint as described above,and we are implementing these calculations.
While we have concentrated on calculating the imaginary time pair propagators from phenomenological potentials,

it is amusing to note that since the few-body imaginary time propagators are simply imaginary-time correlations of
the appropriate nucleon operators, they might eventually be directly extracted from lattice QCD calculations.
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imaginary times.
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wave as the propagator is calculated for successively longer imaginary times.
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FIG. 6. (color online) The off-diagonal momentum-space propagator (minus the free-particle propagator) in the 3
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wave as the propagator is calculated for successively longer imaginary times.
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FIG. 7. (color online) The off-diagonal momentum-space propagator (minus the free-particle propagator) in the 3
S1 partial

wave as the propagator is calculated for successively longer imaginary times.
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FIG. 8. (color online) The off-diagonal momentum-space propagator (minus the free-particle propagator) in the 3
D1 partial

wave as the propagator is calculated for successively longer imaginary times.
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FIG. 10. (color online) The N3LO central propagator for initial separation, r = 0.5 fm, and imaginary time, τ = (2000 MeV)−1.
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FIG. 11. (color online) The N3LO(600) central propagator for initial separation, r = 0.5 fm, and imaginary time, τ =
(2000 MeV)−1.
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FIG. 12. The cooordinate system used to visualize the central propagators. O is the original origin, and O
′ the shifted origin

such that r = r
′ corresponds to the shifted origin.
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FIG. 13. (color online) The negative parts of the N3LO central propagator for initial separation, r = 0.5 fm, and imaginary
time, τ = (2000 MeV)−1.
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FIG. 14. (color online) The negative parts of the N3LO(600) central propagator for initial separation, r = 0.5 fm, and imaginary
time, τ = (2000 MeV)−1.
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FIG. 15. A typical slice through the N3LO central propagator for initial separation, r = 0.5 fm, and imaginary time, τ =
(2000 MeV)−1.
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FIG. 16. A typical slice through the N3LO(600) central propagator for initial separation, r = 0.5 fm, and imaginary time,
τ = (2000 MeV)−1.


