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Abstract

We calculate the parity-violating amplitudes in the nd interaction with pionless effective field

theory to LO. Matching the parity-violating low energy constants to the DDH coefficients we make

numerical predictions for parity-violating observables. In particular we give predictions for the spin

rotation of a neutron on a deuteron target, and target and beam asymmetries in nd scattering.
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I. Introduction

Hadronic parity-violation has been traditionally analyzed in terms of potential models;

specifically the DDH model[1], which is a parity violating single meson exchange picture

containing seven phenomenological constants. However, there exist well known discrepan-

cies between experimental measurements and the DDH model[2]. Some of this discrepancy

is no doubt due to nuclear physics uncertainties, but another source may be the use of the

model-dependent DDH potential. A possible solution to these problems has recently been

proposed by Zhu et al.[2, 3], restriction of experiments to nuclei with A < 4 so that nuclear

uncertainties are minimal, and analysis using a model-independent picture via effective field

theory. At low energies, less than m2
π/MN ∼ 20MeV , such an approach is provided by

Pionless EFT (EFT6π), which has been extremely successful at low energies in the two-body

and three-body sector for parity-conserving (PC) interactions, including interactions with

external currents[4]. At low energies inclusion of parity-violation requires only five additional

low energy constants (LEC’s) in the nucleon-nucleon interaction. These LEC’s involve all

possible isospin structures that mix S and P waves with one derivative and are equivalent to

the parameters originally posited by Danilov[5]. The fact that five LEC’s are needed has also

been specifically shown by Girlanda, who does this by performing a non-relativistic reduc-

tion of all possible one derivative relativistic parity-violating (PV) structures that conserve

CP[6]. Calculations for parity-violation using EFT methods have heretofore been primarily

focused in the two-body sector. Such calculations include parity-violation in nucleon-nucleon

scattering and in the radiative capture process np → dγ[7–9]. PV EFT calculations have

been done in the three-body sector using a hybrid approach, wherein the PV potential is

given by EFT 6π, but is used with wavefunctions determined by either a hypershperical har-

monics method or by solving a differential Faddeev equation in configuration space[10, 11].

Such calculations include neutron spin rotation and beam asymmetry in nd interactions.

Recently a paper by Griesshammer, Schindler, and Springer predicted the spin rotation of

a neutron on a deuterium target up to and including NLO effects in EFT 6π [12]. However,

they only included order of magnitude estimates for the PV coefficients and left open the

calculation of other possible PV observables in nd interactions. In this paper we set out to

obtain estimates for the PV coefficients by matching them to the DDH “best” value esti-

mates. As well as calculating the neutron spin rotation on a deuteron target at LO in EFT6π,
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we also calculate the beam and target asymmetry at LO in nd scattering. Estimation of

these observables will then allow one to assess the feasibility of nd interactions as a realistic

experimental probe for the five PV LEC’s. Below we calculate the LO amplitudes for S-P

mixing in nd scattering due to the two-body PV Lagrangian. (Since Griesshammer and

Schindler showed that no three-body PV force occurs up to and including NLO, only five

LEC’s exist at LO[13].) Predictions are made for PV observables and numerical estimates

are given based on DDH “best” value estimates. In a future publication we shall present

higher order corrections. The paper is organized as follows. In section II we give the form of

the two-body PV interaction. Then in section III we show what diagrams are needed at LO

and how to calculate them. Section IV shows how estimates for PV LEC’s can be obtained,

and in Section V we show how to relate our amplitudes to observables. Finally in Section

VI we summarize the results.

II. Two-Body Parity-Violating Interaction

The leading order two-body PC Lagrangian in the auxiliary field formalism is given by

Ld
PC = N †

(

i∂0 +
~∇2

2MN

)

N − t†i

(

i∂0 +
~∇2

4MN
−∆

(3S1)
(−1) −∆

(3S1)
(0)

)

ti + yt

[

t†iN
TPiN + h.c.

]

(1)

− s†a

(

i∂0 +
~∇2

4MN
−∆

(1S0)
(−1) −∆

(1S0)
(0)

)

sa + ys
[

s†aN
T P̄aN + h.c.

]

where ti (sa) is the deuteron (singlet) auxiliary field[14]. Here Pi =
1√
8
σ2σiτ2 projects out the

3S1 channel and P̄a = 1√
8
σ2τ2τa projects out the 1S0 channel. The auxiliary field formalism

is equivalent to the partial wave formalism in which only nucleon fields are used as can

be seen by integrating over the auxiliary fields and using a field redefinition[15]. In this

formulation the two-body PV Lagrangian amplitude is given by a form including five low

energy constants[8].
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FIG. 1: Infinite sum of nucleon bubbles contributes to LO deuteron propagator

Ld
PV = −

[

g(
3S1−1P1)t†i

(

N tσ2τ2i
↔
∇i N

)

(2)

+ g
(1S0−3P0)
(∆I=0) s†a

(

NTσ2~σ · τ2τai
↔
∇ N

)

+ g
(1S0−3P0)
(∆I=1) ǫ3ab(sa)†

(

NTσ2~σ · τ2τ b
↔
∇ N

)

+ g
(1S0−3P0)
(∆I=2) Iab(sa)†

(

NTσ2~σ · τ2τ bi
↔
∇ N

)

+ g(
3S1−3P1)ǫijk(ti)

†
(

NTσ2σ
kτ2τ3

↔
∇

j

N

)]

+ h.c.

where a
↔
∇ b = a(

−→∇)b−(
−→∇a)b, and I = diag[1, 1,−2] projects out the isotensor contribution.

The deuteron kinetic energy and the term ∆
(3S1)
(0) are sub-leading with respect to ∆

(3S1)
(−1) .(Letting

∆ = ∆
(3S1)
(−1) + ∆

(3S1)
(0) , the deuteron mass is given by 2MN + ∆[16], and the term ∆ is split

up so as to not have to refit it at NLO.) Thus at LO the bare deuteron propagator is given

by i/∆
(3S1)
(−1) which is then dressed by an infinite number of nucleon bubbles as seen inf Fig.

1. The resulting propagator depends on ∆
(3S1)
(−1) and y2t , with values adjusted such that the

deuteron propagator has its pole at the correct value. The values of y2t , ∆
(3S1)
(−1) , ∆

(3S1)
(0) are

then determined at NLO by making sure the deuteron pole position does not move and by

reproducing the effective range expansion perturbatively at first order. A similar calculation

can be carried out for the propagator of the singlet auxiliary field. This procedure has been

carried out in many papers, the end results for the LO deuteron and singlet propagator

are listed below[14]. Also we include the constraints imposed on the coefficients y2t , ∆
(3S1)
(−1) ,

∆
(3S1)
(0) and their 1S0 counterparts at LO and NLO. Note the presence of the parameter µ,

which is a cutoff imposed by using dimensional regularization with the PDS subtraction

scheme[17]. (Here γt = 45.7025 MeV is the deuteron binding momentum, γs = 1/as, where

as = −23.714 fm is the scattering length in the 1S0 channel, ρt = 1.764 fm is the effective

range in the 3S1 channel, and r0s = 2.73 fm is the effective range in the 1S0 channel.)

iDt(p0, ~p) =
4πi

MNy2t

1

γt −
√

~p2

4
−MNp0 − iǫ

(3)
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iDs(p0, ~p) =
4πi

MNy2s

1

γs −
√

~p2

4
−MNp0 − iǫ

(4)

∆
(3S1)
(−1)

y2t
=
MN

4π
(γt − µ)

∆
(1S0)
(−1)

y2s
=
MN

4π
(γs − µ) (5)

∆
(3S1)
(0) =

γ2t
MN

∆
(1S0)
(0) = 0

y2t =
8π

M2
N

1

ρt
y2s =

8π

M2
N

1

r0s

III. Three-Body Parity-Violation LO

As in the PC case for three-body interactions one needs to solve an infinite sum of

diagrams for the PV amplitude at LO[14, 18], leading to a coupled set of integral equations.

Numerical solution is necessary, as such integral equations cannot be solved analytically.

In general we must solve a set of four coupled integral equations. However, since parity-

violation is so small, GFm
2
π ∼ 10−7 we can ignore second order PV terms. Then the integral

equations for the PC amplitudes decouple[19], and are exactly the same as in previous

papers[14, 18, 20]. The remaining coupled PV integral equations at LO are shown in Fig.

2, where the boxes represent PV vertices, the double line the dressed deuteron propagator,

the double dashed lines the dressed singlet propagator, and the line with arrow the nucleon

propagator. The thick lines represent a sum over both deuteron and singlet propagators.

Thus the thick line allows one to represent two Feynman diagrams with a single diagram.

There are also diagrams where two dibaryon lines and two nucleon lines meet at a single

vertex, due to the three-body force term in the Lagrangian.

This three-body force term enters at LO, only in the Doublet S-wave channel. (Note we

have not yet projected out any specific channel.) The momentum integrals are regulated

using a sharp cutoff Λ. The three-body force term is cutoff dependent. This cutoff is

convenient because it can be implemented straightforwardly numerically. The three-body

force term in the Doublet S wave channel is given by[21, 22]

H(E,Λ) =
2H0(Λ)

Λ2
(6)
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FIG. 2: (Color online)Integral Equations for Parity-Violation at LO (Note diagrams where

lower vertices are PV are not included)

PV PC

PC PC

PC

PCPCPCPC

PCPC PC

PC

FIG. 3: (Color online) PV Diagrams at LO (Note diagrams where lower vertices are PV

are not included)

The cutoff dependence of three-body force term H0(Λ) is chosen so that the Doublet S wave

amplitude produces the correct scattering length[18, 20, 23]. (As noted earlier there is no

need to include a PV three-body force, as it has been explicitly shown that no such term

exists up to and including NLO[13].)
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To first order in parity-violation the integral equation for the PV amplitude is given

by the sum of diagrams shown in Fig. 3. The first diagram corresponds to a pure PV

transition with no scattering in the initial or final channel. The next set of diagrams has

a PV transition with scattering either in the initial or final channel but not both. (Also

note that for these diagrams the singlet field acts as an intermediate state, which can only

exist in the Doublet channel.) Finally we have the set of diagrams with a PV transition and

scattering in both the final and initial channels.

Summing all of these figures one finds the PV amplitude given in Eq. (7), where ~k is the

incoming nucleon momentum and ~p is the outgoing nucleon momentum in the c.m. frame.

Since our diagrams are on shell we have |~k| = |~p|, and the total energy in the c.m. frame is

given by E = 3~k2

4MN
− γ2

t

MN
. The vector index letter w (x), represents the initial (final) deuteron

auxiliary field polarization. Finally the Greek index α (β) is the initial (final) spinor index

and a (b) is the initial (final) isospinor index.

(itxwPV )
βb
αa (

~k, ~p) =
4MN√

8

i

~k2 + ~k · ~p+ ~p2 −MNE − iǫ

(

K11
PV

xw
)βb

αa
(~p, ~k) (7)

+
4MN√

8

∫

d4q

(2π)4
vT
p (iK̃

xy
)βbγc(~q, ~p, q0)iD

(

~k2

4MN
− γ2t
MN

+ q0, ~q

)

(

(ityw)γcαa (
~k, ~q)

)

×

× i
~k2

2MN
− q0 − ~q2

2MN
+ iǫ

+
4MN√

8

∫

d4q

(2π)4

(

(itxy)βbγc (~p, ~q)
)T

iD

(

~k2

4MN
− γ2t
MN

+ q0, ~q

)

(iK̃
yw
)γcαa(

~k, ~q, q0)vp×

× i
~k2

2MN
− q0 − ~q2

2MN
+ iǫ

+
4MN√

8

∫

d4q

(2π)4

∫

d4ℓ

(2π)4

(

(itxz)βbδd (~p,
~ℓ)
)T

iD

(

~k2

4MN
− γ2t
MN

+ q0, ~q

)

(iK̃
zy
)δdγc(~q,

~ℓ, q0 + ℓ0)iD

(

~k2

4MN
− γ2t
MN

+ ℓ0,~ℓ

)

(

(ityw)γcαa (
~k, ~q)

)

×

× i
~k2

2MN
− q0 − ~q2

2MN
+ iǫ

i
~k2

2MN
− ℓ0 − ~ℓ

2

2MN
+ iǫ

The vector vp projects out the nucleon-deuteron amplitude in cluster-configuration space

and is defined as[20]
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vp =





1

0



 (8)

and the PC amplitudes t are a vector defined as follows

(

(itxw)βbαa (
~k, ~q)

)

=





(itxwNt→Nt)
βb
αa (

~k, ~q)

(itxwNt→Ns)
βb
αa (

~k, ~q)



 (9)

where tNt→Nt is the amplitude for nd scattering and tNt→Ns is the amplitude for nd going to

a nucleon and a singlet combination of the remaining nucleons. (Note that we have not yet

projected out Quartet or Doublet channels.) The expressions D(E,~q) and (iK̃
xw
)βbαa(~q,

~ℓ, q0)

are both matrices defined via.

iD(E,~q) =





iDt(E,~q) 0

0 iDs(E,~q)



 (10)

(iK̃
xw
)βbαa(~q,

~ℓ, q0) =
i

1
2
~q2 + ~q ·~ℓ+ 1

2
~ℓ
2
+ 1

4
~k2 + γ2t −MNq0 − iǫ

× (11)

×





(K11
PV

xw)
βb
αa (~q,

~ℓ) (K12
PV

xw)
βb
αa (~q,

~ℓ)

(K21
PV

xw)
βb
αa (~q,

~ℓ) (K22
PV

xw)
βb
αa (~q,

~ℓ)





where the functions
(

KXY
PV

xw
)βb

αa
(~q,~ℓ), which contain all of the PV dependence are defined

as

(

K11
PV

xw
)βb

αa
(~k, ~p) = ytg

3S1−1P1(σx)βαδ
b
a(
~k+ 2~p)w + iydg

3S1−3P1ǫwℓy(σyσx)βα(τ3)
b
a(
~k+ 2~p)ℓ

(12a)

+ ytg
3S1−1P1(σw)βαδ

b
a(2

~k+ ~p)x − iydg
3S1−3P1ǫxℓy(σwσy)βα(τ3)

b
a(2
~k+ ~p)ℓ

(

K12
PV

xA
)βb

αa
(~k, ~p) = ytg

1S0−3P0

(∆I=0) (σ
ℓσx)βα(τ

A)ba(
~k+ 2~p)ℓ + iydg

1S0−3P0

(∆I=1) ǫ
3AC(σℓσx)βα(τ

C)ba(
~k+ 2~p)ℓ

(12b)

+ ysg
3S1−1P1δβα(τ

A)ba(2
~k+ ~p)x − iytg

3S1−3P1ǫxℓy(τAτ3)
b
a(σ

y)βα(2
~k+ ~p)ℓ

(

K21
PV

Bw
)βb

αa
(~k, ~p) = ysg

3S1−1P1(τB)baδ
β
α(
~k + 2~p)w + iytg

3S1−3P1ǫwℓy(σy)βα(τ3τ
B)ba(

~k+ 2~p)ℓ

(12c)

+ ytg
1S0−3P0

(∆I=0) (σ
wσℓ)βα(τ

B)ba(2
~k+ ~p)ℓ − iydg

1S0−3P0

(∆I=1) ǫ
3BC(σwσℓ)βb (τ

C)ba(2
~k+ ~p)ℓ

8



(

K22
PV

BA
)βb

αa
(~k, ~p) = ysg

1S0−3P0

(∆I=0) (σ
ℓ)βα(τ

AτB)ba(
~k+ 2~p)ℓ + iytg

1S0−3P0

(∆I=1) ǫ
3AC(σℓ)βα(τ

CτB)ba(
~k+ 2~p)ℓ

(12d)

+ ysg
1S0−3P0

(∆I=0) (τ
AτB)ba(σ

ℓ)βα(2
~k+ ~p)ℓ − iytg

1S0−3P0

(∆I=1) ǫ
3BC(τAτC)ba(σ

ℓ)βα(2
~k+ ~p)ℓ

(Note that the capital letters A, B, and C are used for the singlet auxiliary field polarization

and the lowercase letters w, x, and y are used for the deuteron auxiliary field polarization.)

Integrating over the energy and picking up the poles from the nucleon propagators in our

diagrams Eq. (7) becomes.

(txwPV )
βb
αa (

~k, ~p) =
4MN√

8
vT
p (Kxw)βbαa (

~k, ~p)vp (13)

− 4MN√
8

∫

d3q

(2π)3
vT
p (K

xy)βbγc(~q, ~p)D

(

E − ~q2

2MN

, ~q

)

(

(tyw)γcαa (
~k, ~q)

)

− 4MN√
8

∫

d3q

(2π)3

(

(txy)βbγc (~q, ~p)
)T

D

(

E − ~q2

2MN

, ~q

)

(Kyw)γcαa(
~k, ~q)vp

+
4MN√

8

∫

d3q

(2π)3

∫

d3ℓ

(2π)3

(

(txz)βbδd (
~ℓ, ~p, )

)T

D

(

E − ~q2

2MN
, ~q

)

(Kzy)δdγc(~q,
~ℓ)D

(

E −
~ℓ
2

2MN
,~ℓ

)

(

(tyw)γcαa (
~k, ~q)

)

where

(Kxw)βbαa(~q,
~ℓ) =

1

~q2 + ~q ·~ℓ+~ℓ2 −MNE − iǫ
× (14)

×





(K11
PV

xw)
βb
αa (~q,

~ℓ) (K12
PV

xw)
βb
αa (~q,

~ℓ)

(K21
PV

xw)
βb
αa (~q,

~ℓ) (K22
PV

xw)
βb
αa (~q,

~ℓ)





Now that we have derived the PV amplitude, we note that it contains the related scatter-

ing amplitudes from the PC sector. Such PC scattering amplitudes are calculated in[20], by

numerically solving Faddeev’s equation in an angular momentum basis. However, as part of

this solution one runs into singularities along the real axis. To overcome this difficulty the

method of Hetherington and Schick is employed, in which the axis of integration is rotated

into the complex plane, therefore avoiding the singularities[24–26]. One can then use the

solutions along the deformed contour to solve for the amplitudes along the real axis. Details

of the procedure to calculate these amplitudes can be found in[27]. In order to use the
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solutions to Faddeev’s equations we need to project out our PV amplitude into an angular

momentum basis. However, unlike the PC sector, the PV amplitudes mix different angular

momentum states. Also, since at leading order, spin and orbital angular momentum mix,

the appropriate angular momentum basis to use is the total angular momentum ~J = ~L+ ~S.

Thus we express our PV amplitude as

tPV (~k, ~p) =

∞
∑

J=0

M=J
∑

M=−J

J+S
∑

L=|J−S|

J+S′

∑

L′=|J−S′|

∑

S,S′

4πtJML′S′,LS(k, p)Y
M
J,L′S′(p̂)

(

Y
M
J,LS(k̂)

)∗
(15)

where the spin angle functions are given by

Y
M
J,LS(k̂) =

∑

mL,mS

CJM
LmL,SmS

Y mL

L (k̂)χmS

S (16)

χmS

S being the spinor part of the spin-angle functions, CJM
LmL,SmS

the appropriate Clebsch-

Gordan coefficient, and Y mL

L (k̂) the appropriate spherical harmonic. Since the spin-angle

functions are orthogonal, we can project out the amplitudes in our angular momentum basis

via

tJML′S′,LS(k, p) =
1

4π

∫

dΩk

∫

dΩp

(

Y
M
J,L′S′(p̂)

)∗
tPV (~k, ~p)Y

M
J,LS(k̂) (17)

At sufficiently low energies S-P mixing will dominate. Thus we will calculate only the

amplitudes tSM1S′,0S (Note J=S here since L=0) for all possible values of S and S ′. All spin

and angle dependence is contained within the matrix (Kxw)βbαa(~q,
~ℓ), and the appropriate

projections in ~J, ~L,and ~S can be found in the appendix. Going to a partial wave basis we

finally obtain an expression for the PV partial wave amplitudes.

tPV
JM
L′S′,LS(k, p) =

MN√
8π

vT
pK(k, p)JL′S′,LSvp+ (18)

− MN

2
√
8π3

∫ ∞

0

dqq2vT
pK(q, p)JL′S′,LSD

(

E − ~q2

2MN
, ~q

)

(

tPC
JM
LS,LS(k, q)

)

− MN

2
√
8π3

∫ ∞

0

dqq2
(

tPC
JM
L′S′,L′S′(q, p)

)T
D

(

E − ~q2

2MN
, ~q

)

K(k, q)JL′S′,LSvp

+
MN

4
√
8π5

∫ ∞

0

dqq2
∫ ∞

0

dℓℓ2
(

tPC
JM
L′S′,L′S′(p, ℓ)

)T
D

(

E − ~q2

2MN

, ~q

)

K(q, ℓ)JML′S′,LSD

(

E −
~
ℓ
2

2MN
,~ℓ

)

(

tPC
JM
LS,LS(k, q)

)

10



This expression contains the PC amplitudes in the partial wave basis of total angular mo-

mentum ~J = ~L + ~S. (These are equivalent to the PC amplitudes in the partial wave basis

of orbital angular momentum.) It can be shown straightforwardly that the PC amplitudes

are independent of total angular momentum ~J. Thus we can use the PC amplitudes as

calculated numerically by[14, 18, 20] and perform the integration numerically in order to

obtain the associated PV amplitudes.

Before integrating Eq. (18) we multiply by the LO deuteron renormalization ZD =

(8πγd)/(M
2
Ny

2
t )[14], and use the renormalized PC amplitudes. We find that all the PV

LEC’s occur in the combinations.

g
3S1−1P1

yt
,
g

3S1−3P1

yt
,
g

1S0−3P0

(∆I=0)

ys
,
g

1S0−3P0

(∆I=1)

ys

(Note g
1S0−3P0

(∆I=2) does not appear as a ∆I = 2 transition is not allowed for a first order PV

transition in nd scattering.) For the sake of convenience we find it useful to make the

following definitions.

g1 =
g

3S1−1P1

yt
, g2 =

g
3S1−3P1

yt
, g3 =

g
1S0−3P0

(∆I=0)

ys
, g4 =

g
1S0−3P0

(∆I=1)

ys
, g5 =

g
1S0−3P0

(∆I=2)

ys

Since these coefficients are unknown, we will write the PV partial wave amplitudes as follows,

where
(

tPV
JM
L′S′,LS(k, p)

)i
is calculated by setting gj = 0, j 6= i and gi = 1 in the PV partial

wave amplitude. Thus the PV amplitude can be written as.

tPV
JM
L′S′,LS(k, p) =

4
∑

i=1

gi
(

tPV
JM
L′S′,LS(k, p)

)i
(19)

IV. Parity-Violating Potential

It is clear from Eq. (19) that in order to obtain numerical values for the PV amplitude

one needs to know the size of the coefficients gi, which at this time are not determined from

either theory or experiment. Nevertheless, we can obtain estimates by matching the gi onto

the familiar DDH coefficients. We will carry out this procedure in three steps. First we

match the DDH coefficients onto the coefficients of the Zhu potential[3]. Then we match

the Zhu potential on to the Girlanda potential[10]. Finally we project the coefficients of the

Girlanda potential onto the coefficients of the auxiliary field formalism. We also show how

all these formalisms can be matched to the familiar Danilov parameters

11



The DDH model[1] is a single-meson-exchange picture, limited to exchange of the lightest

mesons π, ρ, and ω.1 The strong Hamiltonian is given by

Hst =igπNNN̄γ5τ · πN + gρN̄

(

γµ + i
(1 + χρ)

2MN

σµνk
ν

)

τ · ρµN (20)

+ gωN̄

(

γµ + i
(1 + χω)

2MN
σµνk

ν

)

ωµN

with the strong couplings given approximately by g2πNN/4π ≃ 13.5 and g2ρ/4π = 1
9
g2ω/4π ≃

.67, while the magnetic moment terms are approximately χρ = κp − κn = 3.7 and χω =

κp + κn = −.12. The phenomenological weak interaction Hamiltonian posited by DDH

consists of seven weak coupling terms

Hwk =i
f 1
π√
2
N̄(τ × π)zN + N̄

(

h0ρτ · ρµ + h1ρρ
µ
z +

g2ρ

2
√
6
(3τzρ

µ
z − τ · ρµ)

)

γµγ5N (21)

+ N̄
(

h0ωω
µ + h1ωτzω

µ
)

γµγ5N − h′ρ
1
N̄(τ × ρµ)z

σµνk
ν

2MN
γ5N

DDH attempted to obtain theoretical predictions for the seven constants using SU(6) sym-

metry and quark model techniques. However, due to the difficulty of this calculation they

were only able to come up with reasonable ranges and “best” values as shown in Table I.

(Also shown are estimates by other groups.)

DDH[1] DDH[1] DZ[29] FCDH[30]

Coupling Reasonable Range “Best” Value

fπ 0 → 30 +12 +3 +7

h0ρ 30 → −81 -30 -22 -10

h1ρ −1 → 0 -.5 +1 -1

h2ρ −20 → −29 -25 -18 -18

h0ω 15 → −27 -5 -10 -13

h1ω −5 → −2 -3 -6 -6

TABLE I: Weak NNM couplings. All numbers are quoted in units of the ”sum rule” value

SR = 3.8× 10−8

1 Since CP is conserved there are no neutral pseudoscalar mesons π0, η, or η′ by Barton’s theorem[28]

12



The form of any PV potential can be written as a sum of operators O
(n)
ij with correspond-

ing coefficients cαn, where α refers to the specific potential of interest..

V α
ij =

∑

n

cαnO
(n)
ij (22)

At the lowest energies the component of the operators that contain momentum is of two

forms.

X
(n)
ij,+ = {~pij, f

α
n (rij)} (23)

X
(n)
ij,− = i[~pij , f

α
n (rij)]

where ~pij = (~p1−~p2)/2 is the momentum of the nucleon-nucleon system in the c.m. frame.

The coefficients, operators, and regulator functions fDDH
n (rij) for the DDH potential and

fZhu
n (rij) for the Zhu potential are given in Table II. The functions fDDH

n (rij) are Yukawa

functions, where the mass corresponds to the appropriate meson[2]. However, at the lowest

energies the functions for the DDH potential can be written as fi(r) = 1
m2

i

δ3(~r), where

i = π,ρ, or ω[2]. Likewise the functions fm(r) =
1
m2 δ

3(~r) for the Zhu potential become delta

functions in the low energy limit, where m is a mass sufficiently greater than our energies of

interest such that the delta function approximation is valid (for our low energies of interest

m = mπ is sufficient). Thus at low energies the DDH potential and the Zhu potential can

be trivially matched yielding[3]

C̃1

C1

=
C̃2

C2

= 1 + χω ≃ .88 (24)

C̃3

C3
=
C̃4

C4
=
C̃5

C5
= 1 + χρ ≃ 4.7 (25)

13



TABLE II: PV potential in DDH and Zhu formalism. Tij ≡ (3τ zi τ
z
j − τi · τj). (Note

Λχ ∼ 4πFπ is the chiral scale[31, 32], where Fπ = 92.4MeV is the pion decay constant)

n cDDH
n cZhu

n fDDH
n (r) fZhu

n O
(n)
ij

1 + gπNN

2
√
2MN

fπ
m2

Λ3
χ
2C̃6 fπ(r) fm(r) (τi × τj)

z(~σi + ~σj) ·X(1)
ij,−

2 − gρ
MN

h0ρ
m2

Λ3
χ
2C3 fρ(r) fm(r) (τi · τj)(~σi − ~σj) ·X(2)

ij,+

3 − gρ(1+χρ)
MN

h0ρ
m2

Λ3
χ
2C̃3 fρ(r) fm(r) (τi · τj)(~σi × ~σj) ·X(3)

ij,−

4 − gρ
2MN

h1ρ
m2

Λ3
χ
C4 fρ(r) fm(r) (τi + τj)

z(~σi − ~σj) ·X(4)
ij,+

5 − gρ(1+χρ)
2MN

h1ρ
m2

Λ3
χ
C̃4 fρ(r) fm(r) (τi + τj)

z(~σi × ~σj) ·X(5)
ij,−

6 − gρ
2
√
6MN

h2ρ -m
2

Λ3
χ
2C5 fρ(r) fm(r) Tij(~σi − ~σj) ·X(6)

ij,+

7 − gρ(1+χρ)

2
√
6MN

h2ρ -m
2

Λ3
χ
2C̃5 fρ(r) fm(r) Tij(~σi × ~σj) ·X(7)

ij,−

8 − gω
MN

h0ω
m2

Λ3
χ
2C1 fω(r) fm(r) (~σi − ~σj) ·X(8)

ij,+

9 − gω(1+χω)
MN

h0ω
m2

Λ3
χ
2C̃1 fω(r) fm(r) (~σi × ~σj) ·X(9)

ij,−

10 − gω
2MN

h1ω
m2

Λ3
χ
C2 fω(r) fm(r) (τi + τj)

z(~σi − ~σj) ·X(10)
ij,+

11 − gω(1+χω)
2MN

h1ω
m2

Λ3
χ
C̃2 fω(r) fm(r) (τi + τj)

z(~σi × ~σj) ·X(11)
ij,−

12 − gωh1
ω−gρh1

ρ

2MN

m2

Λ3
χ
(C2 − C4) fρ(r) fm(r) (τi − τj)

z(~σi + ~σj) ·X(12)
ij,+

13 − gρ
2MN

h
′1
ρ 0 fρ(r) 0 (τi × τj)

z(~σi + ~σj) ·X(13)
ij,−

14



CDDH
1 =−

Λ3
χ

2MNm2
ω

gωh
0
ω

bestguess−→ 2.25× 10−6 (26)

CDDH
2 =−

Λ3
χ

2MNm2
ω

gωh
1
ω

bestguess−→ 1.35× 10−6

CDDH
3 =−

Λ3
χ

2MNm2
ρ

gρh
0
ρ

bestguess−→ 4.58× 10−6

CDDH
4 =−

Λ3
χ

2MNm2
ρ

gρh
1
ρ

bestguess−→ 7.64× 10−8

CDDH
5 =

Λ3
χ

4
√
6MNm2

ρ

gρh
0
ρ

bestguess−→ −7.80× 10−7

C̃DDH
6 ≃

Λ3
χ

4
√
2MNm2

π

gπNNfπ
bestguess−→ 9.19× 10−5

As first pointed out by Danilov, one needs five PV terms at the lowest energies in the

two-body sector[5], since only S-P mixing is involved. By conservation of angular momentum

the state 3S1, can only connect with the states 1P1 or 3P1. Since
3S1 is an isosinglet there is

a unique way to get to the isosinglet state 1P1 and isotriplet state 3P1. Similarly, the state

1S0 can only connect with the state 3P0. However, both 1S0 and 3P0 are isotriplet states so

the operator connecting these states can carry ∆I = 0, 1, or 2. The existence of five unique

operators which characterize parity-violation at low energy appears to be in contradiction

with the DDH and Zhu potential, which involve ten different operators. However, at low

energies five of these operator structures are redundant as shown by Girlanda[6]. In this

procedure one begins with all possible one-derivative P violating CP conserving relativistic

terms.

O1 = ψ̄γµψψ̄γµγ5ψ Õ1 = ψ̄γµγ5ψ∂
ν(ψ̄σµνψ) (27)

O2 = ψ̄γµψψ̄τ3γµγ5ψ Õ2 = ψ̄γµγ5ψ∂
ν(ψ̄τ3σµνψ)

O3 = ψ̄τaγ
µψψ̄τaγµγ5ψ Õ3 = ψ̄τaγ

µγ5ψ∂
ν(ψ̄τaσµνψ)

O4 = ψ̄τ3γ
µψψ̄γµγ5ψ Õ4 = ψ̄τ3γ

µγ5ψ∂
ν(ψ̄σµνψ)

O5 = Iabψ̄τaγ
µψψ̄τbγµγ5ψ Õ5 = Iabψ̄τaγ

µγ5ψ∂
ν(ψ̄τbσµνψ)

O6 = iǫab3ψ̄τaγ
µψψ̄τbγµγ5ψ Õ6 = iǫab3ψ̄τaγ

µγ5ψ∂
ν(ψ̄τbσµνψ)
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Using Fierz transformations and the equations of motion, there exist six identities

O3 =O1 Õ2 + Õ4 =MN (O2 +O4) (28)

O2 −O4 =2O6 Õ2 − Õ4 =− 2MNO6 − Õ6

Õ3 + 3Õ1 =2MN(O1 +O3) Õ5 =MNO5

reducing the number of unique operators to six. However, in a non-relativistic reduction it

turns out that two of the operators have equivalent structures leaving five unique operators

at the lowest energies. The resulting PV Lagrangian in the Girlanda formalism is given by

LGir
PV = G1(N

†~σN ·N †i
↔
∇ N −N †NN †i

↔
∇ ·~σN)− G̃1ǫijkN

†σiN∇j(N
†σkN) (29)

− G2ǫijk[N
†τ3σiN∇j(N

†σkN) +N †σiN∇j(N
†τ3σkN)]

− G̃5IabǫijkN
†τaσiN∇j(N

†τbσkN) + G6ǫab3
→
∇ (N †τaN) ·N †τb~σN

(In Eq. (29) a factor of 1/Λ3
χ has been absorbed into the coefficients. This notation agrees

with the notation of Phillips, Schindler, and Springer[7].) With this PV Lagrangian one

can compute the Girlanda potential which takes on the following form given by Eq. (22),

where n runs from one to five, and µ is a mass chosen to be much larger than the energies

of interest (again for our purposes we choose µ = mπ).

TABLE III: PV potential in Girlanda formalism. Tij ≡ (3τ zi τ
z
j − τi · τj).

n cGir
n fGir

n (r) O
(n)
ij

1 −µ2G6
1
µ2 δ

3(~r) (τi × τj)
z(~σi + ~σj) ·X(1)

ij,−

2 2µ2G2
1
µ2 δ

3(~r) (τi + τj)
z(~σi − ~σj) ·X(2)

ij,+

3 −2µ2G5
1
µ2 δ

3(~r) Tij(~σi − ~σj) ·X(3)
ij,+

4 2µ2G1
1
µ2 δ

3(~r) (~σi − ~σj) ·X(4)
ij,+

5 2µ2G̃1
1
µ2 δ

3(~r) (~σi × ~σj) ·X(5)
ij,−

Using (28) one can reduce the Zhu potential to a set of five operators, allowing the matching

of the Zhu coefficients onto the Girlanda coefficients as shown in Table V.
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For our calculations, we also require the coefficients in the auxiliary field formalism Eq.

(2). This matching of the Gi and gi requires two steps. One first performs Gaussian integra-

tion over the auxiliary fields followed by a field redefinition to rewrite the Lagrangian, Eq (2)

in terms of nucleon fields, as done by Schindler, and Springer[8]. Then one can match this

partial wave formalism onto the Girlanda formalism by performing Fierz rearrangements

and using the constraints Eq. (28) with a non-relativistic reduction, yielding the results

in Table V (This has also been done using a different method by Phillips, Schindler, and

Springer[7].)

Finally we wish to match the Girlanda potential onto the Danilov potential which is given

by Eq. (22) in Table IV, where n runs from one to five.

TABLE IV: PV potential in Danilov formalism. Tij ≡ (3τ zi τ
z
j − τi · τj), P0 =

1
4
(1− ~σi · ~σj),

P1 =
1
4
(3 + ~σi · ~σj), and at = 5.314 fm is the 3S1 scattering length.

n cDan
n fDan

n (r) O
(n)
ij

1 1
2atρt

4π
MN

δ3(~r) (τi − τj)
z(~σi + ~σj) ·X(1)

ij,−

2 1
2λ

1
s/γs

4π
MN

δ3(~r) (τi + τj)
z(~σi − ~σj) ·X(2)

ij,+

3 1
2
√
6
λ2
s/γs

4π
MN

δ3(~r) Tij(~σi − ~σj) ·X(3)
ij,+

4 atλt
4π
MN

δ3(~r) (~σi − ~σj)P1 ·X(4)
ij,+

5 λ0
s/γs

4π
MN

δ3(~r) (~σi − ~σj)P0 ·X(5)
ij,+

In order to match the Girlanda formalism to the Danilov formalism we note the identity

〈P |[−i∇, δ3(~r)]|S〉 = 〈P |
{

−i∇, δ3(~r)
}

|S〉 (30)

which follows trivially since P waves are zero at the origin. Next we make use of the identical

identities in spin and isospin space. (Note P τ
0 = 1

4
(1− ~τ i · ~τ j) and P

τ
1 = 1

4
(3 + ~τ i · ~τ j))

i(~σi × ~σj) = (~σi − ~σj) (P0 − P1) (31)

i(~τ i × ~τ j)
z = (~τ i − ~τ j)

z (P τ
0 − P τ

1 ) (32)
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The isospin operator i(~τ i × ~τ j)
z only appears with the spin operator (~σi + ~σj) in the

Girlanda potential. Since this spin operator only projects out the triplet state of the S

wave, only the isosinglet part of the operator i(~τ i × ~τ j)
z is projected out. Thus by Eq.

(32) we find that in combination with the spin operator (~σi + ~σj) the isospin operator

i(~τ i × ~τ j)
z = (~τ i − ~τ j)

z. Finally using Eqs. (30), (31), and the fact that the identity I

is I = P0 + P1 one can straightforwardly match the Girlanda coefficients to the Danilov

coefficients, giving the results shown in Table V. Also shown in Table V are the relation

between the Zhu, Girlanda, Auxiliary, and Danilov formalisms. The primary goal in low

energy hadronic parity-violation is to determine the value of the Danilov parameters. At

low energies all of these different EFT formalisms can be shown to be equivalent to the

Danilov parameters, as shown in Table V. Thus one can use whichever formalism is more

convenient.

TABLE V: Translation between various formalisms of PV potential

Zhu Girlanda Auxiliary Danilov

MN ( 1

at
−µ)

2πΛ3
χ

(

C1 − C̃1 − 3(C3 − C̃3)
) MN ( 1

at
−µ)

2π

(

G1 − G̃1

)

−2
√
2g1 λt

−MN ( 1

at
−µ)

πΛ3
χ

(

2C̃6 + (C2 − C4)
) MN ( 1

at
−µ)

π G6 −4
√
2g2 ρt

MN (γs−µ)
2πΛ3

χ

(

C1 + C̃1 + (C3 + C̃3)
)

MN (γs−µ)
2π

(

G̃1 + G1

)

−2
√
2g3 λ0

s

MN (γs−µ)
2πΛ3

χ

(

C2 + C4 + C̃2 + C̃4

)

MN (γs−µ)
π G2 −2

√
2g4 λ1

s

−MN (γs−µ)
√
6

πΛ3
χ

(

C5 + C̃5

)

−MN (γs−µ)
√
6

π G5 −4
√
3g5 λ2

s

Having matched the auxiliary coefficients gi to the Zhu coefficients we can now use the

matching of the Zhu coefficients to the DDH “best” values to obtain estimates for the

auxiliary coefficients which yields.
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g1 = −
MN (

1
at
− µ)

8
√
2π

[

gωχω

MNm2
ω

h0ω − 3gρχρ

MNm2
ρ

h0ρ

]

∼ 1.75× 10−10MeV−1 (33a)

g2 =
MN(

1
at
− µ)

8
√
2π

[

gπNN√
2MNm2

π

fπ +
gρ

MNm2
ρ

h1ρ −
gω

MNm2
ω

h1ω

]

∼ −6.34× 10−10MeV−1 (33b)

g3 =
MN(γs − µ)

8
√
2π

[

gω(2 + χω)

MNm2
ω

h0ω +
gρ(2 + χρ)

MNm2
ρ

h0ρ

]

∼ 1.50× 10−10MeV−1 (33c)

g4 =
MN(γs − µ)

8
√
2π

[

gρ(2 + χρ)

MNm2
ρ

h1ρ +
gω(2 + χω)

MNm2
ω

h1ω

]

∼ 1.47× 10−11MeV−1 (33d)

g5 =
MN(γs − µ)

8
√
2π

[

gρ(2 + χρ)√
6MNm2

ρ

h2ρ

]

∼ 4.39× 10−11MeV−1 (33e)

V. Spin Observables

Having calculated the various PV amplitudes, we can now relate them to PV observables.

One such observable is the neutron longitudinal asymmetry AN [33]. In this case we scatter

longitudinally polarized neutrons from an unpolarized deuteron target, and measure the

difference of the two cross sections.

AN =
σ+ − σ−
σ+ + σ−

(34)

Here σ+ (σ−) represents the cross section of positive (negative) helicity neutrons.

In order to calculate observables, we need to write them in terms of the partial wave

amplitudes calculated above. We denote the transition matrix by the operator M. Of

course, M is not diagonal in the orbital angular momentum basis, but rather is diagonal in

terms of total angular momentum. DefiningMm′

1
,m′

2
;m1,m2

as the T matrix where the neutron

has initial (final) spin m2, (m
′
2), and the deuteron has initial (final) spin m1, (m

′
1),it can be

shown

Mm′

1
,m′

2
;m1,m2

=
√
4π
∑

J

∑

L,L′

∑

S,S′

∑

ms,m′

S

∑

m′

L

√
2L+ 1CSmS

1m1,1/2m2
(35)

C
S′m′

S

1m′

1
,1/2m′

2

CJM
L0,SmS

CJM
L′m′

L
,S′m′

S
Y

m′

L

L′ (θ, φ)MJ
L′S′,LS

Observables are most easily written in terms of this matrix Mm′

1
,m′

2
;m1,m2

. Having Eq. (35),

which gives Mm′

1
,m′

2
;m1,m2

in terms of the calculated functions MJ
L′S′,LS, we can calculate
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observables by truncating the sum over J, L, and L′ at some reasonable level. Thus the

observable AN is given by

AN =

∑

m′

1
,m′

2

∑

m1,m2

(−1)1/2−m2

∫

dΩ|Mm′

1
,m′

2
;,m2,m2

|2

∑

m′

1
,m′

2

∑

m1,m2

∫

dΩ|Mm′

1
,m′

2
;,m2,m2

|2 (36)

Explicitly summing over values of angular momentum from 0 to 1, and spin and J from

J = 1/2 to J = 3/2 we find.

AN
∼=2

3
Re
[(

M
1/2
01/2,01/2 +M

1/2
11/2,11/2

)(

M
1/2
11/2,01/2

)∗
+ 2

√
2
(

M
1/2
01/2,01/2 +M

1/2
13/2,13/2

)(

M
1/2
13/2,01/2

)∗

(37)

−4
(

M
3/2
03/2,03/2 +M

1/2
11/2,11/2

)(

M
3/2
11/2,03/2

)∗
− 2

√
5
(

M
3/2
03/2,03/2 +M

3/2
13/2,13/2

)(

M
3/2
13/2,03/2

)∗]
/

[

|M 1/2
01/2,01/2|2 + 2|M 3/2

03/2,03/2|2 + 3|M 1/2
11/2,11/2|2 + 3|M 3/2

13/2,13/2|2
]

By the optical theorem we note that AN can also be written as

AN =

∑

m Im
(

Mm,1/2;m,1/2|θ=0 −Mm,−1/2;m,−1/2|θ=0

)

∑

m Im
(

Mm,1/2;m,1/2|θ=0 +Mm,−1/2;m,−1/2|θ=0

) (38)

∼= 2

3
Im
[

M
1/2
11/2,01/2 + 2

√
2M

1/2
13/2,01/2 − 4M

3/2
11/2,03/2 − 2

√
5M

3/2
13/2,01/2

]

/

Im
[

M
1/2
01/2,01/2 + 2M

3/2
03/2,03/2 + 3M

1/2
11/2,11/2 + 3M

1/2
13/2,13/2

]

Another PV observable is the spin rotation of the neutron as it passes through a deuteron

target. In this experiment the neutron is transversely polarized and the rate of change of

the rotation angle with respect to the distance traveled is[10, 33].

dφ

dz
= −4MNN

9k

∑

m

Re
[

Mm,1/2;m,1/2|θ=0 −Mm,−1/2;m,−1/2|θ=0

]

(39)

where N is the number of scattering centers per unit volume, and k is the momentum of the

neutron in the c.m. system. Using Eq. (35) we find

dφ

dz
= −4MNN

27k
Re
[

M
1/2
11/2,01/2 + 2

√
2M

1/2
13/2,01/2 − 4M

3/2
11/2,03/2 − 2

√
5M

3/2
13/2,03/2

]

(40)
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The final PV observable that we will consider is the deuteron target asymmetry. In this

case an unpolarized beam of neutrons is scattered from a polarized deuteron target. At

first the deuteron target is polarized in the positive z direction, where ẑ is the direction of

the neutron’s initial momentum. Then the neutron scatters off the deuteron target and we

measure the cross section σ1. In addition the deuteron target is polarized in the opposite

direction and we measure the cross section σ−1. If there is parity-violation one will find that

σ1 6= σ−1, and we define the target asymmetry as

AD =
σ1 − σ−1

σ1 + σ−1
(41)

AD =

∑

m
1′
,m′

2

∑

m2

∫

dΩ
(

|Mm′

1
,m′

2
;1,m2

|2 − |Mm′

1
,m′

2
;−1,m2

|2
)

∑

m
1′
,m′

2

∑

m2

∫

dΩ
(

|Mm′

1
,m′

2
;1,m2

|2 + |Mm′

1
,m′

2
;−1,m2

|2
) (42)

∼=− Re
[

2
(

M
1/2
11/2,11/2 +M

1/2
01/2,01/2

)(

M
1/2
11/2,01/2
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(
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3/2
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√
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M
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13/2,13/2 +M

3/2
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)∗]
/

[

|M 1/2
01/2,01/2|2 + 2|M03/2,03/2|2 + 3|M 1/2

11/2,11/2|2 + 6|M 1/2
13/2,13/2|2

]

Again AD can also be calculated via the optical theorem.

AD =

∑

m2
Im (M1,m2;1,m2

|θ=0 −M−1,m2;−1,m2
|θ=0)

∑

m2
Im (M1,m2;1,m2

|θ=0 +M−1,m2;−1,m2
|θ=0)

(43)

∼=− Im
[

2M
1/2
11/2,01/2 +

√
2M

1/2
13/2,01/2 − 2M

3/2
1,1/2,03/2 + 2

√
5M

3/2
13/2,03/2

]

/

Im
[

M
1/2
01/2,01/2 + 2M

3/2
03/2,03/2 + 3M

1/2
11/2,11/2 + 6M

1/2
13/2,13/2

]

VI. Results

Plotting our results for beam and target asymmetry as a function of center of mass energy,

Ec.m, we find the plots given in Fig. 4. The thickness of the plot denotes the momentum

cutoff variation, which runs from 200 MeV to 1500 MeV. It appears that the results begin

to converge after 900 MeV as found by other authors[20]. Also it should be noted that the

cutoff variation for the beam and target asymmetries at low energies is actually smaller than

as shown in the plots, and is displayed with the given thickness in order that the plot be

visible. The plots for the beam and target asymmetries extend all the way to 2.22 MeV,
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FIG. 4: (Color online)Beam and target asymmetries as function of c.m. energy, Ec.m.

Estimates for observables are found by using DDH “best” values. The right pane of the

plot refers to the deuteron break-up energy

which is the deuteron breakup energy. However, the observables cannot be taken seriously

at these high energies as higher partial waves and higher order contributions will become

important. (It should also be noted that a significant difference was found at about .32 MeV

if P waves were not included in the PC amplitudes.) The spin rotation observable had a

value of 1.8 × 10−8 rad cm−1 with minimal cutoff variation on the order of .5% (We used

a liquid deuterium number density of N = .4× 1023atoms cm−3[11].) This value is roughly

two times the previous estimates for the spin rotation by Schiavilla et al.[10] and Song et

al.[11]. Also the beam asymmetry has a value of 2.2×10−8 with minimal cutoff variation, at

Elab = 15 keV, and again this is roughly a factor of two greater than previous calculations

by Song et al.[11]. Finally the target asymmetry at Elab = 15 keV has a value of 4.0× 10−8

again with minimal cutoff variation.

Finally in order to compare with possible experiments a table of all three observables in

terms of their contributions from each of the gi is given below. The spin rotation is given

at zero energy and the beam and target asymmetry are given at a lab energy of 15 keV.

In order to obtain a prediction for the observable each row is multiplied by the appropriate

value of gi and then these products are added together to yield the observable. Below are

two tables with different values for the cutoff. The first table shows the cutoff at 200 MeV

and the second at 1500 MeV.

22



TABLE VI: Values for observables at cutoff Λ = 200 MeV. In order to obtain the

corresponding observable each number in a given column is multiplied by the appropriate

gi and then all added together.

gi Rotation, Elab = 0 keV AN , Elab = 15 keV AD, Elab = 15 keV

1 -18.7 rad cm−1 MeV -14.4 MeV 8.92 MeV

2 -36.2 rad cm−1 MeV -39.6 MeV -59.7 MeV

3 -10.2 rad cm−1 MeV -1.83 MeV 1.65 MeV

4 6.81 rad cm−1 MeV 1.22 MeV -1.10 MeV

TABLE VII: Values for observables at cutoff Λ = 1500 MeV. In order to obtain the

corresponding observable each number in a given column is multiplied by the appropriate

gi and then all added together.

gi Rotation, Elab = 0 keV AN , Elab = 15 keV AD, Elab = 15 keV

1 -19.2 rad cm−1 MeV -14.5 MeV 9.15 MeV

2 -38.0 rad cm−1 MeV -39.9 MeV -59.8 MeV

3 -16.7 rad cm−1 MeV -2.71 MeV 2.47 MeV

4 11.1 rad cm−1 MeV 1.81 MeV -1.65 MeV

We can now compare our results for the spin rotation to previous calculations using a

hyperspherical harmonics method or by solving a differential Faddeev equation in configu-

ration space[10, 11]. Both of these papers calculated the numbers In for the spin rotation

which are defined by Eq. (44), where cGir
n are defined in Table III. Using Tables V, VI, and

VII it is straightforward to compute the values IGir
n as predicted by pure EFT 6π at LO. The

results from the two previous calculations via hybrid methods of the nd spin rotation for

the values IGir
n [10, 11] are compared in Table VIII with those given by pure EFT 6π at LO

as well as with EFT6π at NLO which has been calculated in[12].
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1

N

dφ

dz
=

5
∑

n=1

cGir
n IGir

n (44)

TABLE VIII: This table compares the prediction for IGir
n in Eq. (44) from the hybrid

approaches of Schiavilla et al.[10] and Song et al.[11] to the EFT 6π LO predictions of this

paper and NLO of Griesshammer et al.[12]. The variation in the values for EFT 6π

approaches is due cutoff variation in the momentum integrals. For EFT6π-I, µ = 138 MeV.

Also IGir
n is given in units of fm.

IGir
n (fm) EFT 6π-I/AV18 EFT 6π-I/AV18+UIX EFT 6π

n = Song Schiavilla Song Schiavilla LO NLO

[11] [10] [12]

1 61.6 65.6 60.0 63.2 129.3 - 135.7 98.5 - 120.3

2 60.6 62.3 58.8 57.8 35.0 - 57.1 33.4 - 51.9

4 -76.1 -77.9 -75.7 -75.2 -59.6 - -77.2 -48.2 - -67.2

5 -9.46 -9.89 -6.62 -6.12 7.16 - -8.66 -1.85 - -10.6

The range of numbers given in Table VIII for EFT6π at LO and NLO is simply due to

cutoff variation in the numerical integration. Looking at the table we see that with the

exception of the n = 1 term the EFT 6π approach within the cutoff variation gives results

very similar to the hybrid approaches of Schiavilla et al. and Song et al.[10, 11]. However,

at low cutoff values for the LO n = 5 term we see that it has a different sign than the other

results. This is likely due to the fact that in EFT 6π this term is calculated by subtracting

two terms one of which has a larger cutoff variation. We also note the n = 2 term for

large cutoff values at LO clearly agrees with the hybrid schemes where three body forces are

included[10, 11]. This should come as no surprise as the EFT6π approach at LO necessarily

includes a three-body force term. At larger values of cutoff it is clear the EFT6π approach

seems to converge towards the hybrid approaches. For LO EFT6π the largest cutoff variation

comes from the g3 and g4 terms, and the terms n = 2 through n = 5 all contain one of these

terms, thus they have a much larger cutoff variation than the n = 1 term. The n = 1 term in

the EFT 6π approaches is roughly a factor of two larger than in the hybrid approaches[10, 11].
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This result is consistent with our spin rotation prediction of 1.8× 10−8 rad cm−1 and beam

asymmetry prediction of 2.2× 10−8 (see Fig. 4a) which were roughly a factor of two larger

than the predictions given by the authors of the hybrid approaches [10, 11] in Table VIII.

The NLO EFT 6π results do not seem to differ greatly from the LO predictions. However, the

cutoff variation for the n = 1 term seems to be larger than that at LO.

Finally we should note that the calculation for the beam and target asymmetries were

done using both the standard cross section methods and the optical theorem. Plotting the

results from both, we found they were indistinguishable. This agreement confirms that our

amplitudes are unitary and acts as a check on the validity of our results. For the values

quoted in Tables VI and VII, it was found that for the beam and target asymmetries, the

values from either the cross sections or optical theorem agreed to less than one percent.

Looking at our results we see from Tables VI and VII that the dominant contribution

to all the observables comes from the g2 term. The greatest contribution to this coefficient

comes in particular from the quartet S to quartet P channel. Thus the observables are

largely determined by the quartet S to quartet P part of the g2 term. Also looking at the

estimates of the gi, Eqs. (33a) to (33e) , we see that g2 is the only term that contains the

one-pion exchange term from the DDH potential. Thus all of the observables are mostly

given by one-pion exchange in agreement with previous findings[10, 11]. Finally we note

that the target asymmetry is larger than the other two observables. Thus this could be a

useful observable to find hadronic parity-violation. However, presumably a polarized target

experiment would be more difficult than a polarized beam experiment.

VII. Conclusion

Above we calculated the low energy PV nd transition amplitudes using EFT 6π. Matching

the auxiliary field formalism onto the DDH potential, we made predictions for the coefficients

of the auxiliary field formalism by using the DDH “best” values. Using these amplitudes and

estimates for gi, we were able to make predictions for the spin rotation, beam asymmetry,

and target asymmetry in low energy nd interactions. The values obtained for the neutron

spin rotation and beam asymmetry were roughly a factor of two larger than those found by

other authors using hybrid approaches[10, 11]. Unfortunately due to the smallness of these

values they will still require very precise experiments. However, the DDH parameters used

to predict the gi are neither theoretically or experimentally well determined, and therefore
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the actual value for the observables given in this paper could differ by up to an order of

magnitude from the predictions given here.

The largest contribution to parity-violation was shown to come from the coefficient g2,

which contains the one-pion exchange contribution, and such experiments should then allow

one to determine its value. It is noted that to first order in parity-violation the ∆I = 2

(g5) term does not contribute. Thus nd scattering is sensitive to four out of the five PV

coefficients.

In principle we should be able to calculate to NLO in EFT 6π without the need for PV

three-body forces[13]. Griesshammer, Schindler, and Springer calculated the NLO PV am-

plitudes using the partially resummed approach which introduces higher order contributions

at NLO[12]. However, to calculate the NLO contributions without higher order terms, one

must calculate the full off shell LO amplitude. Since a calculation of the full off shell LO

amplitude is numerically expensive it will be left to a future publication.

A. Appendix

In projecting out the amplitudes one has to perform angular integrations which are given

by

UJL =

√

4π

3

∫

dΩk

∫

dΩp
1

a+ k̂ · p̂
Y

m′

L

L′

∗
(p̂)Y mL

L (k̂)
(

kY m
1 (k̂) + 2pY m

1 (p̂)
)

= (A.1)

= 4π

√

2L+ 1

2L′ + 1
CL′0

L0,10C
L′m′

L

LmL,1m
(kQL′(a) + 2pQL(a))

where

QL =
1

2

∫ 1

−1

PL(x)

x+ a
dx (A.2)

are functions related to the Legendre polynomials of the second kind up to a factor of (−1)L,

and PL(x) are the standard Legendre polynomials.

The projection we must carry out is of the form

K(k, p)JL′S′,LS =

∫

dΩk

∫

dΩp

(

YM
J,L′S′(p̂)

)∗ (
K

ji
)βb

αa
(~k, ~p)YM

J,LS(k̂) (A.3)

(Note the polarization and spin indices are summed over corresponding indices that are not

explicitly shown in the spin angle functions). Each matrix element of
(

K
ji
)βb

αa
(~k, ~p) has a
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different projection. Each of these four different projections has in turn four pieces given by

Eqs. (12). Fortunately many of these terms can be related by time reversal simplifying the

projection considerably. For simplicity we only show how to project out the first g
3S1−3P1

piece of the matrix element
[

(

K
ji
)βb

αa
(~k, ~p)

]

11
as given in (14) and (12a), and simply quote

the other results. In order to project this term out we use properties of spherical tensors and

the Wigner-Eckart theorem to reduce the following expression to a sum over Clebsch-Gordan

coefficients.

WJL =iǫiℓκ〈1/2, m′
2|σκσj |1/2, m2〉(~k+ 2~p)ℓ (A.4)

=

√

2

3

∑

m,m′

∑

κ,q

√
2κ+ 1C1m′

1m1,1m
C1m′

1m′

1
,κqC

1/2m′

2

1/2m2,κq
〈1/2||Tκ||1/2〉(−1)m(~k+ 2~p)−m

Using the above expression with (14),(12a), and (A.3) and, for the time being ignoring the

isospin, we find the expression for our projection is.

VJL =

√

4π

3

1

kp
g

3S1−3P1

∫

dΩp

∫

dΩk
1

a+ k̂ · p̂
∑

m1,m2

∑

mL,mS

∑

m′

1
,m′

2

∑

m′

L
,m′

S

(A.5)

C
S′m′

S

1m′

1
,1/2m′

2

CSmS

1m1,1/2m2
CJM

LmL,SmS
CJM

L′m′

L
,S′m′

S

Y
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L

L′
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(p̂)Y mL

L (k̂)
(

kY −m
1 (k̂) + 2pY −m
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)

(−1)m

√

2

3

∑

m,m′

∑
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√
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1m1,1mC
1m′

1m′

1
,κqC

1/2m′

2

1/2m2,κq
〈1/2||Tκ||1/2〉

Integration over the angular variable can be carried out trivially by using (A.1) leaving a

sum of products of Clebsch-Gordan coefficients . Then using symmetry properties of the

Clebsch-Gordan coefficients we find. (Note the bar notation is defined as x̄ = 2x+ 1.)

VJL =8πg
3S1−3P1

√
3CL0

L′0,10(−1)L−S−J 1

kp
(kQL′(a) + 2pQL(a))× (A.6)

×
∑

κ

√

S̄S̄ ′L̄′κ̄〈1/2||Tκ||1/2〉







1/2 κ 1/2

1 S ′ 1













1 1 1

1/2 S ′ S













L′ 1 L

S J S ′







in terms of 6-j symbols[34]. The sum over κ can be removed by use of the identity[35].

∑

κ

κ̄







1/2 κ 1/2

1 S ′ 1













1/2 1/2 κ

1 1 j







= δS′j
1

S̄ ′ (A.7)
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yielding

VJL =8πg
3S1−3P1

√
6CL0
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√
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kp
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Using time reversal invariance and including our coefficients, as well as the isospin pro-

jection, we find the projection for the
[

K(k, p)JL′S′,LS

]

11
term is

− ydg
3S1−1P14π

√
3(−1)

3/2+2S+L−JδS′1/2

√

S̄L̄CL′0
L0,10







1/2 1 S

L J L′







1

kp
(kQL′(a) + 2pQL(a))

(A.9)

− ydg
3S1−1P14π

√
3(−1)

3/2+2S′+L′−JδS1/2

√

S̄ ′L̄′CL0
L′0,10







1/2 1 S ′

L′ J L







1

kp
(2kQL′(a) + pQL(a))

− ydg
3S1−3P18π

√
6CL0

L′0,10(−1)L−S−J
√

S̄S̄ ′L̄′
(

1

2
δS′1/2 + δS′3/2

)







1 1 1

1/2 S ′ S













L′ 1 L

S J S ′







×

× 1

kp
(kQL′(a) + 2pQL(a))

− ydg
3S1−3P18π

√
6CL′0

L0,10(−1)L
′−S′−J

√

S̄S̄ ′L̄

(

1

2
δS1/2 + δS3/2

)







1 1 1

1/2 S S ′













L 1 L′

S ′ J S







×

× 1

kp
(2kQL′(a) + pQL(a))

Now combining isospin with our spin projections we find the
[

K(k, p)JL′S′,LS

]

12
term pro-

jected out is
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√
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Now using time reversal symmetry we see the projection of the
[

K(k, p)JL′S′,LS

]
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term is
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Now combining the spin with the isospin projections we find the projection of the
[

K(k, p)JL′S′,LS

]

22
term is
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