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Experimental photoabsorption cross sections for the nuclei 92,94,96,98,100Mo, 88Sr, 90Zr, and 139La
are used as an input for calculations of (γ, n), (γ, p) and (γ, α), as well as (n, γ), (p, γ) and (α, γ) cross
sections and reaction rates at energies and temperatures relevant for nucleosynthesis network models
and transmutation projects. The calculations are performed with the statistical-model code TALYS.
The results are compared with those obtained by using different analytic standard parameterizations
of γ-ray strength functions implemented in TALYS and with an energy damped double Lorentzian
model. The radiative capture reaction cross sections are enhanced by the pygmy resonances in 88Sr,
90Zr, and 139La.
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I. INTRODUCTION

The vast majority of nuclei heavier than iron are synthesized via either the slow (s) or rapid (r) process of neutron
capture. There are however 35 naturally occurring nuclei located on the neutron-deficient side of the valley of stability,
including the nuclei 92Mo, 94Mo and 138La [1]. This location excludes the possibility of a production through neutron
capture mechanisms. It has been proposed that these nuclei, known as p-nuclei, are formed via the p-process. The
nature of the p-process is not yet fully understood, nor is the actual site for the p-process clearly identified [1]. The
presently favored scenario describes the p-process primarily as a sequential photodissociation process of stable nuclei
which occurs when the expanding shock front of a core collapse supernova transverses the neon oxygen shell burning
regions of the pre-supernova star [2]. The pre-existing s-process abundance distribution in these layers is shifted by
(γ, n) processes to the neutron deficient side. With increasing neutron threshold (γ, n) reactions become less likely
and the reaction flow is dominated by (γ, α) reactions, shifting the abundance distribution towards lower masses
while liberating α particles. It has been demonstrated that for closed shell nuclei the (γ, α) flux is replaced by a (γ, p)
dominated reaction flow towards the line of stability, since the α threshold at closed shell even-even nuclei becomes
so large that the proton decay emerges as the favored mechanism [3]. Figure 1 shows the typical reaction path for
the p-process as calculated in the framework of a parameterized shock expansion model [3]. In the mass range below
the N = 50 closed shell nuclei the photodissociation flux pattern is supplemented with neutron and charged particle
induced reactions and β+ decay, as can be clearly seen in the figure. Analysis of meteoric samples provide quantitative
data for the abundance of p-process nuclei. Such abundance observations exhibit within a factor of 3 agreement with
the predictions from model simulations, such as described above, except for the very light p-nuclei 92Mo, 94Mo and
138La (amongst others), which are found to be significantly overabundant compared to model predictions [1].
Modeling p-nuclei abundances (as well as all other isotopic abundances resulting from nucleosynthesis processes)

requires the detailed knowledge of thousands of nuclear reactions associated with the p-process path. Since experimen-
tal data regarding pertinent nuclear reactions in energy regions of relevance to nuclear astrophysics is limited, data
must often be obtained from global parameters. While there have been a number of experimental studies with photon
beams at facilities such as the Dalinac at the TU Darmstadt [4] or the ELBE accelerator at the Helmholtz-Zentrum
Dresden-Rossendorf (HZDR) [5], most of the experimental data rely on inverse radiative capture studies at energies
between 3 MeV and 12 MeV, which were performed at ATOMKI, Debrecen Hungary, PTB Braunschweig Germany,
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Demokritos Lab, Athens Greece, and the NSL at the University of Notre Dame, USA (e. g. [6, 7]). These studies have
the advantage that all reaction and decay channels in the compound region of the excited nucleus can be studied in
comparison to Hauser Feshbach (HF) statistical model simulations. This is critical since most of the p-process model
simulations rely on reaction rates derived from the statistical model approach. These studies indicated systematic
deviations in the quality of the HF predictions, which point to systematic deviations associated with the γ-channel.
There are many necessary ingredients for a HF calculation, including knowledge of the nuclear level densities,

particle optical potentials and γ-ray strength functions, which characterize the emission and absorption of photons.
Because network calculations, performed to simulate astrophysical processes, require a large reaction database, the use
of global descriptions for quantities such as level density and giant dipole resonance (GDR) parameters is paramount.
Since the p-process is largely a photo-dissociation mechanism, detailed knowledge of the γ-ray strength function, or
the related quantity the photoabsorption cross section, is also crucial, especially in the region of the neutron threshold.
Presently employed HF predictions have been obtained by describing the photoabsorption cross section as either a
single or two Lorentzian curves (to account for nuclear deformation), which are then smoothly extrapolated to below
the neutron threshold. An approach such as this however may miss extra strength caused by a resonance structure
near the neutron threshold, as e. g. reported in Ref. [8].
An improved knowledge of photoabsorption cross sections is also required for future nuclear technologies. The

measurement and modeling of neutron capture and inelastic neutron scattering cross sections is currently one of the
primary ways to study suitable reactions for transmutating long-lived nuclides, produced in nuclear-fuel cycles, into
short-lived nuclides. In this context, new facilities at neutron sources have been developed, such as the γ-calorimeter
DANCE at the Los Alamos Neutron Science Center [9], n TOF at CERN [10], GELINA [11], and nELBE at HZDR
[12]. The reactions of interest populate excited states in an energy range of high level density. The de-excitation of
states by γ-ray emission is considered to be statistical. It is determined by the level density as a function of excitation
energy and by γ-ray strength functions, or the related photoabsorption cross sections. The precise knowledge of
these quantities is therefore a necessary ingredient for the reliable determination of reaction cross sections via the
measurement of γ-rays. In this context it is hoped that improved nuclear cross section estimates, based on realistic
γ-ray strength functions, can be translated into new developments for nuclear waste transmutation programs.
Recently, new (γ, γ′) cross section measurements were performed using the bremsstrahlung facility at ELBE [13] for

the nuclei 92,94,96,98,100Mo [14, 15], 88Sr [16], 90Zr [17] and 139La [18]. The measurements probed the photoabsorption
cross section from an energy of approximately 4.5-6 MeV up to the neutron threshold. It is the aim of the present
paper to use the HF model to calculate photo-induced and radiative capture reactions using these new γ-ray strength
function data. Cross sections and reaction rates currently used for astrophysical and transmutation purposes, from
for instance the RIPL-2 [19] database, rely on phenomenological Lorentzian extrapolations. The purpose of this study
is twofold, firstly to analyze the effect of using experimental strength functions (in opposed to extrapolations), and
secondly to evaluate the impact of the pygmy resonances on cross section and reaction rate calculations. This will
provide an opportunity to test the accuracy of the existing strength function models.
Our paper is organized as follows. In section II we describe the method for calculating the reaction cross sections

of interest, with particular emphasis on existing photoabsorption models and the implementation of the experimental
photoabsorption cross section data. For selected nuclei only, the results of the calculated reaction cross sections
and reaction rates are presented in sections III and IV, respectively. See Supplemental Material at add URL of

supplement for additional cross section and reaction rate results, which also contains comparisons with the popular
NON-SMOKER reaction rates. A detailed discussion of the results is provided in section V. Finally, conclusions are
presented in section VI.

II. CROSS SECTION CALCULATIONS

A. Statistical Model

Calculations were performed using the computer code TALYS [20], which is a standard nuclear reaction code
that can calculate reaction cross sections with the statistical HF model [21]. Statistical reaction theory is based on
the concept of the compound nucleus, which decays according to the laws of statistics after having lost almost all
information about its formation. The only exceptions are the energy, the angular momentum, and the parity, which
are strictly conserved. For a given combination of the conserved quantities, the probability of a specific reaction is
the product of the probability for formation of the compound nucleus in the entrance channel and the probability for
its decay into the exit channel. The respective probabilities are expressed in terms of the transmission coefficients
Tj(E, J, π;E

µ
i , J

µ
i , π

µ
i ;Ej , Jj , πj ; eij), where E, J, π denote the excitation energy, angular momentum, and parity of

the compound nucleus. Here, j denotes the emitted particle with excitation energy, angular momentum and parity
given by Ej , Jj and πj respectively. Only for composite ejectiles, like the α particle, does one need Ej ; it is assumed
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that it remains in its ground state. The residual nucleus is represented by i, with excitation energy, angular momentum
and parity given by Eµ

i , J
µ
i and πµ

j . Excited states are denoted by µ. The kinetic energy of the emitted particle is

eij . Energy conservation implies E = Eµ
i + Ej + eij , where the ground state energies are assumed to be included.

Conservation of angular momentum involves several combinations of Jµ
i , Jj , and l coupling to J , where l is the angular

momentum of the partial wave. Accordingly, the transmission coefficient is a sum of terms that correspond to the
various couplings of the angular momenta. Only terms that obey conservation of parity, i. e. π = πµ

i πj(−1)l, are
allowed. The same holds for the inverse absorption reaction. In this case i labels the target nucleus and µ its excited
states. In the astrophysical context, one is mainly interested in the total cross section for reactions i(j, o)m, where
projectile j hits nucleus i, and ejectile o is emitted leaving residual nucleus m. Usually one is not interested in the
specific excitation energy, parity or angular momentum of either the ejectile or the residue. Hence, all exit channels
that comply with the conservation laws contribute to the formation of the ejectile and the residual nucleus. The
corresponding cross section for absorbing the particle j by the nucleus i in excited state µ, emitting particle m and
leaving residue o is

σ(iµ(j, o)m, eij) =
π

k2ij(2J
µ
i + 1)(2Jj + 1)

×
∑

J,π

(2J + 1)
Tj(E, J, π;E

µ
i , J

µ
i , π

µ
i ;Ej , Jj , πj ; eij)To(E, J, π;Eo, Jo, πo)

Ttot(E, J, π)
, (1)

To(E, J, π;Eo, Jo, πo) =
∑

ν

To(E, J, π;E
ν
m, J

ν
m, π

ν
m;Eo, Jo, πo; emo). (2)

The wave number of the projectile is given by kij . For photo reactions (j = γ), kij coincides with the wave number

of the photon. In the case of a massive projectile, kij =
√

2µijeij/~
2 where µij is the reduced mass of projectile and

target. The sum ν runs over all excited states of the residue. The cross section (1) has the simple structure of the
statistical reaction model. The first line is the probability for compound nucleus formation. The second line is the
probability for compound nucleus decay into the exit channel of interest. It is the ratio of the transmission coefficient
for this channel divided by the total transmission coefficient Ttot(E, J, π), which is the sum of the transmission
coefficients of all channels into which the compound nucleus can decay.
Laboratory experiments measure the cross section of the projectile hitting the target in the ground state µ = 0,

i. e. σ(i0(j, o)m, eij). In the stellar environment the reactions take place in a hot plasma, where excited target states
are thermally populated. The cross section for this is given by

σ∗(i(j, o)m, eij) =
1

∑

µ(2J
µ
I + 1) exp(−Eµ

i /kT )
×
∑

µ

[(2Jµ
I + 1) exp(−Eµ

i /kT )σ(i
µ(j, o)m, eij)] . (3)

The stellar reaction rate 〈σv〉 in the plasma is given by folding the cross section with the thermal flux of projectiles
impinging the target, which, for massive particles, is

〈σv〉 =

2
µij

∫∞

0
eijσ

∗(i(j, o)m, eij) exp(−eij/kT )deij
∫∞

0
e
1/2
ij exp(−eij/kT )deij

. (4)

In the case of photo-reactions it is

〈σv〉 =
c
∫∞

0
e
1/2
γ σ∗(i(γ, o)m, eγ) exp(−eγ/kT )deγ
∫∞

0 e
1/2
γ exp(−eγ/kT )deγ

. (5)

The transmission coefficients for the particle channels are obtained from the S-matrix for elastic scattering, which is
calculated for an appropriate optical model potential. The choice of the optical potential is one source of uncertainty.
An additional source of uncertainty comes from the level density, which is introduced because the summation in (2)
over the final states of the residue typically involves a huge number of terms. In order to carry out the sum, above
some excitation energy Emax

m one replaces it with an integral over the level density ρ(Em, Jm, πm)

To(E, J, π;Eo, Jo, πo) =

Eν
m<Emax

m
∑

ν

T ν
o (E, J, π;E

ν
m, J

ν
m, π

ν
m;Eo, Jo, πo; emo)

+
∑

Jm,πm

∫ E−E0

m

Emax
m

To(E, J, π;Em, Jm, πm;Eo, Jo, πo; emo)ρ(Em, Jm, πm)dEm. (6)
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Addressing the uncertainties arising from the optical potential and level density models is beyond the scope of this
paper, which is primarily focused on the uncertainties associated with the γ-transmission coefficients.

B. γ-Strength Models

The angular momentum of the photon is given by its multipolarity Jγ . Here we consider only the dipole radiation
since higher multipoles play an insignificant role for thermonuclear rates in astrophysics. Electric dipole radiation
(E1) dominates. The E1 photon has negative parity. Its transmission coefficient is expressed in terms of the strength
function fE1(Eγ),

Tγ(E, 1,−;Eγ , 1,−) ≡ TE1(Eγ) = 2πfE1(Eγ)E
3
γ . (7)

The magnetic dipole radiation (M1) is usually much weaker.The M1 photon and has positive parity. In terms of the
strength function fM1(Eγ), the M1 transmission coefficient is given by

Tγ(E, 1,+;Eγ , 1,+) ≡ TM1(Eγ) = 2πfM1(Eγ)E
3
γ . (8)

Because there is a limited amount of experimental data available for the M1 GDR, there are no systematic parameters
to describe it, unlike the situation for E1. For our calculations we have made use of the option in TALYS to describe
the M1 resonance in terms of Eq. (10), discussed below.
The cross section for dipole radiation absorption is

σγ(Eγ) = 3(π~c)2Eγ (fE1(Eγ) + fM1(Eγ)) , (9)

where Eγ is the incident γ-ray energy. It is the sum of the E1 and M1 γ-ray strength functions and transmission
functions that are obtained from experimental photoabsorption cross section data. Only the measurement of the
absorption of polarized gamma radiation can provide the individual E1 and M1 components.
The right side of expression (7) is assumed to depend only on Eγ , whereas the left depends on E as well. This is the

Brink-Axel hypothesis, which assumes that the ground state GDR can be built on each excited state. Traditionally,
the E1 strength functions have been described by the single Lorentzian (SLO) form of Brink-Axel [22],

fE1(Eγ) =
σGDRΓGDR

3(π~c)2
EγΓGDR

(E2
γ − E2

GDR)
2 + E2

γΓ
2
GDR

, (10)

where ΓGDR is the width and EGDR the energy of the giant dipole resonance (GDR), and σGDR stands for the
cross section at EGDR. The E1 GDR parameters are obtained from the RIPL-2 database [19]. In the case of M1,
EM1,GDR = 41A−1/3 and ΓM1,GDR = 4 MeV. By evaluating the function fM1,GDR = 1.58A0.47, one obtains the M1
strength function at 7 MeV. Applying Eq. (10) at 7 MeV yields σM1,GDR, and so the M1 GDR can be fully described
at all energies by Eq. (10).
A second description of the E1 GDR is the generalized Lorentzian (GLO) form of Kopecky-Uhl [23]. This approach

takes the excitation energy E of the compound nucleus into account,

fE1(Eγ) =
σGDRΓGDR

3(π~c)2

(

EγΓ(Eγ)
(

E2
γ − E2

GDR

)2
+ E2

γΓ(Eγ)2
+

0.7ΓGDR4π
2T 2

E5
GDR

)

,

Γ(Eγ) = ΓGDR

E2
γ + 4π2T 2

E2
GDR

. (11)

The quantity T in Eq. (11) is the nuclear temperature at the final state reached after emission or absorption of the
photon. If the back-shifted Fermi gas model (BSFG) is used it is given by [23]

T =

√

E −∆

a
, (12)

where E is the energy of the final state, a is the Fermi gas level density parameter and ∆ is the pairing correction.
The GLO was devised for (n, γ) reactions with thermal neutron capture. In this case E = En + Sn − Eγ where Sn

represents the neutron separation energy and En is the neutron incident energy.
The SLO and GLO models do not explicitly take into account the splitting of the GDR by deformation. Triaxial

deformation is built into the treatment of Ref. [24]. According to this model the E1 strength function is parameterized
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as a sum of three Lorentz curves, of spreading width Γk, each corresponding to a nuclear E1 dipole vibration along
one of the three principal axes. The resonance energies and widths of the nuclear GDR are characterized in terms of
the deformation parameters β and γ. The GDR centroid energies are obtained from symmetry-energy and surface-
stiffness, which in turn have been determined from a fit to finite range droplet model nuclear masses [25] with R =
r0A

1/3, r0 = 1.16 fm, J = 32.7 MeV and Q = 29.2 MeV. Within this frame work the E1 strength function is given by

fE1(Eγ) =
σGDRΓGDR

3(π~c)2
1.02

3

3
∑

k=1

EγΓk(Ek)

(E2
k − E2

γ)
2 + E2

γΓk(Ek)2
,

Γk(Ek) = 1.99 MeV

(

Ek

10 MeV

)δ

,

Ek =
EG

exp
(

√

5/4πβcos
(

γ − 2
3kπ

)

) ,

EG = ~c

(

8Jt

R2m∗

(

1 + u−
1 + ψ + 3u

1 + ψ + u

)−1
)1/2

, (13)

where the values of δ and ψ are 1.6 and 0.0768 respectively, and t = A2/(4NZ), while u = (1−ψ)µ and µ = 3Jr0/(QR).
The effective mass m∗=0.7m, where m refers to the mass of the proton. The parameters σGDR and ΓGDR are the
cross section and width of a spherical nucleus with the same mass. We refer to this E1 strength function model as
the triple Lorentzian (TLO).
In addition to these three E1 strength function models, there is also the model of Ref. [26], which assumes axial

symmetry. We refer to this model as the double Lorentzian (DLO), and note that it is used in the HF computer code
NON-SMOKER [27]. The GDR is composed of two Lorentzian dipole vibrations (k = 1, 2) along, and perpendicular
to, the axis of rotational symmetry. Taking into account the neutron-proton exchange term χ=0.2 [28], fE1(Eγ) is
given by

fE1(Eγ) =
σGDRΓGDR

3(π~c)2
1.2

3

2
∑

k=1

k
EγΓG,k(EG,k)

(E2
γ − E2

G,k)
2 + E2

γΓG,k(EG,k)2
,

ΓG,k(EG,k) =

√

Eγ

EG,k
(0.185EG,k + 0.57k|Gk−1|EG,kξ2) ,

EG,1 + 2EG,2 = 3EG, EG,2/EG,1 = 0.911η+ 0.089, (14)

where EG is given by Eq. (13) which was suggested by Ref. [29]. Eq. (14) is appropriate for deformed nuclei. The
static deformation parameter β0 has been obtained from the hydrodynamic droplet model of [30], which includes shell
structure and is based on the shell correction term. The quantity ξ2 is the root-mean-square value of ξ = β − β0,
which is the deviation of the deformation parameter β from its static value. The parameter η(β0) is the ratio of the
diameter of the nuclear symmetry axis to the perpendicular diameter as given by the hydrodynamic model, while G0

and G1 are given respectively by

G0 =
D

β0

(

−1

1 +D
+

0.08

1 + 0.08D

)

,

G1 =
−D

β0

(

−1

1−D
+

0.08

1− 0.08D

)

, (15)

and D is a dimensionless parameter containing the static deformation, equal to D = (4π/5)
−1/2

β0. For deformed
nuclei, EG is interpreted as the average peak energy of the two Lorentzians and is found from Eq. (13) using the
parameters t = 1, u = µ, r0 = 1.18, J = 36.8 MeV and Q = 17 MeV. In the event that the nucleus is spherical, the
sum over k in Eq. (14) disappears yielding EG,k = EG and ΓG,k = ΓG. The width in this case is given by

ΓG(EG) = αEδ
G + 2.35

√

5

8π
EGβ2, (16)

in which β2 is the root-mean-square of β. The dimensionless parameters α and δ are obtained from least-square
fits to experimental GDR widths for nuclei where not only the widths, but also EG and β2 are all experimentally
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known. The root mean square values β2 and ξ2 are calculated for a harmonic oscillator with the stiffness C2 and mass
coefficient D2, which are given by

C2 = −
∂2B

∂β2

∣

∣

∣

∣

β0

, D2 = D2irrote
(2.24−0.195Eshell), D2irrot =

3AmR2

8π
, (17)

where B is the binding energy and Eshell the shell correction energy as calculated in the hydrodynamic droplet model
of [30].

C. EPACS

Experimental (γ, γ′) cross sections were taken over an energy range of Emin
(γ,γ′) = 4.5-6 MeV up to the neutron

separation energy, Emax
(γ,γ′) = Sn [14–18]. For the nuclei 94−100Mo photon-scattering data below 4 MeV also exists

[31–35]. However, the extraction of a continuous strength function from these data is problematic because only a few
discrete transitions exist. Therefore, we apply the approach described below. Radiative strength functions in the γ-ray
energy range up to about 8 MeV have also been derived from measuring particle-γ coincidences following inelastic
scattering of 3He from even-mass Mo targets and following (3He,αγ) reactions on odd-mass Mo isotopes [36], which
are at variance to the (γ, γ′) results of Refs. [14, 15]. In contrast to the direct measurement of the γ-absorption cross
section in Refs. [14, 15] however, the strength functions of Ref. [36] are derived in an indirect way. These reactions do
not deliver an absolute scale for the electromagnetic strength, therefore the required information is taken from (n, γ)
data. Studying the (n, γ) reaction on 96Mo, Ref. [37] came to the conclusion that the data of Ref. [36] can be well
accounted for with the GLO strength function model (except for the apparent up-bend at low energy, which according
to Ref. [38] is not of large importance for the nuclei considered here).
The selection of the nuclei for the present study was motivated by the strong pygmy dipole strength in 88Sr, 90Zr

and 139La, and the particular astrophysical relevance of the p-process nuclei 92,94Mo, as outlined in the Introduction.
In addition, the Mo chain constitutes a sequence of isotopes ranging from spherical to deformed shapes. The (γ, γ′)
absorption cross sections from Refs. [14–18] cover an energy region Emin

(γ,γ′) < Eγ . Sn, with E
min
(γ,γ′) = 4 MeV. They

smoothly connect with the absorption cross sections from Ref. [39], which allows us to derive the experimental dipole
strength functions shown in Figs. 2 and 3. Below Emin

(γ,γ′) there is data on transitions to discrete levels, which are also

included in Figs. 2 and 3. However, we consider these values as irrelevant for the following reason: in the energy
range 0 < Eγ < Emin

(γ,γ′) the strength function is only used to calculate the γ-emission after particle capture. It

describes transitions between dense compound levels and is expected to vary smoothly as a function of energy. The
photoabsorption, on the other hand, reaches few discrete levels which only appear above about 2 MeV. Obviously, the
transition strength to these discrete levels must be different from the average transition strength between compound
levels. Therefore we have to use a model to describe the strength function for Eγ < Emin

(γ,γ′). We have chosen to use

the TLO, which reproduces the experimental strength functions reasonably well for Eγ > Emin (cf. Figs. 2 and 3).
In summary input photoabsorption cross sections for each nucleus were produced in the following manner:
(i) For the Mo isotopes in the low-energy region 0 ≤ Eγ ≤ Emin

(γ,γ′) the strength function was estimated according

to the TLO parameterization proposed in Ref. [24] and set out in Eq. (13). Deformation parameters were taken from
Ref. [35]. For the nuclei 88Sr, 90Zr and 139La, zero deformation was assumed. As such, the TLO low-energy strength
function for these isotopes coincides with a single Lorentzian.
(ii) In the energy region Emin

(γ,γ′) ≤ Eγ ≤ Sn, the (γ, γ′) experimental data were taken from Refs. [14–18].

(iii) For the region Sn < Eγ < EGDR +∆ (where ∆ = 8 MeV has been arbitrarily selected), (γ, n) data for 88Sr,
90Zr, 92−100Mo, and 139La were taken from Refs. [40–43], respectively. These data are tabulated in the EXFOR data
base [39]. Later measurements [44] suggested that the data in Refs. [40, 42, 43] should be scaled by a factor of 0.85.
This recommendation was confirmed in recent photoactivation experiments on 92−100Mo [5] and 144Sm [45]. In these
studies, 92Mo(γ, n) and 144Sm(γ, x) reaction yields (x = n, p, α) were also compared with the predictions of TALYS.
In accordance with these recommendations, a normalization factor of 0.85 has been applied to the EXFOR data points
for all of the nuclei in this study, except for 90Zr, where the data is taken from Ref. [44].
The combination of the three photoabsorption cross section sources listed above (two experimental and one theo-

retical) define our photoabsorption input, and is henceforth referred to as the ”experimental photoabsorption cross
section” (EPACS).
From a conceptual standpoint one should remark that EPACS is a realistic strength function for γ-induced reactions

where Eγ ≥ Emin
(γ,γ′). Its use in (particle,γ) reactions relies on the assumption that the strength function does not

depend on the energy of the compound nucleus, being the same as for the ground state. The SLO, DLO and TLO
represent parameterizations of the (γ, n) cross sections, and the same remarks as for the EPACS apply. The GLO



7

is constructed for (n,γ) reactions. It includes a modification of the transition strength caused by excitations of the
nucleus, which is based on the Fermi Liquid theory for a finite temperature. This is the temperature correction term
in GLO, which may be considered as an estimate for the possible deviations from the Brink-Axel hypothesis. The
temperature correction becomes negligible when the value of Eγ is comparable with Sn −∆.

D. Input Data

To facilitate the comparison between the SLO and GLO strength functions, Eqs. (10) and (11), and those based on
the new (γ, γ′) data, we have modified the subroutine in the computer code TALYS (Version 1.2) [20] that calculates
the γ-ray strength as a function of energy. Our modification derives the γ-ray strength function using Eq. 9 and

TE1(Eγ) + TM1(Eγ) = 2π (fE1(Eγ) + fM1(Eγ))E
3
γ , (18)

where σγ is the experimental photoabsorption cross section and Eγ is the incident gamma ray energy. Clearly, this an
appropriate way to determine the γ-transmission for (γ,particle) reactions. Using it in (particle,γ) reactions implicitly
assumes that the Brink-Axel hypothesis is applicable.
The input data containing the experimentally obtained photoabsorption cross sections has been energy-binned so

as to be consistent with, and thus preserve, the inherent energy grid used for calculations throughout TALYS. Where
TALYS required the photoabsorption cross section at energies which did not correspond to a data point, a cubic
spline interpolation was performed on the data set to obtain it. Through Eqs. (9), and (18), the strength function
and transmission coefficient were calculated.
In the proceeding sections we discuss the reaction cross sections and reaction rates calculated using TALYS. We

have performed these calculations using the SLO, GLO and our EPACS γ-strength functions, as well as the DLO
γ-strength function, Eq. 14. Level densities play a sensitive role in the cross section calculations. However because we
are motivated by the impact of the γ-ray strength function, we perform all calculations using the TALYS option for the
constant temperature model (CT) [46], which corresponds to the default level density option. The width fluctuation
correction factor calculation was performed by means of the model [47–49]. The experimental data employed in
the next section are for unpolarized reactions (E1+M1) only. Consequently when using the data in conjunction
with a TALYS calculation, care must be taken not to include the M1 contribution twice: once implicitly from the
measurement itself and once from the TALYS calculation. To prevent this double inclusion, TALYS calculations were
performed with the M1 contribution scaled to zero. To reiterate, M1 was scaled to zero in Eq. (9) only when a
calculation was being performed with the unpolarized photoabsorption data as input. For calculations not involving
the experimental data, M1 was obtained as outlined in Sec. II B. All other required inputs (such as the optical model
potential (OMP) parameters, etc.) were provided by the default options in TALYS.

III. REACTION CROSS SECTIONS

A. l = 1 Strength Functions

The measured and theoretically determined primary photoabsorption cross sections, expressed in terms of the l=1
strength function, are exhibited in Figs. 2 and 3 as a function of gamma ray energy over an energy range of 0-14 MeV,
i. e., below the peak of the GDR.
The black symbols refer to the data points from Refs. [14–18] below the neutron threshold, and from Ref. [39] above,

the latter renormalized as described in Sec. II D. Pink curves are the DLO E1 strength functions. Black curves on
the Mo isotope plots refer to the TLO E1 strength function, given by Eq. (13). Because no deformation was assumed
for the nuclei 88Sr, 90Zr and 139La, black curves on the Sr, Zr and La isotope plots represent the TLO E1 strength
calculations for a single Lorentzian. Error bars for experimental data points are shown on the plots. Typically for
energies greater than 7-8 MeV error bars appear very small, owing to the logarithmic scale and partially changing
the appearance of the symbols from solid circles to squares. Red points illustrate the strength function at very low
energies, in the region where the incident photon populates discrete states. In this region none of the strength function
models are appropriate. Red points are not used as input in the calculations.
The EPACS for each nucleus is a composite of the three regions, illustrated for clarity in Figs. 2 and 3. In region

I (0 ≤ Eγ ≤ Emin
(γ,γ′)) the EPACS is constructed from the TLO parameterization. As discussed above, for the Sr, Zr

and La isotopes no deformation is considered and so the TLO is in these cases coincides with a single Lorentzian. In
region II (Emin

(γ,γ′) ≤ Eγ ≤ Sn) the EPACS is composed of the experimental data from Refs. [14–18]. Lastly in region

III ( Sn < Eγ < EGDR+∆, ∆ = 8 MeV) the EPACS is made up of data available in the EXFOR database [39], scaled
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where appropriate by a factor of 0.85 (see Sec. II D). The EPACS are compared to the E1 strength generated by
TALYS, where the thick red and the green curves represent the GLO model [23] and the SLO model [22] respectively.
Thin red lines depict the M1 strength, which is smaller than the E1 strength in all of the examples.
Because the GDR parameters used in connection with the SLO and GLO models in TALYS are identical with those

in RIPL-2 [19] and correspond to the data in EXFOR [39], the above mentioned correction factor of 0.85 has been
applied to σGDR in the data files enclosed in TALYS for 92−100Mo, 88Sr, and 139La. This ensures that rescaled data
are compared consistently with rescaled calculations. For the 90Zr case, the σGDR remained un-scaled as explained
in Sec. II C.
The region of the GDR is in general well described by both GLO, SLO and DLO models for all of the nuclei. In

the example of 92Mo, the GLO and SLO models slightly underestimate the amplitude of the GDR. This is because
the black data points in this region include a contribution from the (γ, np) reaction [42]. The TLO parameterization
reproduces the position and amplitude of the GDR in all cases. In all but one case (92Mo) the TLO parameterization
predicts a low-energy E1 strength function which is smaller than that given by both the GLO and SLO models.
For this particular example at energies greater than 9 MeV the TLO parameterization agrees much better with the
calculations of DLO. In all cases for energies less than about 4 MeV, the DLO results are the smallest, whereas above
12 MeV, they tend to be larger than the other models. Differences between the models and the measured data tend
to diminish with increasing energy. To reiterate, the TLO expression has been adopted in the very low Eγ region of
the EPACS where experimental data, if available, is only for discrete states. In the majority of cases, the TLO values
are within a factor of two of those predicted by the SLO model. The exception is for the triaxial nucleus 100Mo, where
the nuclear deformation has a strong impact on the photo-response function.
Figures 2 and 3 demonstrate that whereas the γ-ray strength function models agree in general with the measured

data, there are deviations with respect to the SLO, GLO, DLO, and TLO models at the low-energy tail of the GDR
for all of the nuclei. The form of this deviation is an extra strength or a structure in the strength function in the
energy range of 6-12 MeV. The cause of the structure in the Mo isotopes remains an open question [50]. The character
of the strength function is quite different in the case of 139La, plotted in panel (b) of Fig. 3. For E = 6.5 MeV (Sn =
8.78 MeV) there is approximately a factor of 3-4 increase in the measured strength function, compared to the GLO,
SLO and DLO models. Enhancement of the photoabsorption strength in this region has been interpreted as a pygmy
dipole resonance [18]. A similar interpretation has been put forward for strength function enhancement observed in
the systems 88Sr and 90Zr, plotted in panels (c) and (d) of Fig. 3 [16, 17]. In the case of 90Zr there is an enhancement
of a factor 1.4-1.7, compared to GLO and SLO models, at an energy of 9.5 MeV (Sn = 11.97 MeV).

B. A(γ,particle) Reaction Cross Sections

To investigate the sensitivity of statistical model cross section calculations on the strength function and possible
GDR low-energy tail strength enhancements, reaction cross section calculations were performed. For each nucleus,
the (γ, n), (γ, p) and (γ, α) reaction cross sections were calculated using the EPACS (details explained above). The
results were compared to identical calculations performed using photoabsorption cross sections given by the GLO,
SLO and DLO models. Shown in Figs. 4 and 5 are the calculated (γ, n) and (γ, p) and reaction cross sections for the
nuclei 92Mo, 100Mo, 90Zr and 139La. Red curves again refer to the GLO model, green dashed curves to the SLO model,
pink dotted curves to the DLO model and blue dotted curves to the EPACS results (cf. Supplement for additional
nuclei).
Inspection of Fig. 4 shows that strength fluctuations in the absorption cross sections between the neutron-separation

energy and about 2 MeV below the GDR peak, visible in the EPACS strength functions plotted in Figs. 2 and 3, show
up as fluctuations in the reaction cross section. Of course, fluctuations at energies less than the neutron threshold
energy do not influence the calculated (γ, n) cross sections, i. e., there is no enhancement in the 90Zr(γ, n) or 139La(γ, n)
cross sections as a result of enhancement below Sn, e. g., at 9.5 MeV or 6.5 MeV. A disagreement of a factor of 2-3
is observed between the GLO, SLO and DLO models near the threshold for 100Mo and 139La, whereas for 92Mo and
90Zr the curves agree fairly well. Again, with the exception of 92Mo, towards the peak of the GDR the differences
between the models becomes small, reflecting the convergence of the various strength function models in this region.
In most of the (γ, n) cases, the EPACS reaction cross sections are located between the DLO and GLO models. An

exception to this is 90Zr(γ, n), see Fig. 4 panel (c). For 92Mo(γ, n), the EPACS reaction cross section is larger than
the other model predictions (maximum deviation from SLO calculation is a factor of ∼ 1.4, located at an energy of
16.8 MeV) because the EPACS included a contribution from the (γ, np) reaction [42]. For 90Zr on the other hand,
EPACS cross section predictions are smaller than those from SLO, GLO and DLO (maximum deviation is a factor
of ∼ 0.6, at an energy of 13.0 MeV) because these three strength function models overestimate in this energy region
compared to the EPACS data, see Fig. 3.
For the (γ, p) reactions where the proton threshold is lower than the neutron threshold (i. e., for the isotopes
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92,94Mo, 90Zr and 139La), a lower energy region of the strength function is probed. Figure 5 show that for the (γ, p)
reactions there is a reasonably good agreement between the EPACS reaction cross sections and the SLO, GLO and
DLO ones. In most cases the EPACS (γ, p) cross sections follow the other model cross sections very closely, within a
factor of 1.5 or better, e. g. 96−100Mo(γ, p) (cf. Supplement) and 139La(γ, p).
A similar agreement exists for the (γ, α) reaction cross sections (cf. Supplement). As with the (γ, n) calculations,

the reaction cross sections calculated from the EPACS lie between the reaction cross sections yielded by the GLO
and SLO models. In the case of 92Mo, the factor of 2 enhancement (compared to GLO) in the EPACS at an energy
of 11.5 MeV, leads to roughly a factor 2 increase (compared to GLO) in the reaction cross section.
Summarizing this discussion, differences between the γ-strength function models are clearly reflected in the cal-

culated cross sections. The EPACS input generally yields results similar to the traditional SLO and GLO model
calculations above the particle thresholds. Where there are differences in the reaction cross section, for instance
92Mo(γ, a)B and 139La(γ, a)B, it is a reflection of deviations of the EPACS with regard to the SLO and GLO models
at energies above the particle thresholds.

C. B(particle,γ)A Cross Sections

Calculations of (n, γ), (p, γ) and (α, γ) reaction cross sections have been performed in order to test the impact of
the EPACS on radiative capture cross sections. Results of the (n, γ) calculations using EPACS and leading to the
product nuclei 92,100Mo, 90Zr and 139La, are shown in Fig. 6 compared to identical calculations performed with the
GLO, SLO and DLO models (cf. Supplement for additional nuclei).
When the incident neutron energy is low, the average radiative capture width is only from s-wave. Following

the prescription of Ref. [51], it is the default setting in TALYS to normalize the γ-ray transmission coefficients to
the average radiative capture width at the neutron threshold. In the spirit of investigating the sensitivity of the
calculations to strength function model, this default was modified so that the γ-strength function was not scaled, and
as such came directly from GDR parameters.
Figure 6 shows that in all cases, the cross section predictions are sensitive to the strength function model choice, with

the SLO model producing cross sections between a factor of ∼2.0 and ∼3.5 larger than GLO ones. In virtually all cases,
at energies less than 1–2 MeV, both the EPACS and the DLO reaction cross sections are between these values, being
higher than the GLO ones and lower than the SLO ones. However at energies above 3 MeV, the EPACS predictions
for the reactions 91Mo(n, γ), 99Mo(n, γ) and 138La(n, γ) are larger than both SLO and GLO models, corresponding
to the fact that for these nuclei the EPACS strength function is larger than the model predictions. This is confirmed
by the DLO calculation for 91Mo(n, γ), which is also larger than the SLO and GLO cross sections, in accordance with
the larger DLO E1 strength for 92Mo. More specifically, the EPACS La and Zr cross section enhancement comes from
the distribution of the extra neutron sub-threshold strength. For La, the maximum enhancement is approximately a
factor of 1.3 and 2.0, compared to SLO and GLO respectively. The γ-ray strength function is not responsible for the
structure feature at about 1–1.5 MeV however, this is generated by the lowest excited state in the (n, n′) channel.
In Fig. 7 reaction cross sections calculated with the GLO, SLO and DLO models, and the EPACS input are plotted

against experimental data from [52, 53] for the reactions 95Mo(n, γ)96Mo (panel (b)) and 97Mo(n, γ)98Mo (panel (a)).
To evaluate the influence of the level density we compare calculations using the γ-strength models combined with the
CT level density (panels (a) and (b)), with identical calculations using the BSFG level density model (panels (c) and
(d)).
Compared to the CT, the BSFG cross sections are increased globally by a factor of ∼ 1.2–2.0. Changes in the

relative positions of the models reflect the differences in the energy dependence of the level densities, which are folded
with the strength functions. Using the CT level density the experimental 95Mo(n, γ)96Mo and 97Mo(n, γ)98Mo data
are described very well by the SLO model and reasonably well by the EPACS, being within a factor of 1.7 in the
former, and 1.5 in the latter. The GLO cross sections however are a factor of 2.5 lower than the experimental data
when combined with CT. For the BSFG level density calculations, EPACS provides the closest description of the data
for both 95Mo(n, γ)96Mo and 97Mo(n, γ)98Mo, while SLO overshoots the data and GLO, though still lower, is closer
to the data for both reactions than it was for the CT calculations. For both reactions, the DLO predictions appear
to agree well with the data.
The general tendency of SLO and GLO predictions shown here is similar to the one found in the calculations of

Ref. [23], where SLO and GLO calculations were compared with various experimental (n, γ) cross sections. Their HF
calculations used the BSFG level density and another level density model (KRK), suggested in Ref. [54]. For the four
nuclei considered by Ref. [23], the GLO combined with the BSFG came the closest to the data, whereas they found
SLO to be high. For the KRK model, they found the data to be between the predictions of SLO and GLO, like in
panels (c) and (d) of Fig. 7. Using the level density model of Ref. [55], Ref. [38] also found that the GLO model was
the most suitable for describing experimental 98Mo(n, γ) data. Though these results appear to be at variance with
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those presented here, they in fact highlight that other uncertainties in aspects of the HF calculation, such as level
densities and width fluctuation corrections, can make it problematic to evaluate which of the considered strength
function models provides the best description of experimental (n, γ) cross sections. Comparing panels (a) and (b)
of Fig. 7 with panels (c) and (d) serves as an illustration of the impact of level density model uncertainties on the
calculations considered here.
Radiative proton capture reactions on the nuclei 91,99Nb, 89Y and 138Ba are plotted in Fig. 8, (cf. Supplement for

additional nuclei). These results show similarity to the (n, γ) reactions, discussed above, in that SLO tends to predict
higher, and GLO lower cross sections. In general, both the EPACS and the DLO yield results which are very close to
those of SLO, with differences not exceeding typically a factor of 1.5, whereas compared to GLO, the deviations can
be as much as a factor of 3. Also shown on Fig. 8, where relevant, is the opening of the neutron exit channel. This is
responsible for the drop in the 138Ba(p, γ) cross section (panel (d) of Fig. 8) visible at 2.6 MeV.
In Fig. 9 we compare (p, γ) calculations using CT and BSFG level densities (panels (a) and (b) respectively)

combined with SLO, GLO, DLO and EPACS strength functions, with experimental data taken from Ref. [56]. For
clarity, panels (c) and (d) show zoomed regions (over an energy region of 1 MeV) of panels (a) and (b).
The overall shape of the data is described well by all of the models, as well as EPACS, for both the BSFG and the

CT models. Consistent with the (n, γ) cross sections, the GLO is lower than the SLO. Using the BSFG level density
instead of the CT, shifts the GLO closer to the data (cf. panel (b)). Up to an energy of 3.7 MeV, agreement between
EPACS and the experimental data is excellent in both cases. Above this energy the agreement is not as good, however
deviations do not exceed a factor of 2.8 for the CT case and a factor of 3.8 for the BSFG, both occurring at an energy
of approximately 4.4 MeV.
The (α, γ) reaction cross sections (cf. Supplement) again demonstrate that SLO predictions are larger than GLO

ones. In most cases EPACS results are between the two models. EPACS yields cross sections marginally larger
than SLO for the reactions 88Zr(α, γ) and 86Sr(α, γ), in keeping with the fact that 92Mo and 90Zr have some extra
strength in their respective photoabsorption cross sections compared to the SLO and GLO models. The presence of
the low-energy resonance in 139La strength function leads to a 135Cs(α, γ) rate which is ∼1.2–2.0 greater than the
SLO rate, and ∼1.5–3.5 greater than the GLO rate.
In summary we remark that GLO calculations are in all cases low compared to SLO, DLO and EPACS. The

comparison with experimental (n, γ) and (p, γ) cross sections in this paper and in Refs. [37, 57–59] seems to suggest
that either EPACS or GLO, combined with the BSFG level density provides the best description of the experimental
data. Enhancement features in the strength function (and consequently, if at an energy above particle threshold, in
the (γ, n) cross section) are washed out due to the gamma cascade. However, enhancement in the strength function
(e. g., 92Mo and 139La) does lead to a general enhancement in the various cross sections.

IV. STELLAR REACTION RATES

A. A(γ,particle)B

Stellar photodissociation reaction rates are calculated in TALYS from the expression

λ∗(γ,a)(T ) =

∑

µ(2J
µ + 1)λµ(γ,a)(T ) exp(−E

µ
x/kBT )

∑

µ(2J
µ + 1) exp(−Eµ

x/kBT )
, (19)

where Jµ represents the levels of the target nucleus, µ labels the thermally populated state, and Eµ
x stands for the

excitation energy of that state. Photodissociation rates λµ(γ,a)(T ) for individual states are found from the integral

of a Planck black-body spectrum n(Eγ , T ) (which describes the energy distribution of the stellar γ-rays) and the
photodissociation cross section

λµ(γ,a)(T ) =

∫ ∞

0

c nγ(E, T )σ
µ
(γ,a)(E)dE. (20)

To understand the potential impact of our EPACS on nuclear astrophysics, stellar (γ, n), (γ, p) and (γ, α) reaction
rates were calculated by means of TALYS. The results were compared with identical calculations performed using the
SLO, GLO and DLO models. Results for the (γ, n) reaction rates for 92,100Mo, 90Zr and 139La are plotted on the
left axis of Fig. 10. Plotted on the right axis are the ratios of the reaction rates to the SLO results. The choice of
the SLO model as the “base” is somewhat arbitrary, but is useful because it allows the smaller variations between
the models, which are not visible on a log scale, to become apparent. Inspection of Fig. 10 immediately shows that
between the SLO and GLO results, the (γ, n) reaction rate is sensitive to within a factor of at most 3 to the choice of
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strength function model. This sensitivity does not show a strong dependence on temperature, remaining more or less
constant. Our EPACS yield (γ, n) reaction rates which either fall between the limits delineated by the GLO and SLO
(cf. panel (b)), or else are enhanced compared to the GLO and SLO predictions (cf. panels (a), (c) and (d)). The
enhancement appears to be minor however, a factor of ∼1.1–1.3. (It is stressed that the reaction rate calculations
include cross sections with contributions arising from excited states of the target nucleus.)
Displayed in Fig. 11 are the (γ, p) reactions, where once again the ratio of the reaction rates to the SLO reaction

rate are shown as thin dot-dashed lines and are plotted on the right axis. The sensitivity of the (γ, p) reactions to the
choice of strength model appears to show some temperature dependence for nuclei where the proton separation energy
is lower than the neutron separation energy (i. e. 92Mo, 90Zr, and 139La), presumably because the cross sections for
these reaction rates have probed a lower region of the photoabsorption cross section. In all cases however SLO predicts
larger rates than GLO, by up to a factor of 2. SLO also predicts larger rates than DLO, but the enhancement tends
to be very small. As for the (n, γ) calculations, the EPACS results are enhanced compared to SLO and GLO for the
nuclei 92Mo, 90Zr, and 139La, though enhancement is relatively minor.

B. B(particle,γ)A

Similar reaction rate calculations have been performed using TALYS for the reactions (n, γ), (p, γ) and (α, γ).
Displayed in Fig. 12 are the (n, γ) reaction rates for 91,99Mo, 89Zr and 138La. As was the case for the (γ, n) reactions,
these rates also show about a factor 3 sensitivity to the strength function model, a factor which does not differ
significantly with temperature. For all but 99Mo(n, γ), panel (c), the EPACS predict results that are enhanced
compared to the SLO and GLO models. The enhancement is about 7–10% compared to SLO, and 100–150% when
compared to GLO results. For the reaction 91Mo(n, γ), the enhancement reflects the under-prediction of the peak
of the γ-strength by both the GLO and SLO models (cf. panel (a) of Fig. 2). DLO also shows an enhancement
compared to SLO and GLO due to the same reason. For 138La(n, γ), and 89Zr(n, γ), the EPACS enhancement is due
to the extra strength present in the respective experimental strength functions (cf. Supplement for additional nuclei).
As with the γ-induced reactions, it is apparent that the choice of strength function model, SLO or GLO, produces

a difference of up to 3 in the (particle,γ) reaction rate, with SLO again predicting the higher values. For the (p, γ)
rates, EPACS predicts some enhancement compared to SLO (no more than 5%) for 91Nb, 89Y and 138Ba. These
reactions correspond to the nuclei 92Mo, 90Zr and 139La, and were also found to be enhanced compared to the SLO
and GLO models for the (n, γ) reactions. The EPACS enhancement compared to the SLO and GLO predictions
becomes stronger with increasing temperature. This is a consequence of the charged-particle reaction temperature
dependence, which comes about due to the Coulomb barrier. Because of this effect, low-energy strength enhancement,
present for instance in 139La (panel (b) of Fig. 3) plays a greater role at higher temperatures.

V. DISCUSSION

A major difference between the EPACS strength function and other models is the appearance of resonance-like
structures, like the one at 6.5 MeV in 139La (cf. panel (b) of Fig. 3). Considering (γ,particle) reactions, such
structures will only have consequences if they are located above the particle emission threshold. The (γ, n) cross
section for 98Mo is an example (cf. Supplement).

The impact of a resonance-like enhancement of strength below the neutron threshold observed in the (γ, γ
′

) exper-
iments is noticed in the (particle,γ) channels as follows. The primary γ-rays are emitted with a probability that is
approximately given by the black-body spectrum n(Eγ , T ) multiplied by the dipole strength function, where T is the
temperature of the compound nucleus. The total cross section is the integral over this distribution. The maximum of
the black-body spectrum lies at 2.8 T and its full width at half maximum is 6.3 T , where T is given by Eq. (12). For
(n, γ) reactions with thermal neutrons, the temperature is about 0.4 MeV and the strength function is folded with
a distribution that has a maximum at Sn − 1.1 MeV and a width of 2.5 MeV. With increasing neutron energy the
maximum of the black-body spectrum Emax moves to higher energy and its width ∆ increases, i. e.,

Emax = E + Sn − 2.8T (E + Sn),

∆ = 6.1T (E + Sn),

T (E + Sn) ≈
√

(E + Sn)8/100. (21)

Hence, most of possible resonances in the strength function will be washed out and not show up as a bump in the
cross section. If they appear on top of a smooth strength function, such as SLO, they will somewhat increase the cross
section over a wide region. Only very strong resonances may generate a shallow bump centered at E = Eres−Sn+2.8T ,
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where Eres is the energy of the resonance in the strength function. For the charged-particle reactions, the situation
is analogous.
The pygmy resonance in the strength function of 139La causes an increase of the (n, γ) reaction cross section by

a factor of 1.3 to 2.0, relative to the SLO and GLO models, respectively. However the peak structure seen in the
EPACS strength function is actually washed out in the (particle,γ) cross sections. For the case of 92Mo, the low
SLO and GLO strength functions compared to the EPACS (and DLO) in the energy region between 8-13 MeV result
in an enhancement of the EPACS (and DLO) (γ, n), (γ, p), (γ, α) and inverse reaction cross sections. For other
cases, such as (γ, n) reactions on 96Mo and 98Mo, we find no significant difference between EPACS, SLO and GLO
that may be attributed to structures in the strength function below the neutron threshold, plotted in Figs. 2 and 3.
This is not surprising because the low-energy EPACS points fluctuate around SLO and GLO values. The above said
holds true also for the charged-particle induced reaction cross sections. Although they are strongly suppressed by the
Coulomb wall, the ratios between the EPACS, SLO and GLO are similar to those of the neutron-capture reactions.
In particular, resonances in the γ-strength function are washed out. As a new feature, the relatively low γ-emission
probability (as compared to the one for neutrons) generates irregularities in the cross section, which are caused by
the neutron emission.
For the stellar reaction rates, the ratios between EPACS and the other models are nearly constant. This can be

understood from the relatively small change of the mean impact energy of the neutrons, which ranges between 100
and 300 keV over the temperature range 2-6 GK. Within this energy range the ratios of the (n, γ) cross sections do
not change much (cf. Fig. 12 and Supplement). Although the cross section in the (p, γ) and (α, γ) channels changes
strongly over the energy range, the ratio between the models is also approximately constant. As a consequence, the
ratio between the models in the stellar reaction rates is also roughly constant.
Addressing the rate changes attributable to the strength function variations, Ref. [3] found that variations in the

(n, γ) and (p, γ) rates had almost no effect on the p-nuclei abundances. Comparing just the reaction rates calculated
with the TALYS code, Figs. 10, 11 and 12, we find that SLO produces reaction rates 3 times greater than GLO, and
that EPACS predicts rates enhanced by a minor amount compared to SLO. It is therefore unlikely that the reaction
rates calculated from our EPACS would significantly impact the abundances of the p-nuclei, even owing to presence of
low-energy strength enhancement. More critical to the p-nuclei abundances are the (γ, p) reactions, and the reaction
92Mo(γ, p)91Nb has been identified as key importance [3]. For the (γ, p) channel we find agreement between the
reaction rates calculated with SLO, GLO and EPACS to be within a factor of 1.5 for 92Mo, 2 for 100Mo, 1.3 for 90Zr
and 2.5 for 139La, where we also remark that EPACS is enhanced compared to both SLO and GLO. However it seems
unlikely that there would be a significant p-process impact from these values.

VI. CONCLUSIONS

By combining new (γ, γ′) cross section data with existing (γ, n) cross sections and a three-Lorentzian parameteriza-
tion, total input photoabsorption cross sections (called EPACS) have been produced for the isotopes 92,94,96,98,100Mo,
88Sr, 90Zr, and 139La. Using these EPACS inputs we have analyzed the reactions A(γ, n), A(γ, p), and A(γ, α), as well
as the inverse reactions. This has allowed us directly investigating the impact of features of observed γ-ray strength
function. This is particularly relevant for the isotopes 90Zr and 139La which show an especially pronounced strength
function enhancement, with respect to the often used GLO [23], SLO [22] and DLO [26] parameterizations of the
strength function.
The calculations not only probed the sensitivity of cross sections and reaction rates to the γ-strength function,

but also tested the accuracy of the currently used SLO, GLO and DLO models. In particular, the impact of the
enhancement of the γ-ray strength functions in the region of the pygmy dipole resonance on (γ,particle) and (particle,γ)
cross sections and reaction rates has been evaluated. Besides the nuclear reaction rates in a temperature range relevant
for stellar nucleosynthesis, we have presented strength functions with the aim to deliver a more precise data basis for
calculations of cross sections of transmutation-relevant reactions, such as neutron capture.
The A(γ,particle) cross sections directly reflect the strength functions, including possible resonance structures above

the reaction threshold. In the case of the A(γ, p) and A(γ, α) stellar reaction rates, absorption is restricted to the
relatively narrow energy window set by the thermal distribution of the photon bath and the penetration probability
of the Coulomb wall. Resonances within this window will dramatically change the rate. For A(γ, n) reactions
resonances at the threshold also drastically change the rate. The resonance around 6.5 MeV observed in 139La does
not seem to meet these conditions. The calculated rates reflect the overall smooth trends of the various strength
functions studied. In most cases GLO strength functions are lower, DLO and SLO ones larger, than the EPACS
values. The resulting variations of the reaction cross sections and the stellar rates are within a factor of 2-3. In the
case of the capture reactions, A(particle,γ), the large energy spread of the γ-cascades washout possible resonance
structures in the strength function. However, pronounced enhancements of the strength as found for 139La do lead
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to a modest increase of the (n, γ) cross section. The variations of the calculated reaction cross sections and rates
caused by the different strength function models were found to be comparable with differences in level density models
and fluctuation corrections used in statistical model calculations. The comparison of experimental cross sections
for 95Mo(n, γ), 97Mo(n, γ) and 93Nb(p, γ) with the calculated ones reveals the following: EPACS strength functions
combined with the BSFG level density model produces cross sections which compare well with experimental ones.
GLO and BSFG, which is a commonly used combination, also produce results which compare well with experiment,
particularly in view of the additional examples given in Ref. [23]. Combining GLO with the CT model however seems
to give cross sections which are too low. This may be a more general result. The combination of SLO and the CT
works well for the nuclei in this study. However the combination of SLO and the BSFG gives cross sections which are
too large, a result which is consistent with additional examples from literature (cf. Ref. [23]).
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Bečvář, and M. Krtička, Phys. Rev. C 77, 064321 (2008).

[16] R. Schwengner, G. Rusev, N. Benouaret, R. Beyer, M. Erhard, E. Grosse, A. R. Junghans, J. Klug, K. Kosev, L. K.
Kostov, C. Nair, N. Nankov, K. D. Schilling, and A. Wagner, Phys. Rev. C 76, 034321 (2007).

[17] R. Schwengner, G. Rusev, N. Tsoneva, N. Benouaret, R. Beyer, M. Erhard, E. Grosse, A. R. Junghans, J. Klug, K. Kosev,
H. Lenske, C. Nair, K. D. Schilling, and A. Wagner, Phys. Rev. C 78, 064314 (2008).

[18] A. Makinaga, R. Schwengner, G. Rusev, F. Dönau, S. Frauendorf, D. Bemmerer, R. Beyer, P. Crespo, M. Erhard, A. R.
Junghans, J. Klug, K. Kosev, C. Nair, K. D. Schilling, and A. Wagner, Phys. Rev. C 82, 024314 (2010).

[19] T. Belgya, O. Bersillon, R. Capote, T. Fukahori, G. Zhigang, S. Goriely, M. Herman, A. V. Ignatyuk, S. Kailas, A. Koning,
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Mitchell, J. Rekstad, A. Schiller, S. Siem, A. C. Sunde, A. Voinov, and S. Ødeg̊ard, Phys. Rev. C 71, 044307 (2005).
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Kroll, M. Krtička, G. E. Mitchell, J. M. O’Donnell, W. Parker, R. S. Rundberg, J. L. Ullmann, D. J. Vieira, C. L. Walker,
J. B. Wilhelmy, J. M. Wouters, and C. Y. Wu, Phys. Rev. C 84, 014306 (2011).

[60] M. Scheck, P. von Brentano, C. Fransen, U. Kneißl, C. Kohstall, A. Linnemann, D. Mücher, N. Pietralla, H. H. Pitz, C.
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Taken from Rapp et al. [3].
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139La (d).
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FIG. 9: (Color online) Upper plots: Comparison of experimental data [56] and calculated 93Nb(p, γ)94Mo reaction cross sections
using the CT level density. (Upper right) Zoomed in section highlighting detail. Lower plots: Same as upper plots, but using
the BSFG level density model.



25

10-10

10-5

100

105

1010

N
A
<

σv
>

 [g
 c

m
3  s

-1
]

a) 92Mo(γ,n)

GLO
SLO
DLO

EPACS

10-10

10-5

100

105

1010

2 2.5 3 3.5 4 4.5 5

N
A
<

σv
>

 [g
 c

m
3  s

-1
]

T [K]

b) 100Mo(γ,n)

0

0.5

1

1.5

2

R
at

io
 to

 N
A
<

σv
>

S
LO

c) 90Zr(γ,n)

2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

R
at

io
 to

 N
A
<

σv
>

S
LO

T [K]

d) 139La(γ,n)

FIG. 10: (Color online) Left Axis: Calculated (γ, n) reaction rates plotted on a logarithimic scale as a function of temperature
for the target nuclei 92Mo (a), 100Mo (b), 90Zr (c) and 139La (d). Right Axis: Reaction rates normalized to SLO, linear scale.
Note that 1 corresponds to the same point on both axes.
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FIG. 11: (Color online) Same as Fig. 10 but for the (γ, p) reaction with target nuclei 92Mo (a), 100Mo (b), 90Zr (c) and 139La (d).
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FIG. 12: (Color online) Calculated (n, γ) reaction rates plotted on a logarithimic scale as a function of temperature for the
final state nuclei 92Mo (a), 100Mo (b), 90Zr (c) and 139La (d).


