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Abstract
We compute the non-equilibrium stress tensor induced by a heavy quark moving through weakly

coupled QCD plasma at the speed of light and compare the result toN = 4 Super Yang Mills theory

at strong coupling. The QCD Boltzmann equation is reformulated as a Fokker-Planck equation in

a leading log approximation which is used to compute the induced stress. The transition from non-

equilibrium at short distances to equilibrium at large distances is analyzed with first and second

order hydrodynamics.

Even after accounting for the obvious differences in shear lengths, the strongly coupled theory

is significantly better described by hydrodynamics at sub-asymptotic distances. We argue that

this difference between the kinetic and AdS/CFT theories is related to the second order hydrody-

namic coefficient τπ. τπ is numerically large in units of the shear length for theories based on the

Boltzmann equation.
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I. INTRODUCTION

The goal of the relativistic heavy ion programs at RHIC and the LHC is to create and
study the properties of the Quark Gluon Plasma (QGP). Since the real time dynamics
can not be directly probed with the Lattice QCD, the transport properties of QGP are of
particular interest. There is a consensus that the experimental results on collective flow
imply that the shear viscosity to entropy ratio of the Quark Gluon Plasma is remarkably
small [1]

η

s
∼ 1↔ 5

4π
. (1.1)

Although it is difficult to reconcile this experimental ratio with a quasi-particle picture of
the plasma, the success of resummed perturbation theory at describing lattice data on the
pressure at somewhat higher temperatures suggests that a quasi-particle picture might pro-
vide a qualitative guide to the plasma dynamics and form a basis for further approximation
schemes [2–4].

However, in N = 4 Super Yang Mills (SYM) theory at strong coupling (and large Nc)
gauge-gravity duality can be used to compute the shear to entropy ratio exactly [5, 6],

η

s
=

1

4π
. (1.2)

The tantalizing similarity between the experimental ratio and this celebrated theoretical
result hints that a strong coupling limit (without quasi-particles) might provide a better
starting point for understanding the plasma dynamics. At the very least, the strongly cou-
pledN = 4 theory is an analytically tractable limit that provides a useful foil to perturbative
calculations based on a quasi-particle description.

The goal of this work is to compare the steady state response of non-abelian plasma at
weak and strong coupling to an infinitely heavy quark probe moving at the speed of light.
This is the simplest setup where the plasma response to an energetic probe can be analyzed
in detail [7–13]. At long distances, the non-equilibrium disturbance produced by the heavy
quark probe thermalizes and forms a Mach cone and diffusion wake. The original motivation
for investigating the Mach cone was the observation of an unusual structure in measured
two particle correlations [14, 15]. Today, after the analysis of Alver and Roland [16] and
others [17–20], these unusual correlations are understood as the hydrodynamic response
to fluctuations in the initial geometry and not as the medium response to an energetic
probe. (The Mach cone picture also dramatically fails to explain current measurements in
several ways – see for example Ref. [21] and the conclusions of Ref. [22].) The goal of this
manuscript is not to explain current measurements, but rather to examine the differences
between weak and strong coupling, and to study the approach to hydrodynamics in both
cases. Although the current paper has no immediate phenomenological goals, the medium
response to energetic partons is currently being studied by all the experimental collaborations
in various ways [23]. Thus, this calculation, which analyzes the “jet” medium interaction
precisely and determines a source for hydrodynamics through second order in the gradient
expansion, may be useful for phenomenology in further studies.

In the strongly coupled theory the stress tensor induced by a finite velocity heavy quark
was computed using the AdS/CFT correspondence [9, 11]. The approach to hydrodynamics
was analyzed as well as the short distance behavior [10, 12, 24]. In particular we will largely

2



follow (and to a certain extent extend) the hydrodynamic analysis of Ref. [12] to determine
a hydrodynamic source through second order in the gradient expansion for the kinetic and
strongly coupled theories. In the AdS/CFT calculation the lightlike v → c limit was not
analyzed due to various technical complications. (Here and below v is the velocity of the
heavy quark.) As discussed in Section II B, it is possible to set v = c throughout the
calculation by choosing a different set of gauge invariants.

At weak coupling the hydrodynamic source has not been computed. Nevertheless the
appropriate source for kinetic theory was determined in Ref. [13], and several estimates
have been given for how this kinetic source is transformed through the relaxation process
to hydrodynamics [25]. We have simplified the source for kinetic theory considerably and
determined the plasma response at large distances by solving the linearized kinetic theory.
After comparing the hydrodynamic solution at large distances to the full (leading-log) kinetic
theory results, the appropriate source at each order in the hydrodynamic expansion can
be computed. This part of the calculation employs a computer code developed by us to
determine spectral functions at finite ω and k [26]. As a by-product of these spectral
functions we determined the hydrodynamic transport coefficients that appear through second
order in the gradient expansion in a leading log approximation. These parameters will be
needed below to precisely determine the hydrodynamic source through second order.

This work is limited to the analysis of the kinetics for a single heavy quark moving
from past infinity. It would be quite interesting to follow the evolution of a parton shower
initiated at time t = 0 and the subsequent hydrodynamic response at late times. Although
this transition has not been worked out, several of the most important ingredients have
already been clarified [27–29]. We hope to address the thermalization of full parton showers
in future work.

II. PRELIMINARIES

We consider an infinitely heavy quark with v ' 1 moving through a stationary high tem-
perature plasma from past infinity. We will calculate the medium response in two model
theories – pure glue QCD at asymptotically weak coupling and N = 4 SYM at asymptoti-
cally strong coupling. Both theories are conformal in this limit and therefore the background
stress tensor takes the characteristic form

T µνo = diag(e,P ,P ,P) , with e = 3P . (2.1)

The heavy quark moves in the ẑ direction and imparts energy and momentum to the plasma,
which ultimately induces a non-equilibrium response, δT µν . The non-equilibrium stress
tensor δT 00 and δT 0z are functions of cylindrical and comoving coordinates xT and xL
where

xT =
√
x2 + y2 , ϕr = tan−1

y

x
, and xL = z − vt . (2.2)

Rotational invariance around the z axis determines (T 0x, T 0y) in terms of T 0xT

T 0x(t,x) =T 0xT (xL, xT ) cosϕr , (2.3)

T 0y(t,x) =T 0xT (xL, xT ) sinϕr . (2.4)
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A. Kinetic Theory with a Heavy Quark Probe

At weak coupling kinetic theory determines the response of the plasma to the heavy quark
probe. To determine this response we linearize the Boltzmann equation for f(t,x,p) =
np + δf(t,x,p) with np = 1/(ep/To − 1) and will restrict the calculation to pure glue QCD
in a leading log-approximation for simplicity1. The Boltzmann equation in this limit reads

(∂t + vp · ∂x) δf(t,x,p) = C[f,p] + S(t,x,p) , (2.5)

where vp = p̂ and S(t,x,p) is the (to be discussed) source of non-equilibrium gluons
produced by the heavy quark moving through the plasma. In a leading log(T/mD) ap-
proximation, the linearized collision integral simplifies to a momentum diffusion equation
supplemented by gain terms [26]

C[f,p] = TµA
∂

∂pi

(
np(1 + np)

∂

∂pi

[
δf

np(1 + np)

])
+ gain terms ,

µA ≡
g2CAm

2
D

8π
log

(
T

mD

)
. (2.6)

Here the Debye mass for a pure glue theory is

m2
D = 2g2TA

∫
d3p

(2π)3
np(1 + np)

T
=
g2T 2

3
Nc , (2.7)

where TA = Nc is the trace normalization of the adjoint representation. The diffusion
equation should be solved with absorptive boundary conditions at p = 0 so the number of
particles is not conserved during the evolution [30]. Thus the microscopic theory encoded
by this diffusion equation is conformal, and the only conserved quantities are energy and
momentum.

The gain terms are responsible for energy and momentum conservation. Specifically, the
energy and momentum that is transferred (per time, per degree of freedom, per volume) to
the non-equilibrium excess δf by equilibrium bath is

dE

dt
≡− TµA

∫
d3p

(2π)3
np(1 + np) p̂ ·

∂

∂p

[
δf

np(1 + np)

]
, (2.8)

dP

dt
≡− TµA

∫
d3p

(2π)3
np(1 + np)

∂

∂p

[
δf

np(1 + np)

]
, (2.9)

as can easily be found by integrating both sides of Eq. (2.5) without the source. This energy
and momentum transfer by the bath drives additional particles away from equilibrium and
ultimately fixes the structure of the gain terms:

gain terms =
1

ξB

[
1

p2
∂

∂p
p2np(1 + np)

]
dE

dt
+

1

ξB

[
∂

∂p
np(1 + np)

]
· dP

dt
, (2.10)

1 Including quarks would only lead to minor changes to our results as can be seen from Fig. 4 of Ref. [26].
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where for subsequent use we have defined

ξB ≡
∫

d3p

(2π)3
np(1 + np) =

T 3

6
. (2.11)

With the gain terms it is easy to verify that energy and momentum are conserved. Pre-
viously we analyzed the linear response of this system of equations and determined the
hydrodynamic plasma parameters in terms of µA [26]

η

e+ P
=0.4613

T

µA
, (2.12)

τπ
η/sT

=6.32 . (2.13)

Since the microscopic dynamics is conformal, linearized, and only conserves energy and
momentum (and not particle number), τπ is the only second order hydrodynamic coefficient
that appears to this order. If there are additional conserved quantities and the dynamics
is not conformal then there are a multitude of coefficients that appear at second order –
see for example [31, 32]. Further it must be emphasized that these second order transport
coefficients are insufficient to describe the decay of initial transients (non-hydrodynamic
modes) [32].

The shear viscosity naturally agrees with prior results [33, 34]. The fact that τπ is
somewhat large ∼ 6 compared to the viscous length is a generic result of kinetic theory
[35, 36]. Finally, we note that µA records the transverse momentum broadening of a bath
particle due to the soft scatterings, and is related to the soft part of jet-quenching q̂ parameter
in a leading T/mD approximation [37], q̂soft/2 = 2TµA. Thus, the leading-log limit provides
a concrete relation between η/s and q̂.

We now analyze how a heavy quark disturbs this system in the same leading log approx-
imation scheme. The leading log energy loss of the heavy quark was computed long ago by
Braaten and Thoma [38, 39], with the result that the momentum transferred to the medium
per time (i.e. minus the drag-force) is

dpµ

dt
=

(
dE

dt
,
dp

dt

)
= µF (v)

(
v2,v

)
, (2.14)

where µF (v) is the drag coefficient in a leading log approximation

µF (v) =
g2CFm

2
D

8π
log

(
T

mD

)(
1

v2
− 1− v2

2v3
log

(
1 + v

1− v

))
, (2.15)

⇒g2CFm
2
D

8π
log

(
T

mD

)
. (2.16)

In the last line we have taken the v → 1 limit of relevance to this work. As discussed more
completely below, we have implicitly taken the coupling to zero before taking this limit so
that radiative energy loss can be neglected.

The drag force arises as equilibrium gluons from the bath scatter off the heavy quark
probe and are driven out of equilibrium by the scattering process. This scattering produces
a source of non-equilibrium gluons located at the position of the quark,

S(t,x,p) = S(p) δ3(x− vt) .
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Appendix A analyzes this scattering process (g+Q→ g+Q) and determines the appropriate
momentum space source, S(p). In the limit v = 1 the source has a simple form involving
only two spherical harmonics

S(p) = µF
np(1 + np)

2dAξB

[
−2

p
+

(1 + 2np)

T
+

(1 + 2np)

T
p̂ · v̂

]
, for v = 1 . (2.17)

With this source it is straightforward to integrate 2dA
∫

d3p
(2π)3

pµ over Eq. (2.5) and to verify

that the stress tensor satisfies

∂µ δT
µν =

dpν

dt
δ3(x− vt) . (2.18)

Our strategy to determine the energy-momentum tensor is the following. We take the
Fourier transform with respect to x of the kinetic equation in Eq. (2.5)

(−iω + ivp · k)δf(ω,k,p) = C[δf,p] + 2πS(p)δ(ω − v · k) , (2.19)

and solve the Boltzmann equation in Fourier space. The technology to do this is based on
simple matrix inversion as was documented in Ref. [26]. Then we calculate the stress energy
tensor in Fourier space using kinetic theory. By Fourier transforming the stress tensor back
to coordinate space, we can determine the energy and momentum density distributions.
Additional details about this procedure are given in Appendix B.

B. AdS/CFT with a heavy quark probe

To describe the response of the N = 4 plasma to a heavy quark probe we will follow the
notations and conventions of Refs. [11, 40] which should be referred to for all details. Briefly,
a heavy quark is described in AdS5 with a trailing string. The energy and momentum gained
by the medium as the heavy quark traverses the plasma is again parameterized with the
drag coefficient µF (v)

dpµ

dt
=

(
dE

dt
,
dp

dt

)
= µF (v)

(
v2,v

)
. (2.20)

This coefficient is found by determining the energy and momentum flowing down the string
into the black hole [41–43]

µF (v) =
π

2

√
λT 2

√
1− v2

. (2.21)

As in the weakly coupled case, the stress tensor in the strongly coupledN = 4 theory satisfies
Eq. (2.18) with the energy-momentum transfer rates given by the corresponding strongly
coupled formulas. The deposited energy and momentum leads ultimately to a hydrodynamic
response in the strongly coupled theory. The linearized hydrodynamic parameters through
second order are [5, 35, 44]

η

e+ P
=

1

4πT
, (2.22)

τπ
η/(e+ P )

=4− 2 log(2) ' 2.61 . (2.23)
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According to AdS/CFT duality [45], strongly coupled SYM plasma is dual to the 5d
AdS-Schwarzschild geometry, which has the metric

ds2 =
L2

u2

[
−f(u)dt2 + dx2 +

du2

f(u)

]
. (2.24)

Here u is the radial coordinate of the AdS geometry with u = 0 corresponding to the
boundary, L is the AdS curvature radius, f(u) = 1 − u4/u4h with uh = 1/πT , and T is the
(Hawking) temperature of the plasma and dual geometry.

The addition of an infinitely massive fundamental quark to the SYM plasma is dual to
the addition of a string to the AdS Schwarzschild geometry, with the string ending at u = 0
[46]. The presence of the string perturbs the 5d geometry according to Einstein’s equations
and the near boundary behavior of the metric perturbation encodes the changes in the SYM
stress tensor due to the presence of the quark [47].

In the large N limit the 5d gravitational constant κ25 ∼ 1/N2 is small. Consequently
the back-reaction of the string on the geometry can be treated perturbatively by solving
the string equations in the background metric and subsequently computing the metric per-
turbations sourced by the string. Solving the string equations of motion leads to the well
known trailing string profile [41, 43]

xstring(t, u) = v

[
t+

uh
2

(
tan−1

u

uh
+

1

2
log

uh − u
uh + u

)]
. (2.25)

This string profile describes a quark moving at constant velocity v and has the 5d stress
tensor

t0i = −viF, tij = vivjF, t00 =
u4v2 + uh4f

uh4
F, (2.26a)

t05 = −u
2v2

u2hf
F, ti5 =

u2vi
u2hf

F, t55 =
v2 − f
f 2

F, (2.26b)

where

F =
u
√
λ

2πL3
√

1− v2
δ3(x− xstring), (2.27)

and λ is the ’t Hooft coupling.

The five dimensional stress tensor of the string perturbs the background geometry. The
information contained in the linear metric perturbation sourced by the trailing string can
be conveniently packaged into fields which are invariant under infinitesimal diffeomorphisms
[12, 40]. Defining

GMN ≡ G
(0)
MN +

L2

u2
HMN , (2.28)

where G
(0)
MN is the background metric (2.24) and HMN is the perturbation, and introducing

a space-time Fourier transform

HMN(t,x, u) =

∫
dω

2π

d3q

(2π)3
HMN(ω,q, u)e−iωt+iq·x, (2.29)

we find two convenient diffeomorphism invariant fields [12, 40]
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Z0 ≡
4f

ω
qiH ′0i −

4f ′

ω
qiH0i −

2f ′

q2
qiqjHij + 4ifqiHi5

− (2uq2−f ′)
q2

(
q2δij−qiqj

)
Hij +

4q2f

iω
H05 −

8κ25f

iω
t05 , (2.30)

Z1 ≡ (H ′0i − iω Hi5) ε̂
i
aε̂a . (2.31)

Here sums over repeated indices are implied with i, j running from 1 to 3 and a running
from 1 to 2, ′ denotes differentiation with respect to u and

ε̂1 =
q

q⊥
q̂× (v̂ × q̂) , ε̂2 =

q

q⊥
v̂ × q̂ . (2.32)

The field Z0 transforms as a scalar under rotations and the field Z1 transforms as a vector
under rotations.2

The equations of motion for Z0 and Z1 are straightforward but tedious to derive from
the linearized Einstein equations. They read

Z ′′0 + A0Z
′
0 +B0Z0 = κ25S0 , (2.33)

where

A0 ≡ −
24 + 4q2u2 + 6f + q2u2f − 30f 2

uf (u2q2 + 6− 6f)
, (2.34)

B0 ≡
ω2

f 2
+
q2u2(14−5f−q2u2) + 18(4−f−3f 2)

u2f (q2u2 + 6− 6f)
, (2.35)

S0 ≡
8

f
t′00 +

4 (q2u2+6−6f)

3uq2f
(q2δij−3qiqj)tij (2.36)

+
8iω

f
t05 +

8u [q2 (q2u2+6)− f (12q2−9f ′′)]

3f 2 (q2u2 − 6f + 6)
t00 −

8q2u

3
t55 − 8iqiti5 .

and
Z ′′1 + A1Z

′
1 +B1Z1 = κ25S1 , (2.37)

where

A1 ≡
uf ′ − 3f

uf
, (2.38)

B1 ≡
3f 2 − u (uq2 + 3f ′) f + u2ω2

u2f 2
, (2.39)

S1 ≡
2

f

[
t′0i + iω ti5

]
ε̂iaε̂a. (2.40)

We note that since the string stress tensor (2.26) only depends on time through the
combination x − vt, when Fourier transformed, the string stress tensor is proportional to

2 A complete set of gauge invariants also includes a field which transforms as a traceless symmetric tensor

under rotations [12]. This tensor mode determines the spatial components of the SYM stress and is not

necessary for our purposes.
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2πδ(ω−v ·q). Consequently the fields Zs are also proportional to 2πδ(ω−v ·q). Moreover,
because the string stress tensor (2.26) is proportional to 1/

√
1− v2 and Eqs. (2.33) and

(2.37) are linear, we define Zs = Z̃s/
√

1− v2 and solve for Z̃s in the v → 1 limit.

Under the assumption that the boundary geometry is flat, near the boundary the fields
Zs have the asymptotic expansions

Z̃s(u) = Z̃(2)
s u2 + Z̃(3)

s u3 + Z̃(4)
s u4 + · · · . (2.41)

The cubic expansion coefficients Z̃
(3)
s determine the SYM energy density δT 00 and the SYM

energy flux δT 0i via [12, 40]

δT 00 =− L3

8κ25

1√
1− v2

Z̃
(3)
0 , (2.42)

δT 0i =− L3

2κ25

1√
1− v2

[
(Z̃

(3)
1 )i +

ωqi

4q2
(Z̃

(3)
0 )i

]
− iqiµF (v)v2

q2
. (2.43)

For a given momentum q, to determine the SYM energy density and energy flux we
solve Eqs. (2.33) and (2.37) using pseudospectral methods. At the boundary at u = 0 we
impose the boundary condition that the fields have asymptotics of the form given in the
series expansions (2.41), which is tantamount to demanding that the boundary geometry is
flat. At the horizon at u = uh we impose the boundary condition of infalling waves. This is
tantamount to demanding that Z̃s ∼ (u− uh)−iωuh/4 near the horizon. With the Z̃s known,

we can then extract the expansion coefficients Z̃
(3)
s and construct the SYM energy density

and energy flux from Eq. (2.42) and Eq. (2.43) .

III. COMPARING ADS/CFT AND KINETIC THEORY

Using the formalism outlined in the previous section we compute the energy density
and Poynting vector induced by the heavy quark in both kinetic theory and the AdS/CFT
correspondence. To compare the AdS/CFT and the kinetic theory results we have measured
all length-scales in units of the shear length

Lo ≡
4
3
ηc

(e+ P)c2s
(3.1)

where c2s is the squared sound speed and in practice the speed of light is set to unity. Lo
is proportional to the mean free path in kinetic theory and equal to 1/πT for the N = 4
theory. At large distances, where ideal hydrodynamics is applicable, the amplitude of the
disturbance is proportional to the strength of the energy loss. Thus, we divide the response
by the corresponding drag coefficient µF (v) for each theory, Eq. (2.15) and Eq. (2.21). With
these rescalings the two theories produce the same (rescaled) stress tensor at asymptotically
large distances, but differ in their approach to the ideal hydrodynamic limit as we will
analyze in Section IV. Fig. 1 and Fig. 2 compare the non-equilibrium stress in the two cases.
A complete discussion is reserved for the summary in Section V.
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FIG. 1. (Color online) The energy density (in scaled units) times R =
√
x2T + x2L that is induced

by a heavy quark probe in (a) weakly coupled QCD and (b) strongly coupled N = 4 SYM. Here

Lo is the shear length and the µF (v) is the drag coefficient for each case (see text).

In order to compare the stress tensor quantitatively we plot the energy density in con-
centric circles of radius R around the head of the quark. Specifically, we define

dER

dθR
= 2πR2 sin θR δT

00(R) , (3.2)

where R = xT x̂T + xLẑ and the polar angle is measured from the direction of the quark ẑ
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FIG. 2. (Color online) The magnitude of the Poynting vector |T 0i| (in scaled units) times R =√
x2T + x2L that is induced by a heavy quark probe in (a) weakly coupled QCD and (b) strongly

coupled N = 4 SYM. Here Lo is the shear length and the µF (v) is the drag coefficient for each

case (see text).
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ẑ
R

θR

FIG. 3. The polar angle θR.

(see Fig. 3). Similarly, the angular distribution of the energy flux is given by

dSR

dθR
= 2πR2 sin θR R̂

iδT 0i(R) ,

= 2πR2 sin θR
[
cos θR δT

0z(R) + sin θR δT
0x(R)

]
. (3.3)

Numerical results for the angular distributions of the energy density and flux at several
scaled distances R ≡ R/Lo are shown in Fig. 4.

There is a dramatic change in the AdS/CFT curves between R = 1 and R = 5, indi-
cating a transition from hydrodynamic behavior to quantum dynamics at distances of order
∼ 1/πT . Since this quantum dynamics lies beyond the semi-classical Boltzmann approxima-
tion, no transition is seen in the kinetic theory curves. It would be interesting to calculate
the stress tensor in this region perturbatively to better understand the differences between
the two theories for R ∼ 1/πT .

Let us pause to discuss the limitations of both calculations. The point of the current
work is to compare the approach to hydrodynamics at infinitely weak and infinitely strong
coupling. In both cases the coupling is taken to zero or infinity before the limit, v → 1.
As we now discuss, this limits the lengths scales that can be meaningfully studied in both
theories.

In the kinetic theory calculation the resulting stress tensor is valid for distances, R �
1/(g2T log g−1). For distances shorter than 1/(g2T log g−1) the collisionless non-abelian
Vlasov equations should be used to describe the medium response at weak coupling [48, 49].
However, for distances longer than 1/(g2T log g−1) the effect of the plasma dynamics is in-
corporated into the polarization tensor of the soft collisional integrals between the heavy
quark and the particles that make up the bath. For example, the drag coefficient computed
by Braaten and Thoma includes an HTL propagator in the t-channel exchange that includes
the plasma physics of the polarization tensor [50]. We have limited the evaluation of this
polarization tensor to a leading log approximation.

Further, the weakly coupled calculation is limited to modest γ. We have implicitly taken
the coupling constant to zero before taking v → 1 so that the radiative energy loss of the
heavy quark can be neglected. For a small but finite coupling constant radiative energy
loss is suppressed when the Lorentz gamma factor of the heavy quark is not too large [51],
γ <∼ mD

Tαs
∼ 1/g.

Similarly, the AdS/CFT calculation is limited to comparatively large distances xL, xT �
1/
√
γπT . In Section II B we introduced a new set of helicity variables so that the medium

response on distances much greater than 1/
√
γπT can be determined in the limit when v = 1.

For distances much less than 1/
√
γπT the structure of stress tensor has been analyzed in
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detail [10, 24, 52]. The medium response is characterized by a transverse length scale of
1/
√
γπT , and a corresponding longitudinal scale of 1/γ3/2πT , where γ is the Lorentz factor

of the heavy quark. In Fig. 4 we are investigating distances of order xL, xT ∼ 1/πT and
the physics associated with these very short scales is not visible. Although the importance
of the 1/

√
γπT scale was understood in the context of momentum fluctuations [53–55],

it is instructive to see these scales reappear in the asymptotic expansion for the induced
stress tensor at short distances [10, 24]. Rewriting Eq. (137) of Ref. [24] in terms of γ, and
expanding for γ large with x̃L ≡ γxL of order xT , we have

1√
λ

〈
δT 00(xL, xT )

〉
=

γ2x2T

6π2 (x̃2L + x2T )
3 +

T 2γ3

24

(2x̃3L + x̃Lx
2
T )

(x̃2L + x2T )
5/2

+ · · · . (3.4)

The first term is the leading term at short distances and is independent of temperature. The
second term (which captures the first finite temperature correction) is subleading in inverse
powers of distance, but enhanced by a power of γ. Comparing the magnitude of these terms
we see that the first term will dominate provided√

(γxL)2 + x2T <∼
1

√
γπT

. (3.5)

This constraint limits the validity (and utility) of the short distance expansion to rather
short distances.

In summary we are examining two extreme limits – infinitely weak and infinitely strong
coupling. The disadvantage of this approach is that some of the marked differences at short
distances between the Vlasov response of weakly coupled QCD and the AdS/CFT response
are not visible (see especially [56]). The advantage of this approach is that the onset of
hydrodynamics can be clearly compared. We will analyze the hydrodynamic limit in the
next section.

IV. HYDRODYNAMIC ANALYSIS

At large distances (see Fig. 1 and Fig. 2), the medium response to the heavy quark probe
clearly exhibits hydrodynamic flow. Following in part the discussion by Chesler and Yaffe
[12], we will analyze this hydrodynamic response order by order in the gradient expansion
for kinetic theory and for the AdS/CFT correspondence. The strongly coupled N = 4
theory is conformal and the appropriate hydrodynamic theory is conformal hydrodynamics
[35, 36]. Similarly, to leading order in the coupling constant QCD is also conformal and
again conformal hydrodynamics is applicable in this limit. Beyond leading order, there are
corrections to kinetic theory which break scale invariance and non-conformal hydrodynamics
must be used to characterize the long wavelength response [26, 31].

For both kinetic theory and the AdS/CFT, the stress tensor of the full theory satisfies
the conservation law Eq. (2.18). At large distances the stress tensor is described by hydro-
dynamics up to uniformly small corrections suppressed by inverse powers of the distance. In
hydrodynamics, the spatial components of the stress tensor are specified by the constituent
relation order by order in the gradient expansion. Specifically, the stress tensor can be
written

T µνhydro = (e+ P)uµuν + Pgµν + πµν , (4.1)
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FIG. 4. (Color online) The angular distribution of (a) the energy density [dER/dθR]/µF and (b)

the energy flux [dSR/dθR]/µF at distances R = 1, 5, 10, 20, and 40 for the kinetic theory and gauge

gravity duality. Here Lo is the shear length and the µF (v) is the drag coefficient for each case (see

text).

where the dissipative part of the stress tensor πµν is expanded in gradients of T 00 and T 0i or
(T and uµ) to a specified order. For linearized conformal hydrodynamics (where uµ = (1,u))
this expansion through second order in gradients reads [35]

πij =− 2η
〈
∂iuj

〉
− 2ητπ

〈
∂i∂j lnT

〉
(Static) , (4.2)

and all temporal components are zero. Here 〈 · · · 〉 denotes the symmetric and traceless
spatial component of the bracketed tensor [35], i.e. for linearized hydrodynamics we have〈

∂i∂j lnT
〉

=

(
∂i∂j − 1

3
δij∂2

)
lnT . (4.3)

We will refer to the conservation laws together with the constituent relation (Eq. (4.2)) as
the static form of second order hydrodynamics. Using the lowest order equations of motion
(ideal hydrodynamics) and conformal symmetry, the second order term 〈∂µ∂ν lnT 〉 can be
replaced by the time derivative of πµν [35]

πij = −2η〈∂iuj〉 − τπ∂tπij (Dynamic) . (4.4)

This rewrite of the constituent relation can be interpreted as a dynamical equation for πµν ,
and is similar to the second order form of Israel and Stewart [57, 58]. We will refer to this
equation of motion for πµν , together with the conservation laws as the dynamic form of
second order hydrodynamics.

At long distances, the form of the stress-energy tensor is described by T µνhydro up to terms
suppressed by inverse powers of the distance. We will express the full stress tensor as a
hydrodynamic term, which is irregular in the limit of ω,k → 0, plus a correction which we
will verify is a regular function for ω,k→ 0

T ij = T ijhydro
[
T 00, T 0i

]
+ τ ij . (4.5)
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We have temporarily emphasized here that T ijhydro is a functional of the densities T 00, T 0i as
specified by the constituent relation and the equation of state. Then the equation of motion
in Fourier space becomes

− iω δT 0j + iki δT ijhydro = Sjhydro(ω,k) , (4.6)

where

Sjhydro(ω,k) ≡ dpj

dt
2πδ(ω − v · k)− ikiτ ij . (4.7)

Examining Shydro, we see that −ikiτ ij acts as an additional source term for hydrodynam-
ics. What makes this decomposition useful is that τ ij (in contrast to T ijhydro) is a regular

function at small k and ω. For the steady state problem we are considering, τ ij can be
written with three functions proportional to the symmetric tensors consisting of v and k

τ ij(ω, k2) ≡ 2πµF δ(ω − v · k)
[ (
vivj − 1

3
v2δij

)
φ1(ω, k

2)

+
(
ivikj + ikivj − i2

3
vlk

lδij
)
φ2(ω, k

2) +
(
kikj − 1

3
k2δij

)
φ3(ω, k

2)
]
, (4.8)

where φ1, φ2 and φ3 are regular for k→ 0. The source can be expressed similarly

Shydro ≡ 2πδ(ω − v · k)
[
φv(ω, k

2)v + φk(ω, k
2)ik

]
. (4.9)

Since τ ij is localized, we can expand it for small ω and k. Using an obvious notation for the
Taylor series,

φ1(ω, k
2) ' φ

(0,0)
1 + φ

(1,0)
1 (−iω) +

1

2!

[
φ
(2,0)
1 (−iω)2 + φ

(0,2)
1 (ik)2

]
+O(k3) , (4.10)

we see that the full source for hydrodynamics through second order can be expressed in

terms of three expansion coefficients, φ
(0,0)
1 and φ

(1,0)
1 , and φ

(0,0)
2 :

Shydro = 2πµF δ(ω − v · k)
[ (

1− iωφ(0,0)
1 − φ(1,0)

1 ω2 + φ
(0,0)
2 k2

)
︸ ︷︷ ︸

≡φv

v

+
(

1
3
v2φ

(0,0)
1 − 1

3
v2φ

(1,0)
1 iω − 1

3
φ
(0,0)
2 iω

)
︸ ︷︷ ︸

≡φk

ik
]

+O(k3) . (4.11)

Summarizing, τ ij can be determined by comparing the full numerical solution for T ij to
T ijhydro. Then, by fitting the functional form given by an expanded Eq. (4.8), we can extract

the three coefficients φ
(0,0)
1 , φ

(1,0)
1 , and φ

(0,0)
2 for the Boltzmann equation and the AdS/CFT

correspondence. These coefficients fully specify the hydrodynamic source of a heavy quark
through quadratic order. Appendix C gives some sample fits to our numerical results and
the fit coefficients are collected in Table IV. The quality of the fits given in Appendix C
indicates that τ ij is well described by a polynomial at small k and ω and justifies the analysis
of this section.

Examining Table IV, we notice that in the Boltzmann case the expansion coefficients
proportional to φ1 vanish. In fact, φ1(ω, k

2) vanishes to all orders in ω, k. This follows from
rotational symmetry around the k axis and the somewhat special form of the kinetic theory
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φ
(0,0)
1 /Lo φ

(1,0)
1 /Lo

2 φ
(0,0)
2 /Lo

2

Boltzmann 0 0 0.484

AdS/CFT -1 -0.34 -0.33

TABLE I. Table of hydrodynamic source coefficients. The equations of motion are given by second

order hydrodynamics with a source term, Eq. (4.6). The source term is expanded to quadratic

order in k and ω in Eq. (4.11) which defines these coefficients. The first coefficient φ
(0,0)
1 was

computed analytically in the AdS/CFT case by Chesler and Yaffe [12]. Here Lo is the shear length

(see text).

source in Eq. (2.17). Since we do not expect this property to hold beyond the leading log
approximation, further discussion of this point is relegated to Appendix C.

With the source functions φv(ω, k
2) and φk(ω, k

2) known (numerically) through quadratic
order, the hydrodynamic approximation to the equations of motion for (static) second order
hydrodynamics reads (with v = 1)

−iω δT 0z′ + c2(k) ikδT 00 + Γsk
2 δT 0z′ = [cos θ φv + ik φk] 2πµF δ(ω − v · k) ,

−iω δT 0x′ +Dk2 δT 0x′ = sin θ φv 2πµF δ(ω − v · k) , (4.12)

where z′ points along the k axis and x′ is perpendicular to k (see Appendix B). In these
equations Γs = (4η/3)/(e + P), D = η/(e + P). and c2(k) = c2s(1 + τπΓsk

2). Using these
approximate expressions and the exact equation

− iω δT 00 + ik δT 0z′ = 2πµF δ(ω − v · k) , (4.13)

the hydrodynamic solutions in Fourier space are given by

δT 00(ω,k) =
i [ω + k cos θ φv]− k2 [Γs + φk]

ω2 − c2(k) k2 + iΓs ωk2
2πµF δ(ω − k cos θ) , (4.14a)

δT 0x′(ω,k) =
i sin θ φv

ω + iD(ω) k2
2πµF δ(ω − k cos θ) . (4.14b)

δT 0z′(ω,k) =
i [ω cos θ φv + c2(k) k ]− kω φk

ω2 − c2(k) k2 + iΓs ωk2
2πµF δ(ω − k cos θ) . (4.14c)

The solutions can also be used for first order hydrodynamics provided the wave speed c2(k)
and the source functions φv and φk are truncated at leading order, i.e. c2(k) → c2s and

φ1(ω, k
2) ≈ φ

(0,0)
1 . Similarly, the hydrodynamic solutions for the dynamic implementation of

second order hydrodynamics takes the same functional form as Eq. (4.14) with the replace-
ments

c2(k)→ c2s , Γs → Γs(ω) ≡ Γs
1− iτπω

, D → D(ω) ≡ D

1− iτπω
. (4.15)

Given these hydrodynamic solutions and the hydrodynamic source functions tabulated
in Table IV, the hydrodynamic stress tensor in coordinate space can be computed using
numerical Fourier transforms. The stress tensor of first and second order hydrodynamics
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FIG. 5. (Color online) The angular distribution of (a) the energy density [dER/dθR]/µF and (b)

the energy flux [dSR/dθR]/µF given by the Boltzmann equation at distances R = 10, 20, and 40.

The Boltzmann results are compared with the first order and second order static hydrodynamics.
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FIG. 6. (Color online) The angular distribution of (a) the energy density [dER/dθR]/µF (v) and

(b) the energy flux [dSR/dθR]/µF (v) given by the AdS/CFT correspondence at distances R =

5, 10, and 20. The AdS/CFT results are compared with the first order and second order static

hydrodynamics. Here Lo = 1/πT is the shear length and µF (v) = γ
√
λπT 2/2 is the heavy quark

drag coefficient for the AdS/CFT.

(with the corresponding source) is compared to the full kinetic theory stress tensor in Fig. 5.
Fig. 6 presents the analogous AdS/CFT results. Finally, a comparison between the static
and dynamic implementations of second order hydrodynamics is given in Fig. 7 and provides
an estimate of higher order terms in the hydrodynamic expansion. We will discuss these
results in the next section.
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the AdS/CFT curves are plotted at distances R = 10, 20. The Boltzmann and AdS/CFT results

are compared to the static and dynamic implementations of second order hydrodynamics (see text).

The differences between the static and dynamic implementations of second order hydrodynamics

reflects the size of neglected third order terms. Here Lo is the shear length and µF (v) is the drag

coefficient for each theory.

V. SUMMARY AND DISCUSSION

To keep this discussion self contained, we first recapitulate the problem and the corre-
sponding notation. An infinitely heavy quark moves along the z axis with velocity v ' c,
depositing energy and disturbing the surrounding equilibrium plasma. We presented and
compared the energy and momentum density distributions in two distinctly different plas-
mas – a weakly coupled QCD plasma described by kinetic theory and a strongly coupled
N = 4 plasma described by the AdS/CFT correspondence. The steady state stress ten-
sor distributions can be written in cylindrical coordinates and comoving coordinates (see
Eqs. (2.2) and (2.3)). Fig. 1 and Fig. 2 exhibit the energy density T 00 and the magnitude
of the Poynting vector |S| ≡ |T 0i| for kinetic theory and the N = 4 theory respectively.
To compare these theories we measured all distances in terms of a length scale given by a
combination of hydrodynamic parameters

Lo ≡
4
3
ηc

(e+ P)c2s
.

This length is of order the mean free path in kinetic theory and equals 1/πT for the
AdS/CFT. In each theory we divided the stress tensor by the corresponding heavy quark
drag coefficient µF (v) so that at asymptotically large distances (where ideal hydrodynamics
is valid) the rescaled stress tensors are equal. At asymptotic distances both theories re-
produce the “Mach cone” structure characteristic of ideal hydrodynamics, but these model
plasmas differ at sub-asymptotic distances in their approach to this ideal hydrodynamic
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regime. In particular the Boltzmann theory is considerably less diffuse than the AdS/CFT.
In kinetic theory the short distance response is reactive, and the sharp band seen in Fig. 2(a)
(which is indicative of free streaming quasi-particles) is absent in Fig. 2(b). We will see that
the response of the AdS/CFT closely follows the predictions of hydrodynamics at modest
distances which is strongly damped by the shear viscosity at short distances. This difference
between the two can also be seen quantitatively in Fig. 4 which compares the kinetic theory
and AdS/CFT results by plotting the energy density and energy flux at concentric circles
of radius R in scaled units:

R = R/Lo .

The precise definitions of dER/dθR and dSR/dθR is given by Eqs. (3.2), and (3.3) respectively.
As discussed in the previous paragraph, the AdS/CFT curves are considerably broader than
the corresponding kinetic theory results for R > 5.

Examining Fig. 4 a striking feature of the AdS/CFT result is the dramatic transition
from hydrodynamic behavior at R = 5 to vacuum physics at R = 1 which is not present
in the kinetic theory calculation. This transition was noted previously and suggested as a
way to reveal the strong coupling dynamics experimentally [52]. However, the absence of
this transition in the weak coupling calculation reflects a limitation of the kinetic theory
approximation to QCD rather than a distinguishable difference between the AdS/CFT cor-
respondence and weakly coupled QCD. Certainly the quantum dynamics at R ∼ 1/πT can
not be captured by the semi-classical kinetic theory results. It would be interesting to com-
pute the stress tensor in this region in fixed order finite temperature perturbation theory
to see if the dynamics of the two theories is similar at these length scales. As discussed
in Section III using a short distance expansion [10, 24], in the AdS/CFT calculation new
length scales emerge at distances of order 1/γ1/2πT and 1/γ3/2πT which are not visible in
Fig. 4. These scales have been associated with saturation physics [55, 59].

Finally, we have analyzed the transition to the hydrodynamic regime in kinetic theory
and the AdS/CFT. In particular we have determined the source appropriate for first and
second order hydrodynamics in each theory, following in part a method outlined by Chesler
and Yaffe [12]. This is elaborated in Section IV, and the precise source (which takes the form
of derivatives of delta functions acting at the position of the quark) is given in Table IV.
The source is constructed so that the hydrodynamics to a given order, together with a
source at the same order, reproduces the stress tensor of the full theory up to higher order
powers of `mfp/R. Fig. 9 given in Appendix B fits our extracted hydrodynamic source with
a polynomial at small k and the superb agreement with our full numerical results justifies
the source analysis of Section IV.

Fig. 5 compares first order and second order hydrodynamics to the kinetic theory results.
Generally the second order theory provides only a minor improvement to the first order
results until rather large radii, R >∼ 40. Indeed the behavior of the second order theory seems
rather unphysical for R <∼ 10. This shows the limitations of second order hydrodynamics.
Second order hydrodynamics is constructed to reproduce the full results order by order
at asymptotic distances and is not constructed to describe the decay of non-equilibrium
transients produced by the heavy quark.

The slow convergence of hydrodynamic expansion to the full results of kinetic theory can
be contrasted with the rapid convergence seen in the AdS/CFT results in Fig. 6. In the
AdS/CFT case we see that first (second) order hydrodynamics describes the full result at the
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20% (4%) level for R ' 5. The agreement with hydrodynamics is not as good as described
earlier by Chesler and Yaffe. This is because we are describing a quark moving with velocity
v = 1, and we have found that the deviation from equilibrium is noticeably larger than the
v = 0.75 quarks studied by these authors. In addition the energy density distributions show
larger deviations from first order hydrodynamics and were not studied previously. However,
once (important) second order hydrodynamic corrections are included, the agreement with
hydrodynamics is remarkable already at modest R.

We should mention that we have used the “static” version of second hydrodynamics which
specifies πµν with a constituent relation analogous to the first order constituent relation [35].
Israel-Stewart type equations rewrite and interpret the constituent relation as a dynamic
equation using lower order equations of motion. This renders the system of equations hy-
perbolic and causal, but mixes orders in the gradient expansion. We have compared the
static and the dynamic theories for the kinetic and AdS/CFT theories in Fig. 7. Generally
the Israel-Stewart type resummations do not lead to a significant improvement. Indeed,
at smaller R than shown in Fig. 7 Israel-Stewart type resummations can lead to spurious
shocks which are not reproduced by the full result. The difference between the static and
dynamic theories gives an estimate of higher order terms, and this difference is smaller in
AdS/CFT than in kinetic theory at the same R.

Clearly, the convergence to the hydrodynamic limit is significantly faster in the N =
4 theory relative to kinetic theory, even when lengths are measured in the scaled units
described by R. We remark that in the AdS/CFT the second order hydrodynamic parameter
τπ is a factor of 2.5 smaller in scaled units than the corresponding kinetic theory parameter,

τπ
η/sT

=6.32 , (Kinetic Theory) (5.1)

τπ
η/sT

=4− 2 log(2) ' 2.61 . (AdS/CFT) (5.2)

Based on these coefficients, it is natural to expect that the convergence to the hydrodynamic
limit is faster for the N = 4 theory than the corresponding kinetic theory. In theories based
on quasi-particles and kinetic theory it is difficult to reduce the value of τπ in scaled units
significantly [36]. Thus, it would seem that our principal result of this study is reasonably
generic. Specifically, based on the model theories studied in this work we expect theories
without quasiparticles to approach the hydrodynamic limit several times faster (in scaled
units) than theories based on a quasiparticle description. From a practical perspective of
applying hydrodynamics to various almost equilibrium phenomena of heavy ion physics (e.g.
the hydrodynamic flow due to jets and other local disturbances) this factor of two can be
quite important.
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Appendix A: The Kinetic Theory Source in a Leading-Log Approximation

The source of non-equilibrium gluons arises as gluons scatter off the heavy quark, g+Q→
g + Q. The squared matrix element for this process is

|M|2 =

[
g4CFNc

2dA

]
16

[
2(K · P )2

Q4
− M2

Q2
+

M2

4(K · P )2

]
, (A1)

where K is the heavy quark momentum, P is the gluon momentum, Q = P ′ − P is the
four momentum transferred to the gluon, and we have averaged over the colors and spins
of the external gluon. In a leading log approximation only the (first) most singular term is
kept. The source of non-equilibrium gluons of momentum p is obtained from the Boltzmann
collision integral for the g +Q→ g +Q process

S(t,x,p) =S(p)δ3(x− vt)

=−
∫
kp′k′

|M|2

16k0k′0pp′
(2π)4δ4(Ptot)[fpfk(1 + fp′)(1 + fk′)− fp′fk′(1 + fp)(1 + fk)] ,

(A2)

where the heavy quark distribution fk = (2π)3δ3(k− kH)δ3(x− vt) is out of equilibrium.

We expand the source in a spherical harmonic basis in the (x, y, z) coordinate system

S(p) =
∑
l,m

Slm(p)Hlm(p̂; zx) =

√
2l + 1

4π

∑
l

Sl0(p)Pl(cos θpk) , (A3)

and note that the Slm vanishes for non-zero m due to the azimuthal symmetry of the prob-
lem. Using the orthogonality of Pl(cos θpk) and the phase-space parametrization and kine-
matic approximations used to analyze the energy loss of heavy quarks [51], the expansion
coefficients can be written 3

Sl0(p) = −
√

2l + 1

4π

∫ ∞
0

dq

∫ vq

−vq

dω

v

∫
dφ

2π
Pl(cos θpk)

|M|2

16p2(k0)2
[fp(1 + fp+ω)− fp−ω(1 + fp)] ,

(A4)
where ω is the energy transfer, q = p′ − p is the three momentum transfer, and φ is the
azimuthal angle. The matrix elements in this parameterization are

|M|2

16p2(k0)2
=

[
g4CFNc

2dA

]
2(1− v cos θkp)2

(q2 − ω2)2
, (A5)

where cos θkp is expressed in terms of the integration variables, ω, q and φ [51]. Now we
consistently expand out the integrand to quadratic order in ω/T and q/T . This includes
three types of terms: (1) an expansion of the distribution functions to quadratic order,
(2) an expansion of the angle cos θpk to linear order in q/T and (3) an expansion of the
Legendre polynomial to linear order, Pl(x+ δx) ' Pl(x) +P ′l (x) δx. With the full expansion
we explicitly integrate over the azimuthal angle φ and the energy ω, observing empirically

3 Specifically, we use Eq. (B21) of Ref. [51]. However, we have interchanged the role of p and k to be

consistent with the notation used in this work.
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that all harmonics vanish for l > 1 when the velocity is lightlike. Further, the l = 0 and
l = 1 harmonics can be done analytically leading to a simple answer recorded in Eq. (2.17)

S00(p) =
1√

4πT 2

[
g4CFNc

2dA

]
log

(
T

mD

)
fp(1 + fp)

(
−2T

p
+ 1 + 2fp

)
, (A6a)

S10(p) =
1√

12πT 2

[
g4CFNc

2dA

]
log

(
T

mD

)
fp(1 + fp)(1 + 2fp) , (A6b)

The leading-log simplifications described in this paragraph were observed previously when
computing the shear viscosity.

Appendix B: Numerical Details about Kinetic Theory and the Fourier Transform

The goal of this appendix is to give some of the details of how the stress tensor is computed
in kinetic theory. Most of the notation and strategy follows an appendix of Ref. [26] and
this reference should be consulted for the full details.

The linearized Boltzmann equation in Fourier space reads

(−iω + ivp · k)δf(ω,k,p) = C[δf,p] + 2πS(p)δ(ω − v · k) , (B1)

where vp = p̂ is the particle velocity and the vector k in the laboratory coordinate system
is

k = (kx, ky, kz) = k(sin θk cosϕk, sin θk sinϕk, cos θk) . (B2)

In order to solve Eq. (B1) numerically, it is convenient to introduce the Fourier coordinate
system (x′, y′, z′) where ẑ′ points along the Fourier momentum k

x̂′ =
k

kT
k̂× (v̂ × k̂) , (B3)

ŷ′ =
k

kT
v̂ × k̂ , (B4)

ẑ′ =k̂ . (B5)

Following our previous work [26] we re-express the source and ultimately the solution δf in
terms of real spherical harmonics with respect to the x̂′, ŷ′, ẑ′ coordinate system:

Hlm(p̂; z′x′) = NlmPl|m|(cos θp)×


1 for m = 0√

2 cosmϕp for m > 0√
2 sin |m|ϕp for m < 0

, (B6)

where Nlm is a normalization factor [26]. We note that the unit vector p̂ has the following
components

p̂x
′
=

√
4π

3
H11(p̂; z′x′) , p̂y

′
=

√
4π

3
H1,−1(p̂; z′x′) , p̂z

′
=

√
4π

3
H10(p̂; z′x′) . (B7)

Since the distribution function δf is independent of the azimuthal angle of k with respect
to the original x, y, z coordinate system, we will choose this azimuthal angle ϕk to be zero
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so that k lies in the x, z plane. Then in the (x′, y′, z′) coordinate system the vector v has
the components

v̂ = (vx
′
, vy

′
, vz

′
) = (sin θ, 0, cos θ) ,

and

v̂ · p̂ =

√
4π

3

(
cos θ H10(p̂; z′x′) + sin θ H11(p̂; z′x′)

)
. (B8)

The steady state solution to the linearized Boltzmann equation is also expanded in the
spherical harmonics defined above

δf(ω,k,p) =
∑
lm

2πδ(ω − v · k)np(1 + np)χlm(p,k)Hlm(p̂; z′x′) . (B9)

and the Boltzmann equation for χlm becomes

(−iωδll′ + ikCm
ll′ ) p

2np(1 + np)χl′m = Clm[δf,p] +Hp2np(1 + np)
µA
T
Slm(p, θ) , (B10)

where the m index is not summed over. Here Cm
ll′ is a Clebsch Gordan coefficient [26],

Clm[δf,p] is the collision integral in this basis, the normalization coefficient is

H =
µF

T 3dAµA
, (B11)

and the source is

Slm(p, θ) =
1

2ξB/T 3

[(−2T

p
+ 1 + 2np

)√
4πδl0δm0

+

√
4π

3
(1 + 2n) (δl1δm0 cos θ + δl1δm1 sin θ)

]
. (B12)

For each value of (kx, kz) (in units of µA/T ) the linear equations are solved for Flm ≡
χlm/H. Due to rotational invariance of the collision operator around the k axis, the matrix
equation does not mix harmonics with different magnetic quantum numbers, i.e. the collision
operator is diagonal in m. Thus, the matrix equation in l, l′ is solved for m = 1 and m = 0
separately. Harmonics with m > 1 are not sourced by the motion of the quark in a leading
log approximation.

After solving for δf(ω,k,p), the energy and momentum excess due to the moving quark
can be computed using the kinetic theory

δT 0µ(ω,k) = 2dA

∫
d3p

(2π)3
pµδf(ω,k,p) , (B13)

where δT 0µ(ω,k) is proportional to 2πδ(ω − v · k)

δT 0µ(ω,k) ≡ 2πδ(ω − v · k)δT̃ 0µ(kz, kT ) . (B14)

The relationship between the (x, y, z) and the (x′, y′, z′) coordinate system is

δT 0x(ω,k) = cos θ δT 0x′(ω,k)− sin θ δT 0z′(ω,k) , (B15)

δT 0y(ω,k) =0 , (B16)

δT 0z(ω,k) = sin θ δT 0x′(ω,k) + cos θ δT 0z′(ω,k) , (B17)
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In presenting these formulas we have taken k in the x, z plane, i.e. ϕk = 0. More generally
rotational invariance dictates that (T 0x, T 0y) is proportional to k̂T

δT̃ 0x(k) =δT̃ 0kT (kz, kT ) cosϕk , (B18)

δT̃ 0y(k) =δT̃ 0kT (kz, kT ) sinϕk , (B19)

and the preceding discussion with ϕk = 0 suffices to determine δT 0kT (kz, kT ).

The stress tensor is tabulated in the kz, kT plane and then Fourier transforms can be used
to compute the stress tensor in coordinate space

δT 0µ(t,x) =

∫ ∞
−∞

dω

2π

∫
d3k

(2π)3
e−iωt+ik·x δT 0µ(ω,k) . (B20)

Employing the familiar identity

eikT xT cos(ϕr−ϕk) = J0(kTxT ) + 2
∑
n

inJn(kTxT ) cos(n(ϕr − ϕk)) , (B21)

it is not difficult to show that

δT 00(xL, xT ) =

∫ ∞
0

kTdkT
2π

J0(kTxT )

∫ ∞
−∞

dkz
2π

eikzz δT̃ 00(kz, kT ) , (B22a)

δT 0xT (xL, xT ) =

∫ ∞
0

kTdkT
2π

J1(kTxT )

∫ ∞
−∞

dkz
2π

eikzzi δT̃ 0kT (kz, kT ) , (B22b)

δT 0z(xL, xT ) =

∫ ∞
0

kTdkT
2π

J0(kTxT )

∫ ∞
−∞

dkz
2π

eikzz δT̃ 0k(kz, kT ) . (B22c)

The Fourier integrals in Eq. (B22) are not particularly easy. In order to get a convergent
integral, we first multiply the numerical data by a window function which eliminates the
contributions of high frequency modes. For kinetic theory results, a sample window function
is

W (k) =
1

2

[
1− erf ((k − kmax)/σ)

]
. (B23)

with kmax = 7.5µA/T and σ = 3.5µA/T while for the AdS/CFT the kmax and σ was consid-
erably larger, kmax = 80πT and σ = 60πT . We computed the integrals in Eq. (B22) using
two methods. The first method used brute force summation to compute these integrals. In
the second method we re-parameterized the stress tensor by the source functions φv and φk
used in the hydrodynamic analysis. Specifically, we define the functions φv(k) and φk(k) by
the equations

δT 0x′(ω,k) =
i sin θφv(k)

ω + iDk2
2πµF δ(ω − k cos θ) , (B24)

δT 0z′(ω,k) =
i (ω cos θφv(k) + c2(k)k)− kωφk(k)

ω2 − c2(k)k2 + iΓsωk2
2πµF δ(ω − k cos θ) , (B25)

where c2(k) = c2s(1 + τπΓsk
2) and δT 00(ω,k) is determined by energy-momentum conser-

vation. This reparametrization is used for all values of the Fourier momentum k. Such a
reparametrization is useful because, in contrast to δT 0x′ and δT 0z′ , the functions φv(k) and
φk(k) are smooth and can be easily and accurately interpolated. Then the integrals are
computed using Gaussian quadrature with break points at the hydrodynamic poles. The
brute force summation and the more sophisticated numerical scheme give the same answer
at the 1% level and are independent of the cutoff parameters.
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Appendix C: Details on the Hydrodynamic Source in Kinetic Theory and the

AdS/CFT

The purpose of this appendix is to explain in somewhat greater detail how the coefficients
given in Table IV are computed for both kinetic theory and the AdS/CFT. In the process, we
will exhibit several fits to our numerical results. The quality of these fits indicates that the
deviation of the stress tensor from its hydrodynamic form at small k and ω is well described
by a multivariate polynomial and justifies the hydrodynamic analysis of Section IV. We will
first discuss the AdS/CFT theory and then indicate how the analysis can be applied to
kinetic theory.

1. AdS/CFT

The applicability of second order hydrodynamics to the AdS/CFT has been questioned
based on the analytic structure of retarded stress tensor correlators in the lower half plane
[60, 61]. However, provided second order hydrodynamics is used to describe the behavior of
hydrodynamic modes (i.e a pole in the retarded Green function arbitrarily close to the real
axis), rather than to model the decay of non-hydrodynamic modes or transients (i.e. addi-
tional analytic structure in the lower half plane), second order hydrodynamics is applicable
to this strongly coupled theory. This appendix serves to clarify this points.

After computing the exact stress tensor of the full AdS/CFT theory we define the func-
tions φv(k) and φk(k) as in Eq. (B24). This would seem to be simply a reparametrization
of the original numerical data on δT 0x′ and δT 0z′ with two functions φv(k) and φk(k). How-
ever, as we will see, the functions φv(k) and φk(k) are analytic functions of k while the
original fields have poles arbitrarily close to the real axis as k → 0, see Eq. (4.14). The
purpose of first and second order hydrodynamics is to describe the location of these poles.
First order hydrodynamics determines the pole location to first order in k`mfp, but neglects
terms of order (k`mfp)2 which are captured by second order hydrodynamics4. It should
be emphasized that the pole shift is a consequence of modifying the ideal hydrodynamic
equations of motion by powers of k`mfp rather than modifying the source. Since, the ideal
solution has a hydrodynamic pole at ω = csk modifying the equations of motion does not
simply correct the solution by simple powers k`mfp close to the pole. We will determine the
source functions φv(k) and φk(k) using first and second order hydrodynamics. Specifically,
we determine φv(k) and φk(k) using Eq. (B24) (with the same numerical data for the full
stress tensor δT 0x′ and δT 0z′), but in the first order case we set the second order transport
coefficient to zero in these equations5, τπ → 0.

Since the source functions φv and φk are functions of k and ω = k cos θ, we can expand
these functions in Fourier series

φv(k, cos θ) ≡ φv;0(k) + 2φv;1(k) cos θ + 2φv;2(k) cos 2θ + · · · . (C1)

πTφk(k, cos θ) ≡ φk;0(k) + 2φk;1(k) cos θ + 2φk;2(k) cos 2θ + · · · . (C2)

4 `mfp should be taken as 1/πT in the strongly coupled theory.
5 We note that φv is the same for first and second order hydrodynamics. Only φk is affected by a non-zero

τπ.
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FIG. 8. (Color online) Hydrodynamic fits to the AdS/CFT source functions φv ≡ 1 + ∆φv and

πTφk = −1
3+∆φk at small k (see the text surrounding Eq. (C1)). The Fourier coefficients displayed

in this figure have been multiplied by a factor indicated in parentheses to increase visibility, and are

fit with the functional form Ckα. The dashed lines and open symbols have non-integer fit-powers

and lie beyond the description of hydrodynamics to the specified order, i.e. the fit is not expected

to work. (a) The n = 0, n = 1, and n = 2 Fourier coefficients of φv. (b) The n = 0, n = 1, and

n = 2 Fourier coefficients of φk, when φk is extracted using first order hydrodynamics. (c) Same

as (b), but for second order hydrodynamics.

In Fig. 8 we plot the terms of the Fourier series φv;n(k) and φk;n(k) and fit these functions
with a simple power law, kα.

As we see from the fit, φv is well described by a quadratic polynomial at small k

φv;0(k) = 1− 0.1643

(
k

πT

)2

, φv;1(k) = 0.5i

(
k

πT

)
, φv;2(k) = 0.0870

(
k

πT

)2

.

(C3)
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For first order hydrodynamics the terms of quadratic order can be neglected. Our numerical
result for φv;1 is nicely consistent with the first order analytic result Ref. [11].)

Now we examine kφk using first and second order hydrodynamics6. When first order hy-
drodynamics is used the source function is not well described by a polynomial (see Fig. 8(b)).
However, we see that kφk decreases faster than k (as k1.52 for n = 1), and therefore kφk
can be neglected in a first order hydrodynamic analysis of the long wavelength response to
the heavy quark. A concerned reader might worry that the resulting source function kφk
is not well described by a quadratic polynomial, and incorrectly conclude a local source for
hydrodynamics can not be constructed beyond linear order. However, when second order
hydrodynamics is used to extract the source through quadratic order (as is appropriate),
kφk is well described by the quadratic polynomial – see the linear fit in Fig. 8(c) for φk;1.
Numerically we find

φk;0(k) = −1

3
, φk;1(k) = 0.11i

k

πT
, (C4)

up to non-analytic terms that fall faster than k2. (These non-analytic terms could be
removed by pushing the hydrodynamic analysis to third order.) In summary, we see that
using second order hydrodynamics neatly removes the non-analytic behavior seen in the first
order source, and then the source for second order hydrodynamics is then well described by
a quadratic polynomial. The coefficient τπ which shifts the hydrodynamic pole is universal
– it was determined through an analysis of two point functions [35], and the same coefficient
determines the long distance response to the disturbance produced by a heavy quark. By
contrast the source functions φv and φk are not universal but depend on the particular way
in which the heavy quark couples to hydrodynamic modes. Using the fits in Eq. (C3) and
Eq. (C4) (and the relation between φv, φk and φ1,φ2 given in Eq. (4.11)), we parametrize
this source by three numbers to quadratic order which are given in Table IV.

2. Kinetic Theory

As in the previous appendix, we define the functions φv and φk from the exact stress
tensor (Eq. (B24)), and again expand these functions in a Fourier series as in Eq. (C1), but,
as is appropriate for the kinetic theory calculation, πTφk is replaced with (µA/T )φk . Then
the Fourier coefficients are fit with a polynomial which are shown in Fig. 9. It was verified
that the other Fourier coefficients of φv and kφk that are not shown decrease faster than
k2 and thus lie outside of the hydrodynamic analysis which is restricted to second order
inclusive. Examining the fits shown in Fig. 9, we see that the parameterization

φv;0(k) =1 + 1.66(1)

(
kT

µA

)2

, (C5)

φk;1(k) =− 1

6
1.66(1)i

kT

µA
, (C6)

describes our numerical data at small k and ω = k cos θ quite well. The fact that φv;0 and
φk;1 have the same fit coefficient (up to a symmetry factor of 1/6) is a consequence of the
hydrodynamic analysis of Section IV. Comparing the fit with the functional form given in

6 We discuss kφk instead of simply φk since the source for hydrodynamics is φk(k)k.
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fit result is recorded in Eq. (C5). (b) Using the fit coefficient from (a), a prediction is made φk;1
(see Eq. (C5)) using the analysis of Section IV.

the text (Eq. (4.11)), we see that we have a non-zero φ
(0,0)
2 (which is recorded in Table IV),

but the coefficients φ
(0,0)
1 and φ

(1,0)
1 seem to vanish. In fact φ1(ω, k

2) vanishes to all orders
in ω, k as we will now show.

To this end we can return to the analysis given in Section IV. For a given k, we expect
that there is a non-zero component of T ij(ω,k) which transforms as a spin two tensor under
azimuthal rotations around the k axis. Examining the decomposition of τ ij ≡ T ij − T ijhydro
into tensor structures (Eq. (4.8)), and noting that hydrodynamics does not yield such a
spin two tensor, we see that this spin two component of T ij determines

[
vivj − 1

3
v2δij

]
φ1,

since this is the only tensor structure of τ ij that has a spin two component under azimuthal
rotations around k. Examining the source for the Boltzmann equation given in Eq. (B12)
of Appendix B we see that the specific form of the source does not excite the spin two (i.e.
m = 2) components of the distribution function δf . Thus, since the Boltzmann equation
does not mix harmonics of different spin, the spin two component of the stress tensor vanishes
and so does φ1. This approximate symmetry is specific to the simplified form of the source
which arises in a leading-log approximation and is not expected to hold more generally.
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