
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Partial γ-ray production cross sections for (n,xnγ) reactions
in natural argon at 1–30 MeV

S. MacMullin, M. Boswell, M. Devlin, S. R. Elliott, N. Fotiades, V. E. Guiseppe, R. Henning,
T. Kawano, B. H. LaRoque, R. O. Nelson, and J. M. O'Donnell

Phys. Rev. C 85, 064614 — Published 21 June 2012
DOI: 10.1103/PhysRevC.85.064614

http://dx.doi.org/10.1103/PhysRevC.85.064614


CP10253

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Partial γ-ray production cross sections for (n, xnγ) reactions in1

natural argon from 1 – 30 MeV2

S. MacMullina,b,c,∗, M. Boswellc, M. Devlind, S.R. Elliottc, N. Fotiadesd, V.E. Guiseppef,3

R. Henninga,b, T. Kawanoe, B.H. LaRoquec,1, R.O. Nelsond, J.M. O’Donnelld4

aDepartment of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599 USA5

bTriangle Universities Nuclear Laboratory, Durham, NC 27708 USA6

cPhysics Division, Los Alamos National Laboratory, Los Alamos, NM 87545 USA7

dLANSCE Division, Los Alamos National Laboratory, Los Alamos, NM 87545 USA8

eTheory Division, Los Alamos National Laboratory, Los Alamos, NM 87545 USA9

fDepartment of Physics, University of South Dakota, Vermillion, SD 57069 USA10

Abstract11

Background:Neutron-induced backgrounds are a significant concern for experiments that
require extremely low levels of radioactive backgrounds such as direct dark matter searches
and neutrinoless double-beta decay experiments. Unmeasured neutron scattering cross sec-
tions are often accounted for incorrectly in Monte Carlo simulations. Purpose: Determine
partial γ-ray production cross sections for (n, xnγ) reactions in natural argon for incident
neutron energies between 1 and 30 MeV. Methods: The broad spectrum neutron beam
at the Los Alamos Neutron Science Center (LANSCE) was used used for the measurement.
Neutron energies were determined using time-of-flight and resulting γ rays from neutron-
induced reactions were detected using the GErmanium Array for Neutron Induced Excita-
tions (GEANIE). Results: Partial γ-ray cross sections were measured for six excited states
in 40Ar and two excited states in 39Ar. Measured (n, xnγ) cross sections were compared to
the TALYS and CoH3 nuclear reaction codes. Conclusions: These new measurements will
help to identify potential backgrounds in neutrinoless double-beta decay and dark matter
experiments that use argon as a detection medium or shielding. The measurements will also
aid in the identification of neutron interactions in these experiments through the detection
of γ rays produced by (n, xnγ) reactions.
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1. Introduction14

Experiments designed to directly detect weakly interactive massive particles (WIMPs) [1,15

2] and other rare processes, such as neutrinoless double-beta decay (0νββ) [3], are crucial16
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tests for physics beyond the standard model. The direct detection of WIMPs will help17

elucidate the dominant source of matter in the universe. Similarly, the successful observation18

of a 0νββ decay will show that the neutrino is a Majorana fermion [4] and may provide19

information regarding the neutrino mass scale [5]. These types of experiments are searching20

for very rare signals; their success requires large, shielded detectors, extremely radio-pure21

construction materials and operation in deep underground laboratories.22

The DEAP/CLEAN experimental program uses large volumes of liquefied argon or neon23

to search for WIMP dark matter [6–9]. The detectors are designed to measure the scintil-24

lation light from putative WIMP-nucleus scattering. Although electrons and γ rays, which25

scatter from atomic electrons, are well-discriminated from nuclear recoils, a neutron-nucleus26

scatter in the detector will mimic a WIMP signal [10]. For DEAP/CLEAN and other liquid27

argon-based dark matter detectors, the knowledge of both elastic and inelastic neutron scat-28

tering cross sections is crucial in predicting the neutron backgrounds. The elastic scattering29

background may be estimated by measuring the inelastic rate through detection of the γ30

rays produced in the reactions and comparing the relative sizes of the elastic and inelastic31

neutron scattering cross sections.32

The GERDA experiment [11] is searching for 0νββ in 76Ge by using enriched high-purity33

germanium (HPGe) detectors submerged directly in a cryostat filled with liquid argon. The34

Majorana experiment [12–14] is also searching for 0νββ in 76Ge but is using a compact35

shield made of lead and copper. Argon is a candidate active shielding material for a ton-36

scale 76Ge experiment combining the most successful technologies used in the Majorana37

and GERDA experiments. The experimental signature of 0νββ is a mono-energetic peak38

in the HPGe energy spectrum at the Q-value of the decay, which is 2039 keV for 76Ge.39

The γ-ray emissions from naturally occurring radioisotopes may scatter several times and40

deposit energy in the detectors producing a continuum overwhelming the potential signal.41

For this reason, the successful detection of 0νββ will require radioactive backgrounds at42

unprecedentedly low levels. At these levels, backgrounds which were previously unimportant43

must be considered. Since the underground muon-induced neutron energy spectrum extends44

to several GeV, backgrounds from γ rays produced in (n, xnγ) reactions will be a concern45

for next-generation 0νββ experiments [15]. Many (n, xnγ) cross sections are unknown and46

measurements are crucial as the depth requirement for a tonne-scale 76Ge experiment will47

be driven by the magnitude of muon-induced backgrounds [16].48

Cross sections for 40Ar(n, n′γ)40Ar have been measured at En = 3.5 MeV for the first few49

excited states in 40Ar by Mathur and Morgan [17]. We have extended these measurements50

to 1 < En < 30 MeV and have measured several γ-ray production cross sections that were51

previously unmeasured. The inclusion of Ar(n, xnγ) cross sections over a wide energy range52

in Monte Carlo codes will help in predicting γ-ray backgrounds in 0νββ experiments and53

neutron backgrounds in dark matter experiments. This work is a continuation of previous54

experiments which measured (n, xnγ) reactions in lead [18] and copper [19].55
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2. Experiment56

Data were collected at the Los Alamos Neutron Science Center (LANSCE) [20]. A broad-57

spectrum (∼ 0.2 – 800 MeV) pulsed neutron beam was produced via spallation on a natW58

target by an 800 MeV proton linear accelerator beam. The average proton beam current59

at the spallation target was about 1 – 2 µA. The neutron beam structure contained 625-µs60

long “macropulses” driven by two out of every three such macropulses from the accelerator61

for an average rate of 40 s−1. Each macropulse consisted of “micropulses” spaced every 1.862

µs, each < 1 ns long. The pulsed beam allowed incident neutron energies to be determined63

using the time-of-flight technique. During the argon runs, 6.0 × 109 micropulses produced64

1.9× 1011 neutrons of energies from 1 to 100 MeV on the argon target.65

The GErmanium Array for Neutron Induced Excitations (GEANIE) [21] is located 20.3466

m from the spallation target at the Weapons Neutron Research facility (WNR) 60R flight67

path. GEANIE is designed to measure absolute partial cross sections for (n, xnγ) reactions68

by detecting γ rays from neutron–induced reactions on a target in the center of the array.69

It comprises 20 HPGe detectors with BGO escape suppression shields. Detectors are either70

a planar or coaxial geometry and are typically operated with maximum γ-ray energy ranges71

of 1 MeV and 4 MeV, respectively. Since most of the excited states in 40Ar produce γ rays72

with energies greater than 1 MeV, the planar detectors were not used. Due to poor energy73

resolution because of neutron damage or other issues which affected the timing, only one74

coaxial detector (θ = 77.1◦ relative to the beam axis, φ = 0◦) with the best energy resolution,75

peak-to-background ratio and timing information was used in this analysis.76

The neutron flux on target was measured with an in-beam fission ionization chamber77

with 235U and 238U foils [22]. The chamber was located about two meters upstream from the78

center of the array. Low-energy neutrons that overlap in time from the previous beam pulse79

contribute up to about 650 keV. Since the first excited state in 40Ar is at 1461 keV, these80

“wrap-around” neutrons were not a concern for this experiment. The 235U foil is usually81

used to measure the neutron flux at energies less than a few MeV where the 238U(n, f) cross82

section is very small. Since the 238U foil gives better results at energies above a few MeV, it83

was used exclusively for this experiment.84

The argon gas target cell was a 3.81-cm diameter and 6.35-cm length thin-walled alu-85

minum cylinder with 0.127-mm thick Kapton windows at either end. The gas cell was placed86

at the center of the GEANIE array, with the neutron beam passing through the Kapton foils.87

The natAr gas pressure was maintained at about 2.75 atm over the course of the experiment.88

The diameter of the gas cell was larger than the 1.27-cm beam diameter, yielding an areal89

density of approximately 0.5 target atoms per millibarn in the neutron beam. The number90

of atoms in the Kapton foils that the beam passed through was 2× 10−6 mb−1 so scattering91

from the foils had a negligible effect.92

3. Analysis and Results93

3.1. Cross section analysis94

Data were collected with a data acquisition system (DAQ) built around Ortec AD11495

ADCs and LeCroy TDCs, with fast readout over a LeCroy FERA bus into a VME memory96
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module. Slow readout of individual events from the VME memory modules, and subsequent97

online and offline analysis was performed using code based on the MIDAS [23] DAQ software98

framework. TDC spectra had a gain of 0.5 ns/channel and included data up to about 2099

µs. A sharp “γ-flash” from each proton bunch at the spallation source provided a t = 0100

reference time followed by the fastest neutrons. A time-of-flight spectrum was obtained by101

aligning the γ-flashes of consecutive micropulses in a TDC spectrum. The raw TDC and102

time-of-flight spectra are shown in Figure 1. The resulting time-of-flight spectrum was then103

converted to neutron energy and re-binned into equal logarithmic neutron energy bins. A104

clock in the data stream triggered by the start of a macropulse ensured that only beam-on105

data is used for the analysis by excluding γ-ray events that occurred between macropulses.106

Pulse height spectra from the HPGe detectors were calibrated to γ-ray energy using 152Eu,107

60Co and 137Cs source data taken several times during the course of the experiment.108

Eγ vs. En histograms were produced for each HPGe detector and fission chamber. The109

neutron energy bins were then projected onto the Eγ axis to produce γ-ray spectra for110

a specific neutron energy range. Argon-sample γ-ray spectra selected for specific neutron111

energy windows are shown in Fig. 2. Fitting peaks in these spectra with a Gaussian function112

and subtracting a linear background gives the γ-ray yield in the specified neutron energy113

bin. The neutron energy spectra were produced using fission chamber data with the same114

neutron energy binning as the γ-ray data so that the γ-ray and fission chamber yields could115

be directly compared for each neutron energy bin. The neutron flux was determined from116

the fission chamber data using the same method outlined in Wender et. al. [22].117

Data were taken with an evacuated gas cell so that argon transitions could be easily118

distinguished from background. The background line at 1460.9 keV from 40K was negligible119

compared to the argon-sample data. All γ-ray lines present only in the argon sample data120

have been identified. Most other γ-ray lines have been identified to be backgrounds from121

the sample cell (27Al) or neutron inelastic scattering in germanium or bismuth (from the122

BGO shields). Prominent γ-ray lines are listed in Table 1.123

The γ-ray cross section for a specific neutron energy bin was calculated using124

σγ(En) =
Iγ(En)

IΦ(En)

TΦ

Tγ

(1 + α)

t · ǫγ
· Cγ(En) (1)

where Iγ(En) is the γ-ray yield (counts/MeV) in the HPGe detectors, IΦ(En) is the neutron125

flux (neutrons/MeV). The internal conversion coefficient, α, is defined as the probability of126

electron emission versus γ-ray emission for a given de-excitation [25]. For the transitions127

observed in this experiment, α < 10−4. Cγ(En) is the angular distribution correction factor128

described in Section 3.1.3, t is the target areal density (atoms/barn), ǫγ is the γ-ray de-129

tection efficiency, and Tγ and TΦ are the detector and fission chamber fractional live times,130

respectively.131

Since natAr is 99.6 % 40Ar (the balance being 38Ar 0.34% and 36Ar 0.07%), we assumed132

that only the 40Ar(n, n′γ)40Ar reaction produced a detectable γ ray from an excited state133

transition in 40Ar. Similarly, the 250-keV and 1267-keV transitions observed from 39Ar134

were assumed to have been produced by the 40Ar(n, 2nγ)39Ar reaction and not a competing135
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(a) A sharp “γ-flash” from each proton bunch at the spallation source provides a t = 0 reference
time. TDC spectra have a gain of 0.5 ns/channel and include data up to about 20 µs.
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Figure 1: HPGe detector TDC (a) and time-of-of flight (b) spectra.
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Figure 2: Argon-sample γ-ray spectra selected for different neutron energy windows. The
spectrum shown in black (top) corresponds to 1 < En < 10 MeV. The spectrum shown in
red (middle) corresponds to 10 < En < 25 MeV. The spectrum shown in blue (bottom)
corresponds to 25 < En < 50 MeV. Transitions in argon are labeled. The prominent γ-ray
lines are listed in Table 1.
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Table 1: Prominent γ-ray lines in argon data. Additional information on each transition
can be found in [24].

E (keV) source transition
250.3 39Ar 3/2+ → 3/2−

511 e+e− annihilation
545 40Ar 4− → 3−

571.9 40Ar 6+ → 4+

595.9 74Ge 2+ → 0+

660.1 40Ar 0+ → 2+

691.5 72Ge 0+ → 0+

834.0 72Ge 2+ → 0+

843.8 27Al 1/2+ → 5/2+

896.3 209Bi 7/2− → 9/2−

1014.5 27Al 3/2+ → 1/2+

1039.2 70Ge 2+ → 0+

1063.4 40Ar 2+ → 2+

1267.2 39Ar 3/2− → 7/2−

1431.8 40Ar 4+ → 2+

1460.9 40Ar 2+ → 0+

1608.5 209Bi 13/2+ → 9/2−

1746.5 40Ar 2+ → 2+

2050.5 40Ar 2+ → 2+

2220.0 40Ar 3− → 2+

2524.1 40Ar 2+ → 0+
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reaction channel.136

3.1.1. Live Time137

The fractional live times were determined by comparing the number of converted pulse138

height events to the number of ADC scalers. The scalers themselves have essentially no139

deadtime; they can sustain rates up to 30 kHz with a deadtime < 0.1%. The deadtime140

in the pulser channel was 18% due to ADC conversion and other losses in the electronics.141

The deadtime in the fission chambers was 45%. Although the deadtime for the HPGe142

detectors was more significant (> 50 %) due to backgrounds from scattered neutrons and143

the γ-flash, the beam-induced detector rates were low enough that the energy-dependent144

deadtime effects were negligible.145

3.1.2. Detection Efficiency146

The γ-ray detection efficiency (ǫγ) was measured using 17 γ rays from 152Eu, 60Co and147

137Cs point sources each placed in the center of the array. For each γ ray, the detection148

efficiency was calculated using the known source activity, γ-ray branching ratios and mea-149

surement live time. These measured efficiencies were fit to derive an efficiency curve for150

each detector. The gas target cell and detectors were also simulated using MaGe [26]; a151

Monte Carlo framework developed by the Majorna and GERDA collaborations based on152

GEANT4 [27, 28]. Mono-energetic γ rays were generated isotropically in the argon gas in153

10 keV increments from 10 to 4000 keV. The efficiency was calculated for each γ-ray energy154

using155

ǫγ =
Npeak

Nsim

(2)

where Npeak is the number of events in the peak and Nsim is the number of events simulated.156

Enough events were generated for each γ-ray energy so statistical uncertainties were < 1%.157

The efficiency curves constructed from the simulated data and source data were compared.158

The simulated efficiency curve was consistent with the fit to the experimental data to within159

6% from 200 – 3200 keV, which includes all γ rays measured in the current experiment. It160

was determined from the simulation that the correction due to γ-ray attenuation in the gas161

target and aluminum cell was negligible at the gas density used in this experiment.162

3.1.3. Angular Distribution Correction163

Since the incident neutron beam partially aligns the neutron spins in a plane orthogonal164

to the beam direction, the γ rays are not emitted isotropically by the decaying nucleus, and165

the angular distribution must be considered [29].166

The angle-integrated cross section may be calculated from the angular distribution if167

it is known, however a measurement of the angular distribution of γ rays is not optimal168

with GEANIE since there are only six unique detector angles in the array. The angular169

distributions were measured at GEANIE for 238U(n, xnγ) and deviations from an isotropic170

assumption were mostly less than 5% [30]. Because only one detector was used in the171
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analysis, we relied on other measurements and modeling to estimate and correct for angular172

distribution effects.173

The AVALANCHE code was used to calculate the angular distribution for all of the174

measured transitions [31]. The routines in AVALANCHE were developed to calculate side-175

feeding intensities and spin state orientation parameters corresponding to the side-feeding176

part of the m-substate population in compound nucleus reactions [32, 33]. The angular177

distribution of emitted photons from a nuclear de-excitation may be expanded in terms of178

Legendre polynomials:179

W (θ) =
∑

k=even

AkPk(cos(θ)) (3)

where the k can only be even due to parity conservation and kmax < 2ji where ji is the spin180

of the excited state [29]. The angular distribution correction factor (Cγ) was determined by181

comparing the angular distribution at a particular angle, θ to an isotropic assumption (W(θ)182

≡ 1). The angular distribution correction at a particular incident neutron energy must be183

weighted by each detector’s efficiency and live time. The angular distribution correction184

factor is then given by185

Cγ(En) =

∑
i ǫ

i
γT

i
γ∑

i ǫ
i
γT

i
γW (θi, En)

(4)

where i runs over all detectors used in the analysis. For the single detector used in the186

current analysis, the correction factor reduces to187

Cγ(En) =
1

W (77.1◦, En)
(5)

The anisotropy diminishes as En increases. Cγ was usually < 1.10 and was a maximum of188

1.18 for the 1460.9-keV transition in 40Ar.189

3.2. Cross Sections190

The γ-ray production cross sections were analyzed using a neutron time-of-flight binning191

corresponding to 40 equal logarithmic neutron energy bins from 1 to 100 MeV. Although the192

binning is significantly coarser than the ∼15-ns timing resolution of the HPGe detectors, it193

proved to be the best choice to generate enough statistics over the measured neutron energy194

range.195

As a validation of the experiment and analysis techniques, part of the argon dataset196

was taken with a 0.127-mm natFe foil fixed to each end window of the gas target and the197

partial γ-ray cross section for the 846.8-keV 2+ → 0+ transition in 56Fe was determined.198

Our measured cross section was 628 ± 80 mb at En = 15.0 ± 0.9 MeV. This value is in good199

agreement with the cross section of 681 ± 57 mb at En = 14.5 MeV, measured by Nelson200

et. al. [34].201

Partial γ-ray cross sections for six transitions in 40Ar and two transitions in 39Ar were202

measured from threshold to a neutron energy where the γ-ray yield dropped below the203
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detection sensitivity. The results are shown in Figs. 3–4 and Tables A.4–A.10. The results204

were compared to a calculated cross section using the TALYS and CoH3 nuclear reaction205

codes [35, 40, 41].206

Although there were no features in the γ-ray data near the 76Ge 0νββ region-of-interest207

at 2039 keV and at 3061 keV, which can produce a double-escape peak at 2039 keV, upper208

limits were calculated using five neutron energy bins from 1 to 100 MeV. The results are209

shown in Table 2.210

Table 2: Upper limits (90% C.L.) for natAr(n, xnγ) reactions. The signal region for the
upper limit calculation was chosen to be a window of 2.8σ, where σ was determined from
the measured detector energy resolution (σ = 0.77 keV at Eγ = 1333 keV).

Cross section (mb)
En (MeV) Eγ = 2039 keV Eγ = 3061 keV
1.58 – 3.98 < 50 < 48
3.98 – 10.0 < 76 < 74
10.0 – 25.1 < 64 < 78
25.1 – 50.0 < 50 < 56
50.0 – 100 < 31 < 31

3.3. Systematic Uncertainties211

An uncertainty of 6%, assigned to γ-ray detection efficiency, was derived from the un-212

certainty in the fit to experimental data over the measured γ-ray energy range. This is213

consistent with the results from the Monte Carlo simulation. The uncertainty in the num-214

ber of argon atoms was 4%, mainly due to pressure changes in the gas cell over the course of215

the experiment. An uncertainty of 2 – 4% was assigned to the neutron flux due to the un-216

certainty in the 238U(n, f) cross sections. The uncertainty in the neutron energy was based217

on the time-of-flight cut on the fission chamber data. The angular distributions of γ rays218

were presented for several excited states in the 40Ar(n, n′γ)40Ar reaction at En = 3.5 MeV219

by Mathur and Morgan [17]. The angular distribution data for the 2+ → 0+ first excited220

state compared with the angular distribution calculated using the AVALANCHE code is221

shown in Figure 5. Based on the maximum deviation from the AVALANCHE calculation222

and data, a systematic uncertainty in the angular distribution correction of 4% was adopted.223

An angular distribution correction was not applied to the cross section for the Eγ = 660 keV224

0+ → 2+ transition in 40Ar since the γ-ray distribution from an (n, n′γ) process is isotropic225

when Ji = 0 [36].226

3.4. Statistical Uncertainties227

The statistical uncertainty in the fission chamber data was 3 – 4% over the measured228

neutron energy range. The statistical uncertainties in the γ-ray yield were as low as 2%229

and mainly less than 10%. The statistical uncertainty became more significant as neutron230

energy increased, and for weakly excited transitions became as high as 23%. The systematic231

and statistical uncertainties are summarized in Table 3.232
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Figure 3: Partial γ-ray cross sections for 40Ar(n, n′γ)40Ar. The dashed curve is the cross
section calculated using the TALYS nuclear reaction code. The solid curve is the cross
section calculated using the CoH3 code.
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Figure 4: Partial γ-ray cross sections for measured transitions in 39Ar(n, 2nγ)40Ar. The
dashed curve is the cross section calculated using the TALYS nuclear reaction code. The
solid curve is the cross section calculated using the CoH3 code.

Table 3: Systematic and statistical uncertainties.

Systematic Uncertainties
γ-ray detection efficiency 6%
target nuclei 4%
neutron flux 2–4%
angular distribution 4%

Statistical Uncertainties
neutron flux 3 – 4%
γ-ray yield 2 – 23%
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[17]. The dashed curve is from the AVALANCHE calculation.
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4. Discussion and Conclusions233

We chose to use a single detector in the final analysis based on overall performance during234

the course of the experiment. Because the detector used in the cross section analysis had235

one of the best beam-on peak-to-background ratios in the array, the statistical uncertainty236

using this analysis was adequate and we reached a comparable sensitivity to previous cross237

sections measured at GEANIE. Because these reactions have a relatively high threshold and238

the density of states is low it is unlikely that additional cross sections from higher excited239

states would have been measured with more analyzed detectors.240

The TALYS reaction code was used to predict the γ-ray production cross sections for241

the transitions studied in the present work. The TALYS cross sections were calculated using242

the default settings, which included a direct reaction model using the local optical model243

parameterization of Koning and Delaroche [37], a pre-equilibrium model and a compound244

nucleus reaction model using a Hauser-Feshbach statistical calculation. The TALYS cross245

sections tend to under-predict the measured cross sections.246

In addition to the TALYS calculations, we performed γ-ray production cross section247

calculations with the CoH3 code [40, 41], which is similar to TALYS — using a Hauser-248

Feshbach statistical model and a pre-equilibrium model. The statistical model calculations249

in the relatively light mass region, such as for argon, require careful selection of the dis-250

crete levels included, because the nuclear structure and the γ-ray decay scheme significantly251

impact the calculated γ-ray production cross sections. For example, in the 40Ar case, the252

discrete states up to about 4.5 MeV are known in the nuclear structure database including253

the γ-ray branching ratios from each level.254

First, we reviewed the nuclear structure information on 40Ar in the database RIPL-255

3 [42] and eliminated three discrete states that are uncertain. The discrete states up to256

4.2 MeV are included in our calculation, and the continuum state is assumed above that257

energy. At higher energies the direct population of collective levels is very important for258

the γ-ray production cross section calculation. We take β2 = 0.251 for the 1.461 MeV 2+259

and β3 = 0.314 for the 3.681 MeV 3− state from RIPL-3, and the DWBA calculation is260

performed to these levels.261

The Koning and Delaroche global optical potential [37] was used for the neutron and262

proton transmission coefficient calculation. The α-particle optical potential was taken from263

the parameterization of Avrigeanu et al. [43]. This optical potential is valid for A > 50 and264

40Ar is slightly outside the range. However, the (n, α) cross section on 40Ar is small (20 mb265

at 10 MeV), the extrapolation of this optical potential is not crucial for our 40Ar(n, n′γ)266

reaction. The Koning-Delaroche optical potential was first tested against experimental total267

cross section data in the energy range 1–30 MeV, and we obtained good agreement with the268

data of Winters et al. [44].269

Since the Koning and Delaroche potential is also used in the TALYS default setup calcu-270

lation, we expect that the two calculations are not so different. The difference in the γ-ray271

production cross section partly comes from the different modeling of the level density [45],272

but largely due to the discrete levels included. When some tentative level assignments exist273

in the evaluated level scheme, it is often assumed that these levels decay to the ground state274
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directly, which results in underestimation of measured γ-ray production cross sections.275

In experiments like DEAP/CLEAN, the most worrisome neutrons come from 238U and276

232Th-induced (α, n) reactions in detector and shielding components, specifically in borosil-277

icate PMT glass. The 238U and 232Th-induced (α, n) neutron energy spectrum peaks at278

about 3–5 MeV and is negligible above 8 MeV [38]. If both the neutron elastic and γ-ray279

production (inelastic) cross sections are known in this energy range, the elastic neutron280

scattering background may be estimated by measuring the inelastic scattering rate in the281

detector and comparing the relative sizes of the cross sections. The ratio of the elastic to282

inelastic neutron scattering cross sections for 40Ar from 1.5 to 10 MeV are shown in Fig. 6.283

The elastic scattering cross section was calculated using the local optical model parame-284

terization of Koning and Delaroche [37] within the TALYS framework. The data points285

are the measured γ-ray production cross section summed over all levels observed in the286

current experiment. Although the ratio of the cross sections becomes large as the neutron287

energy approaches threshold, only about 15% of the total neutrons produced from 238U and288

232Th-induced (α, n) reactions have energies below 2 MeV.289

We have measured neutron induced γ-ray production cross sections in natAr from thresh-290

old to as high as 30 MeV where they fall below our detection sensitivity. Cross sections for291

six excited states of 40Ar, assumed to be from the 40Ar(n, n′γ)40Ar reaction, were measured.292

Two cross sections from excited states of 39Ar, assumed to be from the 40Ar(n, 2nγ)39Ar293

reaction, were also measured. Although there was no statistically significant signal in the294

regions relevant to 0νββ in 76Ge, upper limits were placed on 40Ar(n, xnγ) cross sections for295

1 < En < 100 MeV. The measured cross sections and upper limits can be included in Monte296

Carlo simulations combined with the expected neutron spectrum to yield background rates297

for future low-background experiments that will use argon as a detector or shield mate-298

rial. The measured cross sections will also aid in the discrimination of neutron backgrounds299

WIMP detection experiments which use argon as a detector, where neutrons are the most300

dangerous source of background.301

5. Acknowledgements302

We would like to thank Werner Tornow and Anton Tonchev for useful discussions about303

this analysis. This work was supported in part by Laboratory Directed Research and De-304

velopment at Los Alamos National Laboratory, National Science Foundation Grant 0758120305

and US Department of Energy grant number 2013LANLE9BW. This work benefited from306

the use of the Los Alamos Neutron Science Center, funded by the US Department of Energy307

under Contract DE-AC52-06NA25396. Henning and MacMullin are supported by DOE ONP308

grant awards DE-FG02-97ER4104 and DE-FG02-266 97ER41033. Guiseppe is supported by309

DOE ONP grant number is DE-SCOO05054.310

15



 (MeV)nE
0 5 10 15 20 25 30 35

C
ro

ss
 S

ec
tio

n 
(b

ar
ns

)

0

0.5

1

1.5

2

2.5

3

3.5

Ar40Ar(n,n)40

Ar40)γAr(n,n’40Data 
Ar40)γAr(n,n’40 3CoH

(a) The solid curve is the elastic scattering cross section for neutrons incident on 40Ar, calculated
from the local optical model parameters of Koning and Delaroche. The data points are the mea-
sured γ-ray production cross section summed over all levels observed in the current experiment.
The dashed curve is the inelastic cross section calculated using CoH3.
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(b) The ratio of the elastic scattering cross section to the γ-ray production (inelastic) cross section.
A 15% uncertainty was assigned to the elastic scattering cross section based on the agreement
between the model and the ENDF/B-VII.0 database [39].

Figure 6: Elastic and inelastic neutron scattering cross for 40Ar.
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Appendix A. Partial γ-ray Cross Sections366

Table A.4: 40Ar(n, n′γ)40Ar 2+ → 0+ Eγ = 1461 keV

En (MeV) σdata (barns) σTALY S (barns) σCoH3
(barns)

1.5 ± 0.1 0.08 ± 0.01 0.05 0.07
1.7 ± 0.1 0.28 ± 0.03 0.28 0.39
1.9 ± 0.1 0.42 ± 0.04 0.37 0.50
2.1 ± 0.1 0.70 ± 0.07 0.43 0.62
2.4 ± 0.1 0.67 ± 0.06 0.55 0.71
2.7 ± 0.2 0.80 ± 0.07 0.64 0.83
3.0 ± 0.2 0.86 ± 0.08 0.71 0.87
3.4 ± 0.2 0.84 ± 0.08 0.77 0.96
3.8 ± 0.2 0.96 ± 0.09 0.88 1.04
4.2 ± 0.2 1.02 ± 0.09 0.91 1.07
4.7 ± 0.3 0.98 ± 0.09 0.91 1.13
5.3 ± 0.3 1.1 ± 0.1 0.9 1.1
6.0 ± 0.3 1.1 ± 0.1 0.9 1.1
6.7 ± 0.4 1.1 ± 0.1 1.0 1.1
7.5 ± 0.4 1.1 ± 0.1 1.0 1.1
8.4 ± 0.5 1.1 ± 0.1 1.0 1.1
9.5 ± 0.6 1.0 ± 0.1 1.0 1.1
10.6 ± 0.6 1.1 ± 0.1 0.9 1.0
11.9 ± 0.7 0.84 ± 0.08 0.67 0.77
13.4 ± 0.8 0.61 ± 0.06 0.43 0.53
15.0 ± 0.9 0.42 ± 0.05 0.32 0.37
16.8 ± 1.0 0.32 ± 0.04 0.24 0.26
18.9 ± 1.0 0.33 ± 0.05 0.21 0.21
23.8 ± 1.3 0.24 ± 0.04 0.16 0.14
29.9 ± 1.7 0.19 ± 0.03 0.12 0.10
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Table A.5: 40Ar(n, n′γ)40Ar 0+ → 2+ Eγ = 660 keV

En (MeV) σdata (barns) σTALY S (barns) σCoH3
(barns)

2.1 ± 0.1 0.024 ± 0.005 0.023 0.026
2.4 ± 0.1 0.058 ± 0.008 0.055 0.072
2.7 ± 0.2 0.10 ± 0.01 0.07 0.09
3.0 ± 0.2 0.12 ± 0.01 0.08 0.10
3.4 ± 0.2 0.11 ± 0.01 0.09 0.11
3.8 ± 0.2 0.11 ± 0.01 0.09 0.11
4.2 ± 0.2 0.10 ± 0.01 0.08 0.10
4.7 ± 0.2 0.08 ± 0.01 0.06 0.08
5.3 ± 0.3 0.07 ± 0.01 0.04 0.06
6.0 ± 0.3 0.06 ± 0.01 0.03 0.05
6.7 ± 0.4 0.06 ± 0.01 0.03 0.04
7.5 ± 0.4 0.06 ± 0.01 0.02 0.04
9.5 ± 0.6 0.05 ± 0.01 0.02 0.03

Table A.6: 40Ar(n, n′γ)40Ar 2+ → 0+ Eγ = 2524 keV

En (MeV) σdata (barns) σTALY S (barns) σCoH3
(barns)

2.3 ± 0.2 0.030 ± 0.006 0.044 0.019
3.0 ± 0.2 0.059 ± 0.009 0.073 0.090
3.4 ± 0.2 0.08 ± 0.01 0.08 0.10
3.8 ± 0.2 0.11 ± 0.02 0.08 0.10
4.2 ± 0.2 0.13 ± 0.02 0.08 0.10
4.7 ± 0.3 0.11 ± 0.02 0.08 0.11
5.3 ± 0.3 0.11 ± 0.02 0.07 0.10
6.0 ± 0.3 0.10 ± 0.02 0.07 0.10
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Table A.7: 40Ar(n, n′γ)40Ar 4+ → 2+ Eγ = 1432 keV

En (MeV) σdata (barns) σTALY S (barns) σCoH3
(barns)

3.8 ± 0.2 0.09 ± 0.02 0.06 0.09
4.2 ± 0.2 0.13 ± 0.02 0.08 0.11
4.7 ± 0.3 0.17 ± 0.02 0.11 0.14
5.3 ± 0.3 0.19 ± 0.02 0.14 0.16
6.0 ± 0.3 0.19 ± 0.02 0.16 0.17
6.7 ± 0.4 0.24 ± 0.03 0.18 0.19
7.5 ± 0.4 0.22 ± 0.02 0.20 0.20
8.4 ± 0.5 0.28 ± 0.03 0.21 0.21
9.5 ± 0.6 0.29 ± 0.03 0.22 0.22
10.6 ± 0.6 0.33 ± 0.04 0.23 0.22
11.9 ± 0.7 0.27 ± 0.04 0.17 0.16
13.4 ± 0.8 0.17 ± 0.03 0.11 0.11

Table A.8: 40Ar(n, n′γ)40Ar 2+ → 2+ Eγ = 1747 keV

En (MeV) σdata (barns) σTALY S (barns) σCoH3
(barns)

3.8 ± 0.2 0.10 ± 0.01 0.09 0.12
4.2 ± 0.2 0.11 ± 0.02 0.09 0.12
4.7 ± 0.3 0.11 ± 0.02 0.08 0.11
5.3 ± 0.3 0.13 ± 0.02 0.06 0.09
6.0 ± 0.3 0.11 ± 0.02 0.06 0.08
6.7 ± 0.4 0.10 ± 0.02 0.05 0.08
7.5 ± 0.4 0.10 ± 0.02 0.04 0.07

Table A.9: 40Ar(n, 2nγ)39Ar 3/2− → 7/2− Eγ = 1267 keV

En (MeV) σdata (barns) σTALY S (barns) σCoH3
(barns)

13.4 ± 0.8 0.08 ± 0.02 0.08 0.09
15.0 ± 0.9 0.13 ± 0.02 0.13 0.15
18.9 ± 1.0 0.19 ± 0.03 0.15 0.19
21.2 ± 1.2 0.13 ± 0.02 0.12 0.15
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Table A.10: 40Ar(n, 2nγ)39Ar 3/2+ → 3/2− Eγ = 250 keV

En (MeV) σdata (barns) σTALY S (barns) σCoH3
(barns)

15.0 ± 0.9 0.058 ± 0.008 0.037 0.046
16.8 ± 1.0 0.060 ± 0.008 0.050 0.064
18.9 ± 1.0 0.056 ± 0.008 0.043 0.068
21.2 ± 1.2 0.049 ± 0.007 0.034 0.056
23.8 ± 1.4 0.044 ± 0.007 0.020 0.045
26.7 ± 1.5 0.043 ± 0.007 0.024 0.036
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