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We present a nonperturbative derivation of effective valence-shell Hamiltonians in the framework
of the recently developed in-medium similarity renormalization group (IM-SRG). As a first appli-
cation, we calculate the spectra of p- and sd-shell nuclei, 6Li and 18O, based on evolved chiral
nucleon-nucleon interactions. For 6Li, the spectrum is in very good agreement with ab-initio re-
sults. For 18O, the IM-SRG provides a new method for the shell model to systematically go beyond
effective interaction techniques based on diagrammatic expansions.
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Introduction.– Advances in ab-initio methods for nu-
clear structure combined with nuclear forces based on chi-
ral effective field theory (EFT) have lead to many excit-
ing developments for light nuclei and medium-mass nuclei
around closed-shell configurations (see, e.g., Refs. [1]).
For open-shell systems with many valence nucleons, how-
ever, the shell model remains the most successful ap-
proach to understand and predict nuclear structure, in-
cluding the evolution of shell structure with changing
neutron and proton numbers, properties of ground and
excited states, and electroweak transitions [2]. More-
over, the shell model has recently revealed new insights
to the impact of long-range tensor [3] and three-nucleon
forces [4] in neutron-rich nuclei. These are dominated by
pion exchanges, which provides a link between nuclear
structure and developments in chiral EFT interactions.
Despite the many successes of the shell model, the micro-
scopic derivation of effective interactions and operators
among valence nucleons from nuclear forces is still largely
based on perturbative approaches where the convergence
remains an open problem.

In this Letter, we present a new nonperturbative
derivation of effective valence-shell Hamiltonians in the
framework of the in-medium similarity renormalization
group (IM-SRG), which we recently developed for closed-
shell nuclei [5, 6]. The IM-SRG is based on a renormaliza-
tion group evolution that decouples degrees of freedom
that are not relevant for the problem of interest [7, 8].
We show how the IM-SRG can be generalized to open-
shell systems away from doubly-magic nuclei. For 6Li,
we present first results for the ground-state energy and
spectrum in very good agreement with ab-initio meth-
ods. We then discuss for 18O how the IM-SRG goes sig-
nificantly beyond effective interaction techniques based
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on diagrammatic expansions [9], opening up a promis-
ing new method to connect nuclear forces and the shell
model.
IM-SRG and generator choices.– The IM-SRG starts

from a Hamiltonian H that is normal ordered with re-
spect to a finite-density reference state |Φ〉 (e.g., the
Hartree-Fock ground state):

H = E0 +
∑

ij

fij {a
†
iaj}+

1

2!2

∑

ijkl

Γijkl {a
†
ia

†
jalak} , (1)

where the normal-ordered strings of creation and annihi-

lation operators obey 〈Φ|{a†i · · · aj}|Φ〉 = 0. We include
normal-ordered 0-, 1-, and 2-body operators, E0, f , and
Γ, which approximately include induced 3- and higher-
body interactions, and solve the IM-SRG flow equations
to obtain the evolved Hamiltonian H(s) [5]. We refer to
this truncation as IM-SRG(2) since we keep up to normal-
ordered 2-body operators. The evolution is equivalent to
a series of unitary transformations that are designed to
evolve H(s) as s → ∞ to an appropriately defined “di-
agonal” part Hd(s) [7, 8, 10, 11]:

H(s) = U(s)HU †(s) ≡ Hd(s) +Hod(s) → Hd(∞) . (2)

The unitary transformation U(s) is determined by the
generator η(s) ≡ [dU(s)/ds]U †(s), which is constructed
from the diagonal part,

η(s) = [Hd(s), H(s)] = [Hd(s), Hod(s)] , (3)

and guarantees that the “off-diagonal” coupling Hod is
driven to zero with increasing s [8].
For the ground state of closed-shell nuclei, one elim-

inates all terms that couple the reference state |Φc〉 to
the rest of the Hilbert space. This is achieved when the
matrix elements between |Φc〉 and all n-particle–n-hole
states vanish, 〈npnh|H(∞) |Φc〉 = 0. Therefore, one de-
fines Hod

c to be composed of all 1- and 2-body opera-
tors that connect hole (h) with particle (p) states so that
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FIG. 1: Schematic illustration for the valence-space decou-
pling by the IM-SRG evolution from H(s = 0) → H(∞) for
two valence nucleons.

{Hod
c } = {fph,Γpp′hh′} plus hermitian conjugates, as was

demonstrated in Ref. [5].
For open-shell nuclei, particle states p can either be va-

lence particles or particle states above the valence space,
which we denote by v and q respectively. We want to de-
couple states that are not in the valence space, spanned
by |Φv〉 = {a†v1 · · · a

†
vN } |Φc〉, where N is the number of

valence nucleons and |Φc〉 is the reference state for the
core nucleus with Ac nucleons. This can be realized by
defining Hod through the set of matrix elements

{Hod
1 } = {fph, fqv,Γpp′hh′ ,Γpp′(vh orhv),Γ(pq or qp)vv′} ,

(4)
where p = v, q, plus hermitian conjugates. As an alter-
native generator choice Hod

2 , we also drive the one-body
part to diagonal, so that we define

{Hod
2 } = {Hod

1 , fpp′ , fhh′} . (5)

These generators both lead to a diagonal part Hd
1,2 where

states outside the valence space are decoupled by the IM-
SRG flow, illustrated in Fig. 1, leading to

PHd
1,2(∞)Q = QHd

1,2(∞)P = 0 , (6)

with P =
∑

v |Φv〉 〈Φv| and Q = 1−P . The off-diagonal
parts in Eqs. (4) and (5) can also be derived using the

counting operator C =
∑

i ci{a
†
iai}, with ci = 1, 0,−1

for q, v, h states, respectively. The C operator counts
the number of excitations on top of a valence-space
state |Φv〉. It is then straightforward to verify that
the above choices of Hod

1,2 ensure 0 = CH(∞) |Φv〉 =
[C,H(∞)] |Φv〉, which leads to the decoupling of valence-
space states from arbitrary excitations. See also Ref. [12]
for an application to algebraic models.
After the IM-SRG(2) evolution, the effective valence-

shell Hamiltonian is given by Heff ≡ PHd
1,2(∞)P −EAc

0 ,

where EAc

0 is the 0-body piece of the evolved Hamiltonian
corresponding to the ground-state energy of the core. We
then solve a reduced eigenvalue problem in the N valence-
particle space,

Heff |χn〉 = (EA
n − EAc

0 ) |χn〉 . (7)

Results.– We next present first applications of the IM-
SRG to two open-shell nuclei, 6Li and 18O, consisting

FIG. 2: The ground-state energy of 6Li versus harmonic-
oscillator parameter ~ω obtained by a diagonalization of the
IM-SRG(2) Heff in the p-shell, using generators Hod

1 and Hod
2

(left and center panels). The flow equations are solved in
the HF basis truncated to emax = max(2n+ l) single-particle
excitations. For comparison we show in the right panel the
convergence with increasing Nmax of the NCSM energy [15],
where the dot-dashed band is the extrapolated result.

of two valence nucleons on top of the closed-shell nuclei
4He and 16O. All results are based on the SRG-evolved
N3LO NN potential of Ref. [13] with a resolution scale of
λ = 2.0 fm−1. We begin with 6Li, which is a sufficiently
light nucleus to allow a direct comparison of our IM-
SRG(2) results with exact diagonalizations of the 6-body
problem using the No-Core Shell Model (NCSM). For
the IM-SRG calculations, the flow equations are solved
in the Hartree-Fock (HF) basis of the initial Hamilto-
nian truncated to emax = max(2n + l) single-particle
excitations. The resulting Heff is then diagonalized in
the p-shell to obtain the 6Li energy levels with respect
to the ground-state energy of the 4He core. There is
a subtlety that arises due to the self-bound nature of
atomic nuclei. As we wish to minimize spurious center-
of-mass motion, we work with the intrinsic Hamiltonian
Hint = H − P2/(2mA) where P =

∑
i pi and A = 6 for

6Li. Therefore, the eigenvalues of Heff correspond to the
excitation energies of 6Li with respect to the ground state
of the unphysical 4He nucleus obtained using Hint with
A = 6. Consequently, to get the absolute ground-state
energy of 6Li, we do a separate IM-SRG(2) calculation of
the ground state of the unphysical 4He core and add this
to the eigenvalues of Heff . We have checked that for large
emax spaces, the center-of-mass factorizes as in Ref. [14].
Figure 2 shows the convergence of the ground-state

energy of 6Li with increasing emax excitations. The left
panels give the IM-SRG(2) results using the two differ-
ent generators Hod

1 and Hod
2 , while the right panel shows

NCSM energies [15] for comparison. Since the single-
particle emax truncation is different than the NCSM
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FIG. 3: Convergence as a function of emax of the excitation
energies of 6Li obtained by diagonalizing the IM-SRG(2) Heff

in the p-shell using the Hod
1 generator. The HF basis at a

fixed ~ω = 24MeV is used for the IM-SRG(2) calculations.
For comparison we show the convergence with Nmax of the
NCSM energies at the same ~ω value [15].

Nmax, the convergence pattern of the two methods is
expected to be different (an emax space for the same
value is substantially larger). The IM-SRG(2) ground-
state energy converges to −32.7(3)MeV, where contri-
butions from normal-ordered three-body interactions are
expected to be repulsive (similar to triples correction in
coupled-cluster calculations) [5], in very good agreement
with the extrapolated NCSM value −32.0(2)MeV [15].
The generator dependence in Fig. 2 is found to be very
weak, indicating that the error from truncating the IM-
SRG equations to two-body operators is indeed small.

Next, we study the convergence properties of the low-
lying excited states of 6Li. The left panel of Fig. 3 shows
the convergence of the IM-SRG(2) spectrum as a func-
tion of emax at a fixed value of ~ω = 24MeV. How-
ever, the ~ω dependence is very weak in the HF basis for
large emax. The right panel shows the convergence of the
NCSM spectrum with Nmax. The low-lying states con-
verge rather well and are in reasonable agreement with
the NCSM results. The high-lying 1+ state is not yet con-
verged even at the largest space for both methods. As the
convergence is very poor in the NCSM with a harmonic-
oscillator basis, this could indicate that this state has an
extended structure.

Our results for 6Li are very encouraging and show that
the IM-SRG provides a new method to derive effective
valence-shell Hamiltonians that accurately reproduce the
low-lying spectrum obtained with ab initio methods, but
at a polynomial scaling ∼ N4

hN
2
p with the number of hole

and particle orbits. Recently, other methods have been
explored for open-shell nuclei, including two-particle at-
tached coupled-cluster theory [16], which leads to non-
hermitian effective Hamiltonians, and the NCSM with

a core [17], which requires a NCSM solution of the full
problem and is therefore limited to lighter nuclei.

Turning to 18O, where an exact diagonalization of the
18-body problem is out of reach, we compare our IM-
SRG(2) results for the spectrum in Fig. 4 to calculations
based on diagrammatic expansions (called the Q-box ex-
pansion) commonly used to derive effective shell-model
Hamiltonians [9]. In this context, one can also under-
stand our choices for Hod

1,2 as follows. When one derives
effective interactions among valence nucleons using per-
turbation theory, then the many-body diagrams contain
at least one vertex of Γpp′hh′ , Γpp′(vh or hv), or Γ(pq or qp)vv′ .
These interaction vertices are precisely the off-diagonal
part driven to zero under the IM-SRG evolution. There-
fore, the effective interactions among valence nucleons
are directly given by PHd

1,2(∞)P (only at finite s, there
would be perturbative corrections). For a clear compari-
son to shell-model calculations for 18O, we use the same
empirical single-particle energies for the one-body part
of Heff in both IM-SRG and Q-box calculations, that is
we replace the calculated one-body part in the IM-SRG
by the empirical USDb [19] single-particle energies.

The left panel of Fig. 4 compares the low-lying 18O ex-
citation energies obtained by diagonalizing the sd-shell
Heff derived from the IM-SRG(2) and the Q-box expan-
sion. We also give the experimental energies [18], al-
though good agreement with experiment is not required
since three-nucleon (3N) forces are not included in the
initial Hamiltonian and we do not fine-tune the single-
particle basis to reproduce the experimental root-mean-
square radius (see below). All calculations are performed
in the HF basis. For the perturbative Q-box results, the
open symbols correspond to an Heff that is calculated
at first, second, and third-order, while the solid symbols
include higher-order folded-diagram contributions to re-
move the energy dependence of induced interaction ver-
tices [9]. For the IM-SRG(2) results, as for 6Li, we ob-
serve negligible differences in the calculated spectra for
the two generators Hod

1 and Hod
2 . This implies that the

truncation of the flow equations to two-body operators
is a very good approximation. The IM-SRG(2) energies
are similar to the results based on the perturbative Q-
box expansion, where some differences from the “best”
results (Q(3) plus folded-diagram contributions) are ex-
pected because the IM-SRG is a nonperturbative method
that includes many higher-order terms.

Conventional shell-model calculations are in better
agreement with experiment than in Fig. 4 [9]. This is
because conventional calculations include additional phe-
nomenology that improves agreement with experiment,
but weakens the connection with the underlying Hamil-
tonian and microscopic many-body theory. This can be
understood from the right panel of Fig. 4, which dis-
plays the ~ω dependence of the 18O excitation energies
for second-order Q-box calculations performed in the
harmonic-oscillator (HO) and the HF basis. The HO-
based spectrum exhibits a very strong ~ω dependence,
while calculations in the HF basis are nearly indepen-
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FIG. 4: Left panel: Excitation energies of 18O obtained by diagonalizing the IM-SRG(2) Heff in the sd-shell, compared with

results obtained at first (Q(1)), second (Q(2)) and third (Q(3)) order in the Q-box expansion [9] for effective valence-shell
interactions (the filled symbols include higher-order folded-diagram contributions). All results are for ~ω = 24MeV, but a HF
basis is used. For comparison, we also show the experimental energies [18]. Right panel: Excitation energies of 18O versus ~ω
calculated at the second-order Q-box level (plus folding) in a harmonic-oscillator and HF basis. For the results of both panels,
an emax = 8 space was used, and to simplify the comparison, the calculations used single-particle energies from the USDb
interaction [19] for the diagonalization in the sd-shell.

dent of ~ω. Conventional calculations of Heff work in the
HO basis with ~ω ≈ 45A−1/3 − 25A−2/3 chosen to give
the same root-mean-square radius as a sphere of uniform
density. The fine-tuning of ~ω can therefore be under-
stood as a phenomenological means to build in the cor-
rect saturation properties of nuclei, which are known to
be deficient in ab-initio calculations starting from Hamil-
tonians without three-nucleon forces [11]. Our IM-SRG
calculations present a microscopically-derived Heff , but
the incorrect saturation properties of the initial NN-only
Hamiltonian translate into a poor description of the 18O
spectrum compared to empirical calculations carried out
in a HO basis (at ~ω ≈ 14MeV for 18O).
Conclusions.– We have shown that the IM-SRG can

be successfully generalized to open-shell systems and
to a nonperturbative derivation of effective valence-shell
Hamiltonians. The IM-SRG evolution decouples the
physics of valence nucleons from the full Hilbert space,
enabling exact diagonalizations in the valence space that
are impossible in the full problem where all nucleons are
active. First results were presented for 6Li, with ground-

state and excited-state energies in very good agreement
with ab-initio methods. We then applied the IM-SRG to
18O and compared our results to those obtained from con-
ventional perturbative calculations of Heff , demonstrat-
ing that the IM-SRG provides a first viable nonperturba-
tive approach to derive effective interactions for the shell
model from nuclear forces. Work is in progress to ex-
tend the IM-SRG to extended valence spaces, to effective
operators and to the inclusion of three-nucleon forces.
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