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Background:  The R matrix formalism of Lane and Thomas has proven to be a 

convenient reaction theory for solving many-coupled channel systems.  The theory 

provides solutions to bound states, scattering states, and resonances for microscopic 

models in one formalism.  Purpose:  The first purpose is to extend this formalism to the 

relativistic case so that the many-coupled channels problem may be solved for systems in 

which binary breakup channels satisfy a relative Dirac equation.  The second purpose is 

to employ this formalism in a relativistic continuum shell model.  Methods:  Expressions 

for the collision matrix and the scattering amplitude, from which observables may be 

calculated, are derived.  The formalism is applied to the 1p-1h relativistic continuum 

shell model with an interaction extracted from relativistic mean field theory.  Results:  

The simplest of the σ + ω + ρ exchange interactions produces a reasonable description of 

proton scattering from 15N, and, therefore, provides a simple, relatively self-consist, 

physically justifiable model for use in knockout reactions.   

 

24.10.-i, 24.10.Eq, 24.10.Jv, 25.40.Cm  

   

I.  INTRODUCTION 
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The R matrix formalism of Lane and Thomas1 has proven to be the most physical and 

convenient reaction theory for solving many-coupled channel systems in light and 

medium mass nuclei.  It is not uncommon to couple thirty or more residual states of the 

target in non-relativistic calculations, and new computer codes need not be written each 

time states are added..  Microscopic models and non-local potentials are easily 

incorporated in the theory.  In addition to providing scattering states, the formalism yields 

bound states and resonances.  Coupled-channels techniques which involve integrating 

coupled differential equations can become unstable for large numbers of channels, and 

they can miss narrow resonances because the equations must be solved for each energy 

over the resonance.  Also, scattering observables are calculated quickly at a given energy 

in the R matrix formalism because they require diagonalizing matrices whose dimensions 

are just the number of channels.  Additional advantages may be found in a review article 

by Descouvemont and Baye2 and applications in a review in Ref. 3. 

 

This article is the last of a series of three articles that describe the extension of the R 

matrix theory to the relativistic case so that the many-coupled channels problem may be 

solved for systems in which binary breakup channels satisfy a relative Dirac equation.  

The first article (I)4 demonstrated that an R matrix theory exists for the Dirac equation 

and derived the appropriate Bloch operator.  Then an example was given for 35.5 MeV 

neutron scattering from a Woods-Saxon potential.  The expansion basis consisted of the 

free-particle Dirac solutions whose upper components were zero at twice the R matrix 

radius.   

 



 3

The second article (II)5 demonstrated that Dirac oscillator wave functions6,7 provided an 

excellent and convenient expansion basis.  This article also demonstrated that the R 

matrix formalism allows one to easily orthogonalize scattering solutions to bound state 

solutions and to treat non-local potentials; and, hence, to calculate exchange terms in 

relativistic impulse approximation exactly.  Examples were given for 160-200 MeV 

elastic proton scattering from 16O, 40Ca, and 90Zr in the impulse approximation with the 

two-nucleon t-matrix elements of Ref.8  In II it was shown that the common local density 

approximation for the exchange terms was inadequate in relativistic calculations.  The 

discrepancy between the exact and local density approximation calculations was traced to 

the extreme difference between the matrix elements of the negative energy states of the 

basis functions, and hence, was a relativistic effect. 

 

The present article provides derivations of the collision matrix expression for coupled 

channels and the scattering amplitude from which scattering observables can be 

extracted.  As an example of the formalism, relativistic continuum TDA calculations for 

16O are performed with interactions derived from relativistic mean field theory.  

Specifically, the formalism referred to as quantum hydrodynamics (QHD)9 is employed.  

The classical meson fields of the original QHD are replaced by one-meson exchange 

potentials.  The validity of this replacement is checked by comparing single particle 

energies (SPEs) for 90Zr, calculated from both treatments with the same coupling 

constants.  Surprising agreement is found between the two procedures with the simple σ + 

ω + ρ exchange.  In addition the simple σ + ω + ρ exchange with QHD coupling 

constants provides reasonable agreement with experimental 15N (p,p) 15N cross sections 
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at 39.84 MeV.  This is, therefore, a simple, physically justifiable interaction for later use 

in knockout reactions.  The importance of coupled-channels solutions in (e,e'x) was 

emphasized in Ref. 10 Finally, the role of pions is investigated.  It is found that pions have 

a significant effect on SPEs and the 15N + p cross section, however, a definitive 

conclusion on their utility awaits a better approximation for the matrix elements with 

pseudovector πN coupling. 

 

II.  R MATRIX FORMALISM 

 

Solutions to the one-channel Dirac equation will be written in the two-component form 
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j = |κ|- ½, and =  κ for κ > 0, but = –(κ + 1) for κ < 0, and τ indicates proton or 

neutron.  The regular and irregular Dirac Coulomb functions are generated as given by 

Young and Norrington11 employing the code COULCC,12 and they are given the 

asymptotic form, 

                      )(sin rmEFR φ+=  and )(cos rmEGR φ−= , 

                     )(cos rmEFIR φ+=  and )(sin rmEGIR φ−−= , where 

φ(r) = kr + y log 2kr + πδκ −′ /2, k is the momentum of the proton in the center-of-

momentum system, y = Ze2E/k, E2 = 2
pm + k2, )1(

2
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1422 )( eZ−= κγ .  Throughout is work, c = ħ = 1.  Incoming 

and outgoing waves are constructed as 

                     FI = FIR – iFR and GI = GIR – iGR making up Ic, and 

                     FO = FIR + iFR and GO = GIR + iGR making up Oc, where  

c indicates a particular channel, |ljκτ,JA(JB)>, JA is the target spin, and JB the total angular 

momentum.  A wave function with unit outgoing flux is cc kO 2/ . 

 

The appropriate modifications for expanding the one-channel case, given in II, to the 

many-channel case are as follows.  The wave function is expanded within the channel 

radius as ∑ 〉=
λ

λ λψ |A .  The set of 〉λ|  will be Dirac oscillators coupled to the spin of 

the target. The Hamiltonian to be solved is 

                             0])(||[ =−+〉′−〈 ′′′
′
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where 

                                           bc = Gc(ac)/Fc(ac),                                                                (4) 

                                        bλc = Gλc(ac)/Fλc(ac)                                                                (5) 

 and 

                                           γλc = Fλc(ac).                                                                         (6) 

  Gc and Fc are the components of the physical wave function in channel c.  The theory is 

placed in calculable form in the method of Philpott13 in which one finds a transformation, 

T, such that 
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With this transformation, Eq. (3) becomes 
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μλμλ ATA .  One changes c to c' in Eq. (8), multiplies by 
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The amplitudes are extracted from Eq. (9), 
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A general solution to the coupled channels wave function in the external region is [1] 
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The collision matrix, S, provides an expression for the xc in terms of the yc.  In matrix 

notation 
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                                                      x = –Sy.                                                                   (15) 

From Eqs. (4), (6), (10) and (14), the fundamental R matrix equation for the relativistic 

case relates the upper components of the wave functions to the lower, 
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If one defines diagonal matrices vcc' = 2kcδcc', xcc' = δcc'xc, ycc' = δcc'yc , GOcc' = δcc'GOc, GIcc' 

= δcc'GIc, FOcc' = δcc'FOc, FIcc '= δcc'FIc,  this equation can be written as 

FOv–1/2x + FIv–1/2y = RGOv–1/2x + RGIv–1/2y.  If one solves for x, one obtains the form in 

Eq.(15), x = –Sy,  where  

                                 S = v1/2(FO –RGO)–1(FI –RGI)v–1/2.                                          (17) 

 Then the T matrix, Tcc', is in the usual form, i(δcc' – Scc')/2.   

 

The scattering amplitude is found by following standard techniques.  Target (residual) 

states are noted as 〉AAMJα , where JA, MA are the spin and its projection and α 

distinguishes among states of the same spin.  Target states may be coupled to the angular 

momentum of the projectile yielding states with total angular momentum and projection, 

〉BBA MjJJα .  The scattering states are designated by the target state, its projection, and 

the spin projection of the projectile, σ.  The resulting scattering amplitude is 
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The sum is over κ, κ', α', JB, MB, m, m', and ′m .  Scattering observables can then be 

calculated from the scattering amplitude.  For instance, the cross section would be given 

by 

                      ∑
′′′+

=
Ω

AAMMAJd
d

σσ
θσ

)12(2
1)( |

AAAA MJMJcf ′′′′〉〈 αασσ δ , +
AA MMf ′′′〉〈 σαασ , |2,            

(19) 

where σσ ′〉〈 cf  is the relativistic Coulomb scattering amplitude [3], taken to be diagonal in 

the target states. 

 

III.  RELATIVISTIC CONTINUUM SHELL MODEL 

 

The RPA and TDA equations for QHD were derived in Ref.14 following Ref.15 and 

appear the same as the nonrelativistic equations.  The TDA equation is  

                    ∑ =〉〈−〉〈+−−
αβ

αβλμμλ μαβλαμβλεεε 0]||||[)( CVVC                       (20) 

To apply QHD to finite nuclei the meson fields are taken as classical fields and a set of 

Dirac equations solved in the Hartree approximation [7,14].  The σ and ω coupling 

constants were fit to the saturation properties of equilibrium nuclear matter and the ρ 

coupling constant determined from the bulk symmetry energy.  The σ mass was 

determined so as to reproduce the r.m.s. radius of 40Ca, and for the Coulomb potential, 

one uses the contribution to the baryon density of protons only, while for the ρ, one uses 

half the difference between the proton and neutron densities.  In order to implement the 

QHD results in a TDA equation, the classical meson fields are replaced 
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Table I.  Coupling constants.  FH is finite Hartree; HF is Hartree-Fock. 

  

Meson Mass (MeV) FH, g2 HF, g2 

σ 520 109.6 89.6 

ω 783 190.4 102.6 

ρ 770 65.2 12.4 

π 138 0 181 

 

with one-meson exchange potentials as in Ref. [10].  
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where the Coulomb interaction has been included.  The coupling constants employed are 

the same as those from QHD calculations, although it is not clear that these should be 

appropriate in structure calculations.  The finite-Hartree (FH) coupling constants of Ref. 

[5] are shown in Table I.  In addition, the hole single particle energies (SPE), εμ, and the 

wave functions are taken as those from the FH, QHD calculation, generated with the code 

TIMORA.16  (A nucleon mass is added to the actual output of the code to obtain εμ.)  

However, the particle SPE, ελ, are replaced by the interaction of the particle with the core 

nucleons, 

                                              Ejj' = j〈 |α·p + mβ| 〉′j  + 

                 ))(|)()((|||)(
12
12
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where the sum jc is over proton and neutron states below the Fermi surface.  The integrals 

extend only to the R matrix radius. The notation is that j0γ〈 | is 0γ+= uu  with angular 



 10

momentum j.  A similar SPE definition could be made for the hole states with 〉j|  and 

〉′j|  replaced with 〉hj|  giving 
hh jjE . 

 

 Eq. (20) is now an equation to be solved for the particle wave functions for a given 

energy.  The basis functions, the 〉λ|  of Eq. (3), are particle-hole functions where the 〉j|  

are Dirac oscillators specified by 〉κjn| and hole states are the QHD states generated 

with parameters FH as used to construct the targets in II.  Hole states are the target states 

with spin jh = JA.  A matrix element of the Hamiltonian (excluding the Bloch operator) 

within the R matrix radius is  

                    〉⊗′⊗〈 ′ )(||)( BhBh JjjHJjj  = −′jjE  −
′hhh jjj δε  

   ∑ 〉−−〉〈′+ −+
′′

J
h

Jjj
hhBhh JjjJjjVJjjJJjjjjWJ h )(|)()((||)();()12( 00 γγ              (23) 

The particle wave functions are orthogonal to the hole states and the exchange terms are 

calculated exactly in the method of II. 

 

To check whether replacing the classical fields with one meson exchange potentials is 

appropriate, one can compare the single particle energies of the hole states calculated 

from QHD and those calculated by the interaction of the hole state with particles in the 

core, 
hh jjE .  The comparison is made for two nuclei, 16O and 90Zr.  One is interested in 

16O because it is the subject of numerous (e,e'x) experiments and the question of the role 

of relativity in these reactions, however, only six SPEs can be compared for this nucleus. 

Therefore, a comparison is first made for 90Zr which has 21 SPEs.  The 90Zr comparison 

is shown in Table II for  with =′
x
jjE Njj ME −′ .  The first column lists the QHD output 
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from TIMORA.  The second column is from the one-pion exchange calculation with the 

same coupling constants.  Although the SPEs calculated with the potential are shifted 

upward slightly and have some difficulties 

 

Table II.  Single particle energies for 90Zr in MeV.  Column 1 is the QHD finite 

Hartree result; column 2 is the one-meson exchange with finite Hartree parameters; 

column3 is the same as column 2 plus pseudoscalar pions; column 4 is the same as 

column 2 plus pseudovector pions in the effective mass approximation; column 5 is 

the one-meson exchange with QHD Hartree-Fock parameters plus pseudoscalar 

pions. 

 

State FH, QHD FH, x
jjE ′   FH, x

jjE ′  ps FH, x
jjE ′  M* HF, x

jjE ′  ps 

0s1/2(p) -52.43 -49.11   37.17 -30.32 -16.59 

0p3/2(p) -42.06 -40.32  36.42 -20.99 -14.24 

0p1/2(p) -39.54 -35.30 47.47 -19.04  -6.96 

0d5/2(p) -30.15 -29.96 36.26 -10.33  -9.99 

1s1/2(p) -20.93 -16.25 52.86  -2.60   3.22 

0d3/2(p) -24.86 -19.88 54.27  -6.56   1.39 

0f7/2(p) -17.62 -18.73 36.54   0.52  -4.04 

1p3/2(p)  -6.92 -2.54 52.25   7.92  10.96 

0f5/2(p) -9.55 -4.13 57.14   5.99   9.17 

1p1/2(p) -5.11   0.10 53.94   8.96  13.02 

0s1/2(n) -62.72 -54.55 30.44 -38.20 -26.78 
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0p3/2(n) -51.04 -44.17 30.79 -27.80 -23.70 

0p1/2(n) -48.80 -39.92 42.77 -25.41 -15.31 

0d5/2(n) -38.18 -32.82 30.52 -16.53 -19.40 

1s1/2(n) -30.30 -21.19 45.05  -9.59  -7.33 

0d3/2(n) -33.20 -23.53 51.24 -11.64  -5.49 

0f7/2(n) -25.07 -21.34 30.02  -5.60 -13.63 
 

1p3/2(n) -15.94 -7.84 44.53   0.73   0.65 

0f5/2(n) -17.23 -7.22 54.56   1.67   3.03 

1p1/2(n) -14.03 -4.94 47.39   2.33   3.58 

0g9/2(n) -12.26 -10.08 29.53   4.27  -6.47 

 

with the spin-orbit splitting, the agreement between the two calculations is surprising.  In 

Table III is shown the SPE comparison for 16O where the agreement is similar.  Also 

shown in this table are the experimental SPEs and those from a recent non-relativistic 

Hartree-Fock 17calculation.  These last two columns demonstrate that the original 

QHD,FH calculation has some difficulty with the spin-orbit splitting. 

  

Table III.  Single particle energies for 16O in MeV.  Column 1 is the QHD finite 

Hartree result; column 2 is the one-meson exchange with finite Hartree parameters; 

column 3 shows experimental values; column 4 shows results of a non-relativistic 

Hartree-Fock calculation. 

 

State FH, QHD  FH, x
jjE ′  Exp. Ref. [17] 
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1s 1/2(p) –37.2 –36.2 –37±4 –35.4 

1p 3/2(p) –16.7 –17.8 –17.4 –18.6 

1p 1/2(p) –8.8 –4.0 –12.1 –12.5 

1s 1/2(n) –41.4 –39.0 –40±4 –38.6 

1p 3/2(n) –20.6 –20.8 –21.8 –21.8. 

1p 1/2(n) –12.5 –6.7 –15.7 –15.6 

 

The R matrix is now calculated for 16O, and the R matrix level energies for Jπ = 2– are 

plotted in Fig. 1.  In a non-relativistic calculation, one would have R matrix levels below  

 

 

FIG. 1  R matrix levels for Jπ = 2–. 
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threshold corresponding to bound states, levels above threshold corresponding to 

resonances, and levels very much above threshold that comprise the continuum.  These 

levels appear in the relativistic calculation as well, however, a nearly equal number of 

negative energy levels appear approximately one nucleon mass below threshold.  These 

levels are absolutely necessary for the cross section calculations.  

 

In Fig. 2 the solid line represents the calculated 39.84 MeV elastic scattering cross  

 

 

FIG. 2.  Cross section for 39.84 MeV protons on 15N.  Solid line uses FH parameters; 

dashed line uses FH parameters plus pseudoscalar πN coupling; dot-dashed line 

uses effective mass approximation to pseudovector πN coupling; dotted line is non-

relativistic calculation.  Data are from Ref. [15]. 
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section for protons on 15N with the FH parameter set, the same set used to calculate the 

bound state wave functions and bound state SPEs.  Hole states, 〉hj| , are limited to the p-

shell and their energies are taken as those from the QHD calculation.  No pions are 

included in the FH interaction.  The agreement with the data18 is again surprisingly good.  

With only four core states, no absorption, and such a simple interaction, one does not 

expect the calculation to fit the back-angle data.  However, based on equivalent non-

relativistic calculations one does expect a reasonable fit to forward angles, and this is 

accomplished.  Included in Fig. 2 as a dotted line is the equivalent non-relativistic 

calculation with the recoil corrected continuum shell model19 and the M3Y20 interaction.  

The agreement with data is about the same.  The relativistic continuum shell model with 

the FH interaction is, therefore, a simple, relatively self-consistent, physically justified 

model in which to investigate relativistic contributions in knockout reactions. 

 

IV.  PIONS 

 

If one looks at the solid line in Fig. 2 as if it were scattering from a Woods-Saxon 

potential, one would consider altering the diffuseness to obtain a better fit.  Indeed, QHD, 

FH has no pions whose longer range would alter the surface properties of an equivalent 

Woods-Saxon.  Therefore a brief look at the possible role of pions is worthwhile.  The 

pions can be added by making the instantaneous approximation to the one-meson 

exchange propagator.  In the case of pseudoscalar coupling the energy transferred is set to 

zero and ∫ +−
=−′Δ

−′⋅−

επ π imk
eqdxx

xxiq

22

)(

4

4

)2(
)(  becomes  
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∫− 3

3

)2( π
qd eik·(x–x')/(k2 + )2 επ im − δ(t – t').  The Fourier transform yields a Yukawa and the 

term,
r

eg rmπ

π
ττγγ π

−

⋅
4

2

21
5
2

5
1 , is added to Eq. (21).  This approximation looks quite adequate 

if the energy transferred is reasonably small.  However, the procedure is less satisfactory 

in the case of pseudovector coupling.  The vertex function, iqmf τγππ /5)/( , includes a 

term with the energy transferred.  Setting this term to zero is very different than setting it 

to zero in the denominator of the propagator.  However, a simple approximation was 

proposed in Ref. [12] in which pseudovector coupling is approximated by using an 

effective nucleon mass in the pseudoscalar matrix elements.  The prescription is that one 

uses the Yukawa interaction above, multiplied by [M*(x1)/M][M*(x2)/M], where M* = M 

– gSφ(r) and  gSφ(r) is the scalar potential for the hole states.  The effective mass 

approximation provides a density-dependence to the interaction, although a severe one, 

the interior pion potential being reduced by approximately 75%.  

 

The 15N (p,p) 15N cross section with the FH coupling constants and pseudoscalar coupling 

with =2
πg  181 appears as a dashed line in Fig. 2.  The cross section is more diffractive, 

but the fit is poor. This is reflected in the enormous increase in the 90Zr single particle 

energies as shown in column three of Table II.  This increase shows that, for these 

coupling constants, the pions are producing repulsion, just as they did in the Hartree-Fock 

calculations of QHD [5].  Also shown in Fig. 2 as a dot-dashed line is the cross section 

with the effective mass approximation to pseudovector coupling.  This addition has a 

smaller effect, as one would expect from derivative coupling.  It also improves the 

diffraction peak locations, but the severity of the density dependence produces unusual 
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back-angle behavior.  The effective mass approximation produces the SPEs in column 

four of Table II, and they are certainly an improvement over the full pseudoscalar results.  

It is now clear why the structure calculations in Ref. [12] preferred this approximation to 

pseudovector coupling over pseudoscalar coupling.   

 

Additional sets of coupling constants were obtained in the Hartree-Fock calculations of 

QHD which included pions in the coupling constant fit [7].  The πN coupling was 

pseudovector.  One set of these coupling constants is given in Table I under the title HF.  

The SPE results of this representative set are shown in column five in Table II for 

pseudoscalar coupling.  These SPEs are underbound.  Use of the effective mass 

approximation to pseudovector coupling produced extremely underbound SPEs and is 

considered unacceptable.  The cross section with pseudoscalar coupling is shown as the 

dashed line in Fig. 3 and with no pions as a solid line.  The inclusion of the pions  
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FIG. 3  Cross section for 39.84 MeV protons on 15N.  Dashed line uses HF 

parameters plus pseudoscalar πN coupling; solid line is the same, but without pions.  

Data are from Ref. [15]. 

 

improves the cross section considerably, especially the location of the diffraction peaks, 

but the cross section still rises at back angles. 

 

One can conclude that pions have the capability to alter the cross section, especially in a 

manner normally associated with surface effects.  However, it would be very beneficial to 

have a better approximation for calculating the pseudovector matrix elements to 

adequately judge its effect. 

 

 

IV.  CONCLUSION 

 

This article provided the final derivations for an R matrix formalism so that the many-

coupled channels problem may be solved for systems in which binary breakup channels 

satisfy a relative Dirac equation.  Expressions for the collision matrix and the scattering 

amplitude are presented, and from these, one may calculate scattering observables.  In 

addition to providing scattering states, this R matrix formalism may also be used to 

calculate resonances and bound states.   
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The formalism is applied to relativistic continuum TDA calculations for 16O with 

interactions derived from relativistic mean field theory.  It was determined that even the 

simple σ + ω + ρ exchange with QHD coupling constants provides reasonable agreement 

with experimentally determined SPEs and the experimental 15N (p,p) 15N cross section at 

39.84 MeV.  This is, therefore, a simple, physically justifiable interaction for later use in 

knockout reactions.   
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