
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Refractive versus resonant diffraction scattering of loosely
bound ^{6}Li nuclei

Florin Carstoiu and Livius Trache
Phys. Rev. C 85, 054606 — Published  4 May 2012

DOI: 10.1103/PhysRevC.85.054606

http://dx.doi.org/10.1103/PhysRevC.85.054606


CM10304

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Refractive versus resonant diffraction scattering of loosely bound 6Li nuclei

Florin Carstoiu1 and Livius Trache1,2,
1 National Institute for Physics and Nuclear Engineering ”Horia Hulubei”,

P.O. Box MG-6, 76900 Bucharest-Magurele, Romania
2 Cyclotron Institute, Texas A& M University,

College Station, TX 77843-3366, USA

(Dated: April 23, 2012)

We present a complete analysis of elastic scattering 6Li+16O at 4 and 5 MeV/nucleon. Using
either traditional Woods-Saxon or a range of semi-microscopic folding form-factors we find that the
data require deep, highly transparent potentials. Physically relevant solutions are selected according
to dispersion relation. The intermediate angle structures and the oscillatory increase of the cross
section at large angles is interpreted either as a pre-rainbow oscillation resulting from the interference
of the barrier and internal barrier far-side scattering subamplitudes, or, equally well, as a resonant
diffraction arising from two Regge poles located in peripheral waves. Both semi-classical and Regge
pole approaches allow a dynamical separation of the resonant component of the S-matrix.

PACS numbers: 25.70.Bc, 25.70.Ef, 24.10.Ht

I. INTRODUCTION

The study of nucleus-nucleus elastic scattering has a
long history but remains of interest due to both successes
and failures that mark it (see for example, Refs. [1, 2]
and references therein). We are searching here for reli-
able ways to predict optical model potentials for reac-
tions with radioactive nuclear beams (RNB). In particu-
lar our interest focuses on finding reliable descriptions for
transfer and breakup reactions involving relatively light,
loosely bound nuclei, which are used in indirect methods
in nuclear astrophysics. A range of RNB studies were
made at energies around 10 MeV/nucleon, where the re-
actions are peripheral, with the intent to obtain infor-
mation about stellar reaction rates. These reactions use
DWBA techniques to extract nuclear structure informa-
tion. However, the well known existence of many ambi-
guities in the OMPs extracted from elastic scattering can
raise questions about the reliability and accuracy of these
determinations. Experimental studies using RNBs have,
heretofore, not been suitable for detailed elastic scatter-
ing analyses. The best information comes from studying
the elastic scattering of stable loosely bound nuclei with
similar mass. We chose here to study the elastic scat-
tering of 6Li at low energy, a fragile projectile (loosely
bound), with a pronounced cluster structure and with
low Z and can, therefore, exhibit a range of phenomena,
involving absorption, resonant diffraction and refraction,
mostly of nuclear nature. We continue here the efforts
started in Refs. [3, 4] to find a way to predict optical po-
tentials for scattering involving radioactive nuclei, or, at
least, to have a good starting point at them, after which
they are only fine tuned using the available, lower qual-
ity, scattering data with RNB. We consider that in order
to reach this goal it is important to study and under-
stand in detail the mechanisms involved in the scattering
of nuclei with some similarities. This may help to elimi-
nate some of the ambiguities and interpretations that are

known to plague the description of elastic scattering with
optical potentials. This goal can be achieved only with
very good data, covering well a wide angular range, and
at different bombarding energies.

Works by Ogloblin et al.[5] and by Szilner et al.[6]
has established that elastic scattering of light, tightly-
bound heavy ion systems such as 16O+12C and 16O+16O
show sufficient transparency for the cross section to be
dominated by the far-side scattering. Intermediate angle
structures appearing in the elastic scattering distribu-
tions at angles beyond the Fraunhofer diffractive region
have been identified as Airy minima of a nuclear rain-
bow, i.e. a destructive interference between two far-side
trajectories which sample the interior of the potential. A
number of high order Airy minima have been identified
by observing that such structures are largely insensitive
to an artificial reduction of the absorption in the optical
potential, and therefore they appear as a manifestation
of the refractive power of the nuclear potential. While at
high energy [7] this picture was well substantiated by a
semi-classical nonuniform decomposition of the scatter-
ing function [8], at lower energies the situation is more
difficult to understand. It has been shown by Anni [9],
that such structures could be explained by the interfer-
ence of two amplitudes appearing in different terms of
a multi-reflection uniform series expansion of the scat-
tering amplitude and therefore the interpretation using
rainbow terminology is not appropriate.

For loosely bound nuclei at low energy the situation is
even more intricate.

The corresponding components in the optical potential
are expected to be more diffuse as compared to normal
nuclei, leading to a competition between the increased
refractive power of the real potential and the increased
absorption at the nuclear surface. The small separation
energy implies also that the dynamic polarization po-
tential (DPP) [10] arising from the coupling to breakup
states may be strong and have a complicated energy and
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radial dependence. Thus the DPP cannot be treated as
a small perturbation for loosely bound nuclei and the
usual phenomenological procedure in renormalizing the
folding potential form factor may be questioned. It has
been estimated that the DPP is strongly repulsive at the
nuclear surface in the case of 6Li [11]. This prompted
Mahaux, Ngo and Satchler [12] to conjecture that for
loosely bound nuclei the barrier anomaly may be absent
due to the cancellation between the repulsive (DPP) and
attractive (dispersive) components of the optical poten-
tial.
Folding model analysis using the complex, density and

energy dependent NN interaction of Jeukenne, Lejeune
and Mahaux (JLM) [13], as well as other G-matrix ef-
fective interactions, where corrections due to the strong
DPP have been included, confirmed that the elastic dis-
tribution could be described using deep and extremely
transparent potentials. The intermediate angle struc-
tures have been discussed using the semi-classical uni-
form approximation for the scattering function of Brink
and Takigawa [14]. We explain the intermediate angle
structure as a coherent interference effect of two sub-
amplitudes corresponding to trajectories reflected at the
barrier and interfering with trajectories which sample the
nuclear interior. Thus, this refractive effect appears as a
signature of a highly transparent interaction potential. A
completely different picture emerges using a phenomeno-
logical Regge pole analysis [15], pointing to a resonant
effect present in surface waves.
In this paper we present an analysis of elastic scatter-

ing of 6Li on 16O at 4 and 5 MeV/nucleon. Accurate
angular distribution has been measured over an almost
complete angular range [16, 17]. This angular distribu-
tion displays a complex structure at intermediate and
large angles pointing to strong refractive effects.
The paper is structured in the following way: after this

introduction, the analysis of the elastic scattering data
using phenomenological and microscopic optical model
potentials is discussed in Sect. II. In Sect. III we present
a discussion of the decomposition of the far-side scatter-
ing amplitude into barrier and internal barrier compo-
nents responsible for the exotic structure at intermediate
angles. Finally we perform a Regge pole analysis in Sect.
IV, and conclude our work in Sect. V.

II. OPTICAL-MODEL ANALYSIS

A. Woods-Saxon form factors

The measured elastic scattering data at Elab=25.7
MeV and 29.8 MeV [16, 17], shown in Fig. 1 as the
ratio to the Rutherford cross section, covers a large an-
gular range. These data show complex forms with char-
acteristic rapid oscillations at small angles followed by a
marked change in shape at intermediate angles: a bump
develops at θ ≈ 100◦ (25.7 MeV) or a shallow minimum
(29.8 MeV) which is followed by a significant increase of
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FIG. 1: Woods-Saxon optical model analysis (full lines) of
elastic scattering data (points) at 4 and 5 MeV/nucleon (Ta-
ble I). Far-side (dash-dotted line) and near-side (dash line)
cross sections are also shown in ratio to Rutherford cross sec-
tion.

the cross section at larger angles, remembering the well
known Anomalous Large Angle Scattering (ALAS), see
a review in [18]. Assuming pure Fraunhofer scattering at
forward angles, we extract a grazing angular momentum,
lg ≈ 12, from the angular spacing ∆θ = π/(lg + 1/2).
The data are analyzed using optical potentials with

conventional Woods-Saxon (WS) form factors for the nu-
clear term, supplemented with a Coulomb potential gen-
erated by a uniform charge distribution with a reduced
radius fixed to rc=1 fm. No preference has been found
for volume or surface localized absorption and through-
out the paper only volume absorption is considered. In
the absence of any spin dependent observables, spin-orbit
or tensor interactions have been ignored. Ground state
reorientation couplings also have been neglected. The po-
tential is defined by six parameters specifying the depth
and geometry of the real and imaginary terms, with the
standard notations, the same as used in Ref. [3]. The
number of data points N is quite large, and consequently
the usual goodness of fit criteria (χ2) normalized to N
has been used.
The averaging associated with the finite experimen-

tal angular resolution mostly affects the depth of sharp
minima. A few exploratory calculations showed that al-
lowing the overall normalization to vary did not result
in any qualitative changes and did not indicate that any
renormalization of the data by more than a few percent
would be preferred. Optical parameter sets obtained in
our previous paper [4] were used as starting values for
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FIG. 2: Discrete ambiguities obtained from a grid search on
the real volume integral, using Woods-Saxon (WS) and dou-
ble folding form-factors in the optical model. There are no
acceptable solutions with JV < 200 MeV fm3. Best solutions
are tabulated in Table I.

the search procedure. Guided by these potentials and by
our earlier analysis [3] a number of some 104 potentials
with real volume integrals in the range JV = 200 − 600
MeV fm3 have been generated, thus exploring the func-
tional Woods-Saxon space in full detail. Local minima
were identified and a complete search on all six param-
eters determined the best fit potentials. The complex
structure at intermediate angles and the increase of the
cross section at large angles could be described only with
deep potentials with real volume integrals (per pairs of
interacting nucleons) exceeding a critical value JV crit ≈
240 MeV fm3. We did not find any acceptable solution
with JV < 200 MeV fm3 see Fig. 2. There is a consistent
preference for potentials with very weak imaginary parts,
with values of W around 5-7 MeV. We systematically
find rV < rW and large diffuseness parameters aV ≃ 0.9
fm in agreement with theoretical expectations for loosely
bound nuclei [19, 20]. A grid search procedure on the real
depth of the potential allowed us to identify discrete am-
biguities. Best solutions which match quite well disper-
sion relations ( see bellow) are given in Table I. For each
discrete solution we found an almost constant imaginary
volume integral. As a consequence, the total reaction
cross section seems to be a well determined observable.
Gridding on other WS parameters revealed a continuous
ambiguity of the form JV RV ≈ const, where RV is the
rms radius of the potential. The larger the volume in-
tegral, the smaller the radius that is required to fit the
data. This is a clear manifestation of a complicated radial
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FIG. 3: Argand diagrams for the WS and folding S-matrix.
Optical potentials are from Table I. For low angular mo-
mentum l < 10, the trajectory for S-matrix rotates clockwise
several times around the origin, suggesting the presence of
several Regge poles.
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FIG. 4: Cross sections calculated with the zero range/finite
range version of the M3Y effective interaction at 25.7 MeV
(left panels) and 29.8 MeV(right panels). Renormalization
parameters and ranges are given in Table I.
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FIG. 5: Cross sections calculated with D1 parameterization of
the Gogny effective interaction. The curves in the top/bottom
panel are calculated using Eq.(12)/(13) for the overlap den-
sity. Renormalization parameters and ranges are given in Ta-
ble I.
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FIG. 6: Cross sections calculated with the G-matrix JLM ef-
fective interaction. The curves in the top/bottom panel are
calculated using Eq.(12)/(13) for the overlap density. Renor-
malization parameters and ranges are given in Table I.
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FIG. 7: Cross sections calculated with the JLM1 model for
energies between 8 and 53 MeV/nucleon for the reaction
6Li+12C. The far -side component is shown by dash-dotted
lines. See also ref.[4] for experimental data references.

dependence of the dynamic polarization potential (DPP)
which may lead to radii much smaller than the minimal
value implied by the folding model (e.g., R2

F = R2
1 +R2

2,
for a zero range NN effective interaction). However, for
each discrete family rather precise values of the rms radii
were required to fit both forward and intermediate angle
cross sections.

As mentioned already, it was shown in Refs. [5–7] that
the elastic scattering of light heavy ion systems such as
16O+12C and 16O+ 16O shows sufficient transparency for
the cross section to be dominated by far-side scattering.
Structures appearing in the elastic scattering angular dis-
tributions at intermediate angles have been identified as
Airy minima of a nuclear rainbow, due to a destructive
interference between two far-side trajectories which sam-
ple the interior of the potential. At 4 MeV/nucleon the
6Li scattering data show rapid, diffractive Fraunhofer os-
cillations at forward angles due to the strong near-far
amplitude interference (Fig. 1). At θ ≈ 40◦ the far-side
and near-side components of the scattering amplitude are
almost equal, producing the first Fraunhofer deep mini-
mum. Beyond this ”crossover” the near-side amplitude
makes a negligible contribution and the cross section is
dominated by the far-side component. There is no dark
side exponential decay of the far-side component. The
deep minimum seen at θ ≈ 60◦ in the far-side compo-
nent is stable against the strength of the absorption and
may be interpreted as a primary Airy minimum of a nu-
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FIG. 8: Energy dependence of the real (solid points) and
imaginary (open points) volume integrals obtained in the
analyses with Woods-Saxon and folding optical potentials.
The stars show the values obtained from the OM1 optical
potential of Ref. [38]. Empirical values at high energy were
taken from Ref. [4] for the reaction 6Li+12,13C, assuming that
the mass dependence of the JV,W is weak. The curve for JW

is obtained from a best fit with Eq.16 while the curve for JV

is the result from the dispersion relation, normalized to the
empirical value at 20 MeV/nucleon.

clear rainbow. It is followed by a broad Airy maximum
and a structureless increase of the far-side cross section
at large angles. Low amplitude oscillation of the elastic
cross section at intermediate and large angles are due to
far-side /near side interference. The total cross section
reaches a maximum near θ = 180◦ where both compo-
nents became again equal. Clearly, far-side dominance
may be interpreted as a possible manifestation of refrac-
tive effects. However, this simple dominance does not
explain, by itself the structure of the far-side component.
In fact the above picture has already been challenged by
Anni [9] and by Michel et al. [21] for the simple reason
that the far-side amplitude has never been decomposed
in subamplitudes which would explain the interference.
We come back to this topic in Section III. For the mo-
ment we adopt the interpretation of Michel et al. [21]
and denote the complex structure at intermediate an-
gles in the data as pre-rainbow oscillations. A model
independent analysis in which the diagonal S-matrix el-
ements are extracted directly from the data through a
complex phase shift analysis confirm that the Airy oscil-
lation at θ ≈ 60◦ is a real effect. Further information can
be obtained by looking at the Argand diagrams displayed
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l ∼ 8 appears as an interference between barrier and internal
barrier amplitudes

in Fig. 3. It demonstrates that the potentials given in
Table I are fully equivalent since the Argand patterns
are almost identical for all potentials. It means that the
Drisko ambiguity [22], δl → δl+nπ holds not only for low
angular momenta but for all momenta when going from
one potential to another. Furthermore, for low angular
momentum l < 10, the trajectory for S-matrix rotates
clockwise several times around the origin, suggesting the
presence of several Regge poles. We will come back to
this effect in the following sections.

B. Folding model analysis

In the this section we discuss the ability of the folding
model to describe the pre-rainbow oscillation seen in our
data.
We start by a quite simple model in which the form-

factors of th OMP are given by the double folding inte-
gral,

Vfold(R) =

∫

d~r1d~r2ρ1(r1)ρ2(r2)vM3Y (s) (1)

where vM3Y is the M3Y parameterization of the G-
matrix obtained from the Paris NN interaction [23], and

10
-3

10
-2

10
-1

1

0 50 100 150

σWKB

NF

σ/
σ R

25.7 MeV

6Li+16O

10
-4

10
-3

10
-2

10
-1

0 50 100 150

σI

N

F

10
-3

10
-2

10
-1

1

0 50 100 150

σWKB

NF

29.8 MeV

θc.m. (deg)

σ/
σ R

10
-4

10
-3

10
-2

10
-1

0 50 100 150
θc.m. (deg)

σI

N

F

FIG. 12: Semi-classical calculation for 6Li+16O based on po-
tentials VO1 and VZ2 at 25.7 and 29.8 MeV respectively, Ta-
ble I. The total cross section (σWKB) and the internal barrier
(σI) are further decomposed into far-side (F) and near-side
(N) component.

-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6

0 0.5 1

6Li+16O 25.7 MeV pot VO1

SQ

ℑ
 S

(l
)

-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6

0 0.5 1

SWKB

-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6

0 0.5 1
ℜ S(l)

ℑ
 S

(l
)

SB

-0.2
-0.15
-0.1

-0.05
0

0.05
0.1

0.15
0.2

-0.2 -0.1 0 0.1 0.2
ℜ S(l)

SI

l=0

FIG. 13: Argand diagrams for the exact S-matrix (SQ) calcu-
lated with WS potential VO1 compared with WKB approx-
imations for the same potential. Barrier SB and internal-
barrier SI components are shown separately.



7

-15

-10

-5

0

5

10

15

20

25

1 2 3 4 5 6 7 8
r (fm)

V
ef

f (
M

eV
)

Ec.m.

L=8

L=9

L=10

6Li+16O 25.7 MeV
VO1

FIG. 14: Shape (quasi-molecular) resonances (thick lines) in
the effective potential based on VO1 parameterization. Only
narrow resonances located near the barrier top (dots) are
shown for a few active partial waves.

~s = ~r1 + ~R − ~r2 is the NN separation distance. In the
simplest version of this model, dubbed here as M3YZR,
the knock-on exchange component is simulated by a
zero range potential with a slightly energy dependent
strength,

J00(E) = −276(1− 0.005E/A) (2)

Then the OMP is given by,

U(R) = NV V (R, tV ) +NWW (R, tW ) (3)

where NV,W are normalization constants and tV,W are
range parameters of a smearing function g,

g(~s) =
1

t3π3/2
exp(−s2/t2) (4)

With this function, the form-factors of the OMP are
given by,

V (R, tV ) =

∫

d~R′Vfold(R
′)g(~R− ~R′) (5)

and similarly for W (R, tW ). Note that the normalized
function g goes to a δ function in the limit t → 0. The
rms radius of the OMP form factor is given by,

< r2 >V =< r2 >ρ1
+ < r2 >ρ2

+ < r2 >v +3/2t2 (6)

Thus the volume integral of the form-factor is con-
trolled by the parameters NV,W . Note that the normal-
ization in Eq. (4) ensures that only the rms radius of
the bare folding potential is changed by the transforma-
tion Eq. (5). Based on Eq. (6) one may estimate in an
average way the importance of the dynamic polarization
potential and finite range effects. Throughout this paper
we use single particle densities obtained from a spherical
Hartree-Fock calculation based on the density functional
of Beiner and Lombard [24]. The obtained rms charge

radii are < r2 >
1/2
6Li= 2.33 fm and < r2 >

1/2
16O= 2.71,

which should be compared with experimental values of
2.53 fm and 2.70 fm, respectively [25]. A grid search on
the real volume integral reveals the same ambiguity ob-
tained with the WS form-factors, see Fig. 2 and Table
I. The best solutions are displayed in Fig. 4. The real
volume integrals match quite well solutions found with
the WS parameterization. Again imaginary volume inte-
grals are quite small pointing to a large transparency of
the potential. Correction due to the finite range effects
are quite large, of the order of ∆r ≈ 0.4 fm for the real
potential and much larger for the imaginary potential.
Note that the minimum rms radius implied by Eq. 6 is
3.57 fm. Far-side/near-side decomposition of the scat-
tering amplitude reveals the same features: a minimum
in the far-side component develops at θ = 65◦ which be-
comes deeper with the increased real volume integral of
the interaction.

A more elaborate calculation lead to a nonlocal knock-
on exchange kernel,

Uex(~R
+, ~R−) = µ3vex(µR

−)

∫

d ~X1ρ1(X1)ĵ1(kf1(X1)
(A1 − 1)A2

A1 +A2

R−) (7)

×ρ2(|~R+ − ~X1|)ĵ1(kf2(|~R+ − ~X1|)
(A2 − 1)A1

A1 +A2

R−)

where A1,2 are mass numbers, µ is the reduced mass of
the system, kf1,2 are Fermi momenta, R+,− are the usual
nonlocal coordinates and vex is the exchange component

of the interaction including the long range OPEP tail.
In the lowest order of the Perey-Saxon approximation,
the local equivalent of the nonlocal kernel is obtained by
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solving the nonlinear equation,

UL(R) = 4π

∫

d~r1d~r2ρ1(r1)ρ2(r2)

×
∫

s2dsvex(s)ĵ1(kf1(r1)β1s)ĵ1(kf2(r1)β2s)

×j0(
1

µ
K(R)s)δ(~r2 − ~r1 + ~R) (8)

Above βi = (Ai − 1)/Ai are recoil corrections, ĵ1(x) =
3j1(x)/x and j0,1 are spherical Bessel functions. Local
Fermi momenta kf are evaluated in an extended Thomas-
Fermi approximation [26].The local momentum for the
relative motion is given by,

K2(R) =
2µ

h̄2
(Ec.m. − UD(R)− UL(R)) (9)

where UD is the total direct component of the potential
including the Coulomb term. In Eq. (9) we assumed a
purely real local momentum of the relative motion since
the absorptive component of the OMP is small compared
with the real part. The effective mass correction [27],
µ⋆

µ = 1 − ∂U
∂E is of the order of a few percent for this

system and is absorbed in the renormalization parame-
ter NW . Some tens of iterations are needed to solve eq.
(8) in order to obtain a precision of 10−7 in the entire
radial range. Calculations with finite range model are
dubbed M3YFR. As in the case of other interactions it
is possible to find several solutions. However, a careful
calculation reveals that in fact there is an unique solution
with JV = 280 MeV fm3 (Fig. 2). At 29.8 MeV we found
a unique solution at about JV = 350 MeV fm3. Thus the
more careful calculation of the knock-on exchange com-
ponent changes completely the volume integral and the
rms radius of the real component such that a unique
solution survives in the range JV = 250− 350 MeV fm3.
At this point we want to make a comment on the effect

of coupling with the breakup states. Sakuragi [11] per-
formed a CCDC calculation of 6Li scattering in a large
range of incident energies and target mass. He found
that coupling with α−d breakup states bings a repulsive
DPP potential in the nuclear surface in such a way that
reasonable fits can be obtained by fixing the normaliza-
tion constantNV = 1 and NW = 0.4−0.7 when using the
M3Y effective interaction supplemented by a pseudo zero
range knock-on potential as we did in our model M3YZR.
First of all he assumes implicitly that M3Y is a perfect in-
teraction and the renormalization NV should be exactly
one. This is not the case for several reasons. Absence of
any explicit density dependence and of three body effects
leads to a collapse of equation of state of nuclear matter
at least at the HF level. The pseudo potential used for
the knock-on exchange is a poor approximation. The odd
components (SO and TO) of the interaction are largely
ambiguous. We have seen that in a single channel cal-
culation there are discrete ambiguities with real volume

integrals JV = 200−350 MeV fm3. The bare (unnormal-
ized) potential has a volume integral of 425 MeV fm3 and
a rms radius of 3.86 fm. It means that the DPP potential
coming from coupling to breakup should correct simulta-
neously the volume integral by ∆JV = 225, 165, 80 MeV
fm3 and for ∆RV = 0.1 − 0.2 fm which is evidently im-
possible. Furthermore, in line with our previous analyses
[3, 4] we found systematically ∆R = RW − RV ≈ 1.4
fm and therefore it is a bad approximation to use the
same geometry for real and absorptive components of the
OMP.
Is this unique solution an accidental feature of the

M3YFR model? In a recent paper [28] we successfully
described the hindrance in the sub-barrier fusion of 48Ca
with several targets using optical potentials generated
with two parameterization of the Gogny effective inter-
action. Neglecting the spin-orbit component, the Gogny
NN interaction can be expressed as a sum of central, fi-
nite range term and a zero range density dependent term,

v(~r12) =

2
∑

i=1

(Wi +BiPσ −HiPτ −MiPσPτ )e
−

r2
12

µ2

i (10)

+t3(1 + Pσ)ρ
α(~R12)δ(~r12)

where ~r12 = ~r1−~r2 , ~R12 = (~r1 +~r2)/2 and standard no-
tations have been used for parameter strengths and spin-
isospin exchange operators. The strengths and the ranges
are taken from [29]. The interest in this interaction re-
sides in its excellent description (at the HF level) of the
saturation properties of the nuclear matter in line with
modern estimation from the isoscalar giant monopole [30]
or dipole resonance [31] studies. Anti-symmetrization of
the density dependent term is trivial, so that the sum of
direct and exchange term reads,

vρD(r12) + vρex(r12) =
3t3
4

ραδ(~r12) (11)

The local equivalent of the finite range knock-on ex-
change is calculated with Eq. (8). Two approximations
were used for the overlap density,

ρ = (ρ1(r1)ρ2(r2))
1/2 (12)

and

ρ =
1

2
(ρ1(r1) + ρ2(r2)) (13)

The first approximation Eq.(12) has the merit that the
overlap density goes to zero when one of the interact-
ing nucleons is far from the bulk. The calculated OMP
potentials are dubbed GOGNY1 and GOGNY3 respec-
tively. Both definitions represent crude approximations
of the overlap density but are widely used in the estima-
tion of the density effects in the folding model. Several
solutions have been found with this model, but in fact
only one gives a fit comparable with best solutions found
with other form-factors ( Fig.5 ). Estimation with the
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overlap density defined in Eqs. (12) or (13) do not make
too much difference (Table I). Both approximations lead
to the same volume integrals and rms radii.

We further examine the density dependence effects by
using the nuclear matter approach of Jeukenne, Lejeune
and Mahaux (JLM) [13] which incorporates a complex,
energy and density dependent parameterization of the
NN effective interaction obtained in a Brueckner Hartree-
Fock approximation from the Reid soft core nucleon-
nucleon potential. The systematic study [3] of the elastic
scattering between p-shell nuclei at energies around 10
MeV/nucleon leads to the surprising result that on aver-
age, the imaginary part of the folded JLM potential was
perfectly adequate to describe such reactions and did not
need any renormalization (NW = 1.00± 0.09), while the
real component needed a strong renormalization, in line
with other effective interactions used in folding models.
We do not expect this property to be conserved at much
lower energy (4-5 MeV/A in this case).

There are no exchange components included in this
model and as a consequence several discrete solution are
found. The best solutions obtained with Eqs. (12,13) are
displayed in Fig. 6 and tabulated in Table I.

The JLM1 model provides a consistent description of
the rainbow pattern in a large range of energies between
8 to 53 MeV/nucleon, see Fig. 7. At the lowest energy
shown in Fig. 7, the broad hump at θ ≈ 90◦ is associated
with a primary rainbow peak. As the energy increases,
the primary rainbow moves forward and is followed by
the exponential fall in the classically forbidden angular
range.

In the remainder of this section we examine the disper-
sive properties of the optical potential for 6Li scattering.
The threshold anomaly which manifests itself as a sharp
increase of the real optical potential for energies close to
the Coulomb barrier, has been explained by Nagarajan,
Mahaux and Satchler [32] as due to the opening of re-
action channels with increasing energy. Later on it was
conjectured by Mahaux, Ngo and Satchler [12] that for
loosely bound nuclei, this anomaly may be absent. Re-
cent studies of the threshold anomaly in 6,7Li induced
reactions lead to contradictory conclusions: a cancella-
tion between the attractive (dispersive) component and
the repulsive dynamic polarization potential [33, 34], dy-
namic polarization potentials of opposite sign for 6,7Li
[35], breakup suppression in complete fusion above the
barrier energies [36]. A recent study of 6Li interaction
with heavy targets [37] showed that prompt breakup trig-
gered by n-stripping is more likely than prompt breakup
into projectile cluster constituents.Therefore, the energy
dependence of the 6,7Li optical potential is far from clear
and the competition between dispersive (attractive) and
coupling to continuum (repulsive) effects need to be stud-
ied more carefully. The real and imaginary volume inte-
grals for the optical potentials obtained in the previous
sections are plotted in Fig. 8. Both Woods-Saxon and
folding results have been included. These are supple-
mented with values derived from the smooth OM1 po-

tential of Trcka et al. [38], from [4], and from an alysis of
6li+12C at 24 and 30 MeV [16], assuming that the mass
dependence of the normalized volume integrals JV,W is
weak.
We assume that the local optical potential may be writ-

ten as V = V0+∆V (E) where V0 is independent of energy
and ∆V (E) is the energy dependent DPP. We ignore the
spurious energy dependence of V0 arising from non local-
ity which is expected to be weak for heavy ions. We use
the dispersion relation connecting the imaginary and real
volume integrals in the subtracted form,

J∆V,Es
(E) = (E−Es)

P
π

∫

JW (E′)

(E′ − Es)(E′ − E)
dE′ (14)

which determines J∆V up to a constant. Here Es is a ref-
erence energy and P is the principal value of the integral.
In principle the evaluation of this equation requires the
knowledge of JW values at all energies. The above sub-
tracted form takes advantage of the fact that the energy
dependence of JW far from saturation energy is not very
important and the unknown contributions are absorbed
by normalizing to the empirical value at a convenient
reference energy,

J∆V,Es
(E) = J∆V (E)− J∆V (Es) (15)

The energy dependence of the imaginary volume integral
is approximated by,

JW (E) = J0
W (1− β exp(−αE)) (16)

Our calculation, see Fig. 8, suggests no sharp increase
of the real volume integral as the energy fall toward zero,
indicating a weak threshold anomaly. It also suggest that
optical potentials with JV ≈ 400 MeV fm3 would be
preferred.
To conclude this section, we find that folding poten-

tials including finite range, recoil and density dependence
effects describe well the cross section in the entire angu-
lar range, comparable with the more flexible WS form-
factors. Realistic description of the surface of the nucleon
and charge single particle densities was essential for the
procedure. Inclusion of the more elaborated knock-on
exchange potential reduces the number of discrete am-
biguities, while the dynamical content of the S-matrix
remains the same, with strong resonant effect in the low
partial waves.

III. SEMICLASSICAL BARRIER AND

INTERNAL BARRIER AMPLITUDES

Once we have established the main features of the av-
erage OM potential, we turn now to study the reaction
mechanism using semiclassical methods. The far-side
dominance observed in the angular distributions is not
able to explain the behaviour of the S-matrix elements at
low angular momentum. The reason is of course that the
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FIG. 15: Comparison of the data with Regge pole calculation
using parameterization given in Table II (left panels, σtot).
The pole σpole components are shown in the right panels.
Each component is further decomposed into far (F) and near-
side (N). The shallow minimum in the far side component
of the total cross section appears as an interference between
background and pole components.
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Wall deep at l ∼ 9 is due to the pole component in the S-
matrix.
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FIG. 17: Argand diagrams for the S-matrix calculated with
WS potential VO1 compared with two Regge pole approxi-
mation ( Table II).

far/near (F/N) decomposition method does not perform
a dynamic decomposition of the scattering function, but
merely decomposes the scattering amplitude into trav-
eling waves. The intermediate angle structures, such as
those observed in our angular distribution, have been re-
peatedly interpreted as arising from the interference of
two ranges in angular momenta, ℓ< and ℓ>, contribut-
ing to the same negative deflection angle. However, the
corresponding cross sections, σF< and σF>, cannot be
isolated because their dynamic content (S-matrix) is not
accessible.
The semi-classical uniform approximation for the scat-

tering amplitude of Brink and Takigawa [14] is well
adapted to describe situations in which the scattering
is controlled by at most three active, isolated, complex
turning points. An approximate multi-reflection series
expansion of the scattering function can be obtained, the
terms of which have the same simple physical meaning as
in the exact Debye expansion for the scattering of light
on a spherical well. The major interest in this theory
comes from the fact that it can give precious information
on the response of a nuclear system to the nuclear inte-
rior. An application [9] of this technique helped to clarify
the controversial problem of the ”Airy oscillation” seen
in low energy 16O+12C scattering [5].
We take as an example the potential VO1 in Table I.

We discard the absorptive term and define the effective
potential as,

Veff (r) = V (r) +
h̄2

2µ

λ2

r2
, λ = ℓ+

1

2
(17)
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where the Langer prescription has been used for the cen-
trifugal term. This guarantees the correct behavior of
the semi-classical wave function at the origin [39]. Then
we calculate the deflection function,

Θ(λ) = π − 2

∫

∞

r1

√

h̄2

2µλdr

r2
√

Ec.m. − Veff

(18)

where r1 is the outer zero of the square root, i.e. the
radius of closest approach to the scatterer and µ is the
reduced mass. Note that with the replacement h̄λ =
b
√
2µE, Eq. 18 becomes identical with the classical de-

flection function Θ(b), where b is the impact parameter.
The result is shown in Fig. 9. The behavior of Θ(λ)
is the one expected for a strong nuclear potential in a
near orbiting kinematical situation in which the c.m. en-
ergy approximately equals that of the top of the barrier
for some specific angular momentum. All the measured
angular range is classically illuminated. The deflection
function exhibit no genuine minima, but rather a pro-
nounced cusp close to an orbiting logarithmic singularity.
Therefore any interpretation of structures in angular dis-
tributions in terms of Airy oscillations can be discarded.
Rather we need an interpretation appropriate for orbit-
ing, a well documented situation in classical physics [40].
We identify the cusp angular momentum as orbiting mo-
mentum (λo) since this is related to the coalescence of two
(barrier) turning points and the innermost turning point
given by the centrifugal barrier becomes classically acces-
sible. There are two branches that can be distinguished,
an internal branch for low active momenta λ < λo re-
lated to semiclassical trajectories which penetrate into
the nuclear pocket and a less developed external (bar-
rier) branch (λ > λo) related to trajectories deflected at
the diffuse edge of the potential.

However this simple calculation cannot determine the
relative importance of these branches and provides no
information about the interference effects of the cor-
responding semi-classical trajectories. To clarify these
points it is best to go into the complex r-plane and look
for complex turning points, i.e. the complex roots of the
quantity Ec.m.−Veff−iW . This is an intricate numerical
problem, because, for a WS optical potential, the turn-
ing points are located near the potential singularities and
there are an infinite number of such poles. The situation
for integer angular momenta is depicted in Fig. 10. Inac-
tive turning points r11 and r21 are located quite far from
the real axis and give negligible small contribution to the
total S-matrix. We observe an ideal situation with three,
well isolated, turning points for each partial wave.

The multi-reflection expansion of the scattering func-
tion in the Brink-Takigawa approach reads,

SWKB(ℓ) =

∞
∑

q=0

Sq(ℓ) (19)

where,

S0(ℓ) =
exp(2iδℓ1)

N(S21/π)
(20)

and for q 6= 0,

Sq(ℓ) = (−)q+1 exp [2i(qS32 + S21 + δℓ1)]

N q+1(S21/π)
(21)

In these equations δℓ1 is the WKB (complex) phase shift
corresponding to the turning point r1, N(z) is the barrier
penetrability factor,

N(z) =

√
2π

Γ(z + 1

2
)
exp (z ln z − z) (22)

and Sij is the action integral calculated between turning
points ri and rj ,

Sij =

∫ rj

ri

dr{2µ
h̄2

[Ec.m. − Veff − iW ]}1/2 (23)

S21 and S32 are independent of the integration path pro-
vided they lie on the first Riemann sheet and collision
with potential poles is avoided. Each term in Eq. 19
has a simple physical interpretation. The first term (the
barrier term, denoted also SB) retains contributions from
trajectories reflected at the barrier, not penetrating the
internal region. The qth term corresponds to trajectories
refracted q times in the nuclear interior with q-1 reflec-
tions at the barrier turning point r2. Summation of terms
q ≥ 1 can be recast into a single term,

SI =
exp[2i(S32 + S21 + δℓ1)]

N(S21/π)2
1

1 + exp [2iS32]/N(S21/π)
(24)

and is known as the internal barrier scattering func-
tion. The last factor in Eq. 24, the enhancement fa-
tor, is responsible for the multiple reflections of the wave
within the potential pocket. When the absorption in
the nuclear interior is large, the enhancement factor re-
duces to one and we are left with the expression used in
[21]. Since the semi-classical scattering function is de-
composed additively, SWKB = SB + SI , the correspond-
ing total scattering amplitude is decomposed likewise as
fWKB = fB + fI and conveniently the corresponding
barrier and internal barrier angular distributions are cal-
culated as σB,I = |fB,I |2, using the usual angular mo-
mentum expansion of the amplitudes.
The poles of the semi-classical S-matrix are given by,

N(iǫ) + e2iS32 = 0 ; ǫ = − i

π
S21 (25)

This is equivalent to outgoing boundary condition and
can be satisfied only when the energy or the angular
momentum is complex and can be used for searching
for Regge poles. It should be emphasized that these
poles are due to multiple reflections of the internal wave
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within potential pocket, while the zeros of the S-matrix
arise from the interference between the barrier and in-
ternal barrier waves. The accuracy of the semi-classical
calculation has been checked by comparing the barrier
and internal barrier absorption profiles with the exact
quantum-mechanical result in Fig. 11. First, one ob-
serves that the semi-classical B/I expansion is an exact

decomposition of the quantum result. They are virtually
identical at the scale of the figure. The internal com-
ponent gets significant values up to the grazing angular
momentum (ℓg=12) and is negligibly small beyond this
value. The barrier component resembles a strong absorp-
tion profile and this justifies the interpretation that it
corresponds to that part of the flux not penetrating into
the nuclear interior. For values near the orbiting angular
momentum (ℓo ≈10), the two components interfere and a
downward spike appears in the total profile, in complete
agreement with the quantum result. This is the famous
Grühn-Wall spike [41] introduced phenomenologically to
explain ALAS for α particle scattering, and appears here
as a strong interference between barrier and internal bar-
rier amplitudes. Second, the B/I components are almost
decoupled in the angular momentum space and therefore
they will contribute in different angular ranges.
Semi-classical cross sections are compared with the

data in Fig. 12. Better insight into this technique is
obtained by further decomposing the B/I components
into far and near (BF/BN and IF/IN) subcomponents.
Clearly, the barrier component dominates the forward
angle region. Fraunhofer diffractive oscillations appear
as the result of BF and BN interference. At large an-
gles, the internal contribution accounts for the full cross
section.
Thus, the intermediate angle exotic structure in angu-

lar distributions for the elastic scattering of 6Li on 16O
can be understood as a result of coherent interference of
two far-side subamplitudes generated by different terms
in the uniform multi-reflection expansion of the scatter-
ing function (terms q=0 and q=1 in Eq. 19), correspond-
ing to the scattering at the barrier and the internal bar-
rier. This interference effect appears as a signature of a
surprisingly transparent interaction potential for loosely
bound nucleus 6Li at this low energy which allows part
of the incident flux to penetrate the nuclear interior and
re-emerge with significant probability.
The Argand diagrams corresponding to the B/I de-

composition is displayed in Fig. 13. Evidently, only the
internal barrier amplitude is responsible for the resonant
behavior of the low momentum partial waves.

IV. REGGE POLES

We have seen in the preceding sections that the data
could be described by highly transparent potentials, such
that the low absorption is not able to suppress the res-
onant effects in the low partial waves. Semi-classically,
these effects appear as a consequence of multiple reflec-

tions of the internal amplitude between the most inter-
nal complex turning points of the potential. In fact a
common property of the WS potentials which describe
well the data, is that they possess several narrow shape
(molecular) resonances located in the most active waves
l = 8, 9, 10 (see Fig.14). In this section we examine this
effect in terms of a purely phenomenological Regge pole
approximation. Previously, Ceuleneer and Michel [42]
used the Cowley and Heymann [43] expansion of the scat-
tering amplitude to describe α+16O at low energy. We
adopt the ”product” representation of the S-matrix [15],

S(l) = Sbkg(l)Spole(l) (26)

where the backgound (bkg) component is borrowed from
the strong absorption model of Ericson [44],

Sbkg = [1 + βexp(−iα)exp(
L − l

∆
)]−1 (27)

For the pole term we adopt the expression,

Spole(l) =
2
∏

i=1

[1 + i
Di(l)

l − Li − iΓ̂i(l)/2
] (28)

This term describes resonances in l centered at Li with
total width Γ̂i. In line with McVoy [15] we assume the
zeros and the widths slowly l dependent and vanishing
small as l → ∞,

Di(l) =
Di

1 + exp( l−L
∆i

)
(29)

Γ̂i(l) =
Γi

1 + exp( l−L
∆i

)
(30)

Clearly, D measures the distance between the pole
(p = 1/2Γ) and the zero(z = 1/2Γ − D). The model
has 12 parameters, twice as much as the WS model. The
reason is that we were not able to find a single pole uni-
tary solution for both background and pole components.
Since the problem is highly nonlinear there is no guaran-
tee for the uniqueness of the solution. We used a Monte
Carlo procedure to generate input parameters and then
minimized the usual χ2 objective function. From the nu-
merous solution we found, we choose to show only one
set of parameters (Table II) which has the merit that
both Sbkg and Spole are unitary. The poles are located
in the upper complex l near L ≈ 9, 10, in line with what
we found from the other analyses. The cross sections ob-
tained with this model are plotted in Fig.15. The back-
ground component is important only at forward angles,
while the pole component contributes significantly at all
angles. Only the pole component contributes to the far-
side amplitude which displays only a shallow minimum
near θ = 50◦. The nearby deep minimum, interpreted
previously as a Fraunhofer minimum, appears here as a
result of the strong destructive interference between far
and near-side amplitudes of the pole component alone.
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The background absorption profile shown in Fig. 16 is
typical for strong absorption regime while the the Grühn-
Wall deep appears here as carried out by the pole com-
ponent alone. The corresponding Argand diagram dis-
played in Fig. 17 show clearly the resonant contribution
of the pole component.

V. CONCLUSIONS

We have analyzed the elastic scattering 6Li+16O at an
energy of 4-5 MeV/nucleon in an effort to obtain sys-
tematic information on the interaction of p-shell nuclei
with light targets. Optical potentials for these nuclei are
needed for studies where highly peripheral transfer re-
actions involving radioactive nuclei are used as indirect
methods for nuclear astrophysics and are an important
factor in the accuracy and reliability of these methods.
At the present time, the best information on the optical
potentials for radioactive nuclei can be obtained only by
extrapolation from adjacent less exotic nuclei. Our inten-
tion is to narrow the ambiguities in the optical model po-
tentials by systematic studies of the scattering of loosely
bound projectiles over a large range of angles and ener-
gies, and extract information that can be used for sys-
tems involving radioactive projectiles, for which elastic
scattering data of very good quality are not easily avail-
able.
The data, confirm the existence of an exotic interme-

diate angle structure, observed previously [4] at higher
energy. We interpret these structures as refractive ef-
fects arising from a fine balance between the real and
imaginary components of the optical potential. We have
performed a traditional analysis of the data in terms of
Woods-Saxon and microscopic folded potentials. A range
of effective NN interactions have been used to generate
folding potentials. Both approaches lead to the conclu-
sion that the optical potential is deep and surprisingly
transparent, in line with findings for other more bound
systems. Folding model form factors have been renor-
malized in the usual way in order to account for the
energy and radial dependence of the dynamic polariza-
tion potential. The intermediate angle structures could
be reproduced only with potentials approaching a critical
volume integral of about 280±10 MeV fm3 and a rms ra-
dius RV = 4.05± 0.1 fm and, consequently, are severely
selective, limiting the ambiguities in the determination
of the OMP. The remaining discrete ambiguities could
be removed by including an exact local representation of
the knock-on exchange kernel within Perey-Saxon local-
ization procedure. Our analysis in terms of dispersion
relation confirm the conjecture of a canceling effect be-
tween the repulsive dynamic polarization potential due
to the coupling with breakup channels and the attrac-
tive, dispersive component of the optical potential. Thus
the barrier anomaly appears to be weak in this case. As

a consequence all folding potentials require a renormal-
ization NV < 1 to match the required critical value of
the real volume integral.

The present analysis shows that in order to reproduce
the structures observed at intermediate angles in this
case, one needs to allow for a more complicated radial
dependence of the dynamic polarization potential, which
can be energy and target dependent, and requires deep
real potentials.

In an effort to clarify the reaction mechanism respon-
sible for the intermediate angle structures, we performed
extensive semi-classical calculations within the uniform
multi-reflection expansion of the scattering function of
Brink and Takigawa. It has been shown that using com-
plex trajectories, the (external) barrier/internal barrier
expansion is an exact realization of the dynamic decom-
position of the quantum result into components respon-
sible for that part of the incident flux reflected at the
barrier and the part of the flux which penetrates into the
nuclear interior and re-emerges with significant probabil-
ity. By combining the B/I decomposition with the usual
far-side/near-side expansion, we explain the intermedi-
ate angle structure as a coherent interference effect of
two subamplitudes (BF and IF).Intermediate angle struc-
tures in our case do not arise from interference between
two saddle points in the same term of the multi-reflection
expansion, but from interference between a saddle point
from the second term of the expansion, describing trajec-
tories refracted in the internal region, with a contribution
from the first term of the expansion ( see eqs. (19)-(21)
) Thus, this refractive effect appears as a signature of a
highly transparent interaction potential. This decompo-
sition allows to isolate dynamically the resonant compo-
nent of the S-matrix which is due to multiple reflections
of the low angular momentum waves between the most
internal complex turning points of the potential.

A completely different picture emerges by using a slight
generalization of the ”product” Regge representation of
the full S-matrix in which poles in the complex l plane
are located in peripheral waves. Seeking for a unitary
solution, we found that the pole component is entirely
responsible for intermediate angle structure and the os-
cillatory behavior of the cross section at large angles.
Thus it is a matter of taste if we interpret intermediate
angle structure as a resonant refraction of equally well as
a resonant diffraction.
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TABLE I: Best fit Woods-Saxon and folding potential parameters for 6Li+16O which match the dispersion realation. The
second header line denote parameters for folding potentials. Reduced radii are defined in the heavy ion convention. All lengths
are given in fm, depths in MeV, cross sections in mb and volume integrals in MeV fm3. RV and RW are the rms radii of the
real and imaginary potentials, respectively. The normalized χ2 is calculated assuming uniform 10% error.

Elab Pot. V0 W0 rV rW aV aW χ2 σR JV RV JW RW

NV NW tV tW

25.7 VO1 162.21 5.018 0.529 1.469 0.993 0.654 9.81 1434 248 4.087 63 5.502
VO2 224.00 5.988 0.541 1.415 0.911 0.687 9.27 1430 318 3.839 68 5.397

M3YZR 0.737 0.139 0.090 2.799 14.4 1499 352 3.908 62 5.208
M3YFR 0.492 0.105 0.364 2.904 13.3 1532 279 4.058 59 5.387
GOGNY1 0.426 0.092 0.383 2.944 12.6 1540 284 4.072 60 5.427
GOGNY3 0.520 0.114 0.083 2.844 12.3 1534 289 4.100 61 5.386
JLM1 0.543 0.428 0.646 2.795 11.5 1513 354 3.879 64 5.327
JLM3 0.588 0.532 0.733 2.763 11.6 1509 350 3.871 63 5.296

29.8 VZ2 237.51 7.268 0.506 1.338 1.006 0.607 7.35 1369 344 4.098 68 5.029
M3YZR 0.730 0.148 0.105 2.977 10.9 1578 345 3.909 66 5.356
M3YFR 0.705 0.132 0.385 2.849 11.6 1543 363 3.943 67 5.252
GOGNY1 0.610 0.109 0.279 2.634 12.8 1505 378 3.974 67 5.114
GOGNY3 0.750 0.139 0.098 2.549 13.0 1501 386 4.000 68 5.080
JLM1 0.555 0.439 0.824 2.638 11.4 1518 359 3.930 67 5.200
JLM3 0.595 0.548 0.865 2.711 10.9 1532 352 3.912 66 5.249

TABLE II: Parameters for a two Regge poles unitary solutions for 6Li+16O. The first 4 columns define the background S-matrix
and the next ones define the pole component. The approximate pole and zero positions predicted by the model in the complex
l-plane are given by Li + ipi and Li + izi respectively. See text for notations

Elab L ∆ α β L1 ∆1 D1 Γ1 L2 ∆2 D2 Γ2 χ2 σR

25.7 14.73 3.08 -1.57 0.29 9.82 1.72 3.10 5.03 8.97 1.02 0.41 1.19 4.32 1437
29.8 10.07 1.53 1.59 5.09 4.71 4.42 2.27 1.13 6.37 0.65 4.38 0.97 11.8 1117


