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Abstract

We analyze the forward-backward multiplicity correlation coefficient as

measured by STAR. We show that in the most central Au+Au collisions bins

located symmetrically around η = 0 with large separation in pseudorapidity

are stronger correlated than bins located asymmetrically with smaller sepa-

ration. In proton-proton collisions the opposite effect is observed. It suggests

a qualitatively different behavior of the two-particle correlation as a function

of pseudorapidity sum in p+p and Au+Au collisions.

1. The problem of correlations between particles produced in different rapidity

regions have been intensively studied since early times of high energy physics [1].

Particularly interesting are correlations between particles with large separation in

rapidity. It is recognized that such correlations are born immediately after the

collision, when the produced system is very small (spatial size of the order of a few

femtometers) and before rapid longitudinal expansion.

One popular method to study long range correlations is to measure the mul-

tiplicity correlation coefficient, i.e., to quantify how multiplicity (number of parti-

cles) in one rapidity window influences multiplicity in another one. This problem

was thoroughly studied in hadron-hadron collisions at various energies [2, 3, 4],

[5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. One important lesson from these studies is that

the forward-backward correlation coefficient is decreasing as a function of rapidity

distance between bins.

Recently the STAR collaboration at RHIC announced the results [15] on the

forward-backward multiplicity correlation coefficient measured in Au+Au collisions

at
√
s = 200 GeV. The measurement was performed for two narrow pseudorapidity
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bins with the distance between them ranging from 0.2 to 1.8 covering a substantial

part of the midrapidity region. For the first time very interesting features were

observed (i) the correlation coefficient increases significantly with centrality of the

collision and (ii) it remains approximately constant (except for very peripheral colli-

sions) across the measured midrapidity region |η| < 1. These results were interpreted

in the framework of the color glass condensate [16] or the dual parton [6] models.

Recently various mechanisms were proposed to understand the data quantita-

tively [17, 18, 19, 20]. However, in these calculations the sophistication of the STAR

analysis was not fully appreciated and the published results cannot be directly com-

pared with data. As emphasized by Lappi and McLerran [21] in the STAR analysis

the correlation coefficient is measured at a given number of particles in an additional

reference window. This procedure significantly influences the forward-backward cor-

relations and we will come back to this problem later.

In the present paper we analyze the STAR data and extend the discussion ini-

tiated in Ref. [21]. We describe the STAR analysis in detail and derive a general

formula that relates the correlation coefficients measured with and without the step

of fixing particle number in the reference window.

The main result of this paper is the observation that the two-particle pseudo-

rapidity correlation function is qualitatively different in p+p and central Au+Au

collisions when studied as a function of pseudorapidity sum η1 + η2. In a model

independent way we show that bins located asymmetrically around η = 0 with a

small separation in pseudorapidity are significantly weaker correlated than bins lo-

cated symmetrically with much larger separation. It is the first time this effect is

observed. In p+p collisions the opposite effect is observed, i.e., bins with smaller

separation are stronger correlated even if they are asymmetric.

2. The multiplicity correlation coefficient for two bins X and Y is

bXY =
D2

XY

DXXDY Y

, (1)

D2

XY = 〈nXnY 〉 − 〈nX〉 〈nY 〉 ; D2

Y Y =
〈

n2

Y

〉

− 〈nY 〉2 , (2)

where nX and nY , respectively, are event by event multiplicities in X and Y . Due

to the Cauchy-Schwarz inequality bXY varies from −1 to +1.

The STAR collaboration measured the multiplicity correlation coefficient be-

tween two symmetric (with respect to η = 0 in the center of mass frame) pseudora-

pidity bins B (backward) and F (forward) of width 0.2. To reduce a trivial source

of correlations coming from the impact parameter fluctuations1, STAR introduced

the third symmetric reference bin R, see Fig. 1, and all averages 〈nB〉nR
, 〈n2

B〉nR
,

1Higher nB triggers smaller impact parameter that leads to higher nF .
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〈nBnF 〉nR
were measured at a given number of particles nR in this bin. Next they

calculated the appropriate covariance and variance in the following way

D2

BF |STAR =
∑

nR

P (nR)
[

〈nBnF 〉nR
− 〈nB〉2nR

]

,

D2

BB |STAR =
∑

nR

P (nR)
[

〈

n2

B

〉

nR

− 〈nB〉2nR

]

, (3)

where P (nR) is the multiplicity distribution in the reference bin R at a given cen-

trality class that is defined by a range of nR, i.e., n1 < nR < n2. Eq. (3) allows to

calculate the correlation coefficient as measured by STAR

bBF |STAR =
D2

BF |STAR

D2

BB|STAR

. (4)

It is important to emphasize that if 〈nB〉, 〈n2

B〉 and 〈nBnF 〉 are measured without

the step of fixing nR (namely all events are taken to directly measure D2

BF and D2

BB

with nR in a given centrality range) different results are obtained.2 In the following

all observables without a label STAR denote that D2

BF and D2

BB are calculated

without fixing nR.

η

Figure 1: Configuration with maximum pseudorapidity gap between B and F .

The STAR procedure of measuring bBF |STAR substantially remove the impact

parameter fluctuations, indeed. However, as shown in Ref. [21], it complicates the

interpretation of bBF |STAR since it clearly depends (in the nontrivial way) on cor-

relations between B(F ) and R. In the following we derive the relation between

bBF |STAR and multiplicity correlations bBF and bBR = bFR that are obtained in the

same centrality class but without the step of fixing nR. Such calculation was per-

formed in Ref. [21], where for simplicity the multiplicity distribution P (nB, nF , nR)

was assumed to be in a Gaussian form. Here we show that the result derived in [21]

is independent on P (nB, nF , nR) provided the average number of particles in B at

a given nR is a linear function of nR

〈nB〉nR
= c0 + c1nR. (5)

2Naively, it seems that both procedures should lead to the same result. We can always measure

〈O〉
nR

at a given nR and calculate 〈O〉 = ∑

nR
P (nR) 〈O〉

nR
. In this case

D2
BF = 〈nBnF 〉 − 〈nB〉2 =

∑

nR

P (nR) 〈nBnF 〉nR
−
(

∑

nR

P (nR) 〈nB〉nR

)2

that is clearly different from Eq. (3).
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This relation is well confirmed by STAR [22]. It is straightforward to show that

c0 = 〈nB〉 − 〈nR〉
D2

BR

D2

RR

, c1 =
D2

BR

D2

RR

. (6)

Indeed, to obtain (6) both sides of Eq. (5) should be multiplied first by P (nR) and

second by P (nR)nR and summed over nR. Using an obvious relation

〈O〉nR
=

1

P (nR)

∑

nB,nF

P (nB, nF , nR)O, (7)

two simple equations can be derived that allow to calculate c0 and c1.

Taking (3), (5) and (7) into account

D2

BF |STAR = D2

BF − c2
1
D2

RR,

D2

BB|STAR = D2

BB − c2
1
D2

RR, (8)

where c1 is defined in (6). Consequently, bBF |STAR is given by

bBF |STAR =
bBF − b2BR

1− b2BR

, (9)

where bBF and bBR are the appropriate correlation coefficients measured without

fixing nR. As mentioned earlier we obtain exactly the same formula as in Ref. [21].

It shows that Eq. (9) does not dependent on P (nB, nF , nR), provided the relation

(5) is satisfied.

Here we would like to point out that the interpretation of bBF |STAR is not

straightforward. For example, bBF |STAR = 0 indicates only that bBF = b2BR but

it does not mean that bBF = 0. Moreover, bBF |STAR can be negative even if both

bBF and bBR are positive. We conclude that the full interpretation of bBF |STAR is

difficult without knowing bBF and bBR.

In this paper we are interested in the configuration presented in Fig. 1, where

the distance between B and F is a maximum one, i.e., F = [0.8 < η < 1], B is

symmetric with respect to η = 0 and R = [−0.5 < η < 0.5]. In this case the average

gap between B and R is a factor 2 smaller than between B and F . Assuming that the

two-particle correlation function depends only on |η1 − η2| and is not increasing as

a function of |η1 − η2| a natural ordering bBR ≥ bBF is obtained, as shown explicitly

in [21]. Consequently

bBF |STAR =
bBF − b2BR

1− b2BR

≤ bBR − b2BR

1− b2BR

=
bBR

1 + bBR

≤ 1

2
, (10)

since bBR ≤ 1. In the most central collisions STAR measured bBF |STAR ≈ 0.58

that violates this bound.3 Thus we arrive at an interesting conclusion that in the

3The STAR result has an uncertainty ±0.06. Even if one assumes that the measured bBF |STAR

is slightly below 0.5, it is still difficult to understand with an assumption bBR ≥ bBF , since it

requires bBR ≈ bBF ≈ 1.
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midrapidity region in the most central Au+Au collisions the following inequality

holds

bBR < bBF . (11)

It was checked by STAR that narrowing the reference bin R from |η| < 0.5 to

|η| < 0.1 (so that all windows have the same widths) slightly increases the corre-

lation coefficient bBF |STAR. Also an alternative method of centrality determination

was carried out using the STAR Zero Degree Calorimeter (measurement of forward

neutrons) for the 0−10% centrality, and bBF |STAR is very close to 1

2
. In this case the

same formula (3) applies, however, there are no explicate cuts on nR. We conclude

that the width of R and the centrality cut on nR is not a factor in the result (11).

3. It is interesting to estimate the numerical values of the correlation coefficients

bBF and bBR. As mentioned earlier we are mostly interested in the configuration

where the distance between B and F is a maximum one (∆η = 1.8 in the STAR

notation) and R is defined by |η| < 0.5.

As seen from Eq. (8) evaluation of bBF = D2

BF/D
2

BB is straightforward. The

covariance D2

BF |STAR and variance D2

BB|STAR are published in [15] (only for 0−10%

centrality bin). From [22] one sees that 〈nB〉nR
is a linear function of nR with a

coefficient c1 ≈ 0.2. To calculate D2

RR = 〈n2

R〉 − 〈nR〉2 we use the uncorrected

(raw) multiplicity distribution P (nraw

R ) as published in [23], and take the efficiency

correction to be nR/n
raw

R = 1.22 [22, 23]. Performing straightforward calculation

we obtain4 D2

RR ≈ 4320 what allows to calculate bBF . Taking Eq. (9), bBF and

measured bBF |STAR into account we obtain:

bBR ≈ 0.58, bBF ≈ 0.72. (12)

As seen from (12) in the most central Au+Au collisions bBR is significantly smaller

than bBF . Let us remind here that the average distance between B and R (one unit

of η) is a factor two smaller than between B and F .

It is also interesting to see how bBF depends on the distance ∆η between bins

B and F . Taking Eq. (8) into account and repeating calculations5 presented above

we found that bBF in central Au+Au is approximately constant as a function of ∆η,

which is consistent with the dependence of bBF |STAR on ∆η.

Finally, let us notice that STAR also measured bBF |STAR in p+p collisions, how-

ever in this case the exact value of c1 is not known. We checked that for a very

4We take P (nraw
R

) ∝ exp(−n
raw

R

370 ) for 431 ≤ nraw
R

≤ 560 and P (nraw
R

) ∝ exp(− (nraw

R
−561)2

2700 ) for

nraw
R

≥ 561, what gives D2
RR

|raw = 2904. Consequently, D2
RR

= (1.222)D2
RR

|raw.
5For small ∆η the reference window R is composed of two windows 0.5 < |η| < 1 and we assume

that c21D
2
RR

is approximately the same as with R defined by |η| < 0.5.
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broad range of c1 we always obtain a standard ordering bBR > bBF .
6

4. Several comments are warranted:

(i) To calculate the correlation coefficients bBF and bBR the experimental values

of D2

BF |STAR and D2

BB |STAR are required as an input. Unfortunately they are pro-

vided only for the most central collisions. It would be interesting to measure the

centrality dependence of the effect reported in this paper. It is expected that in

peripheral collisions the standard relation bBR > bBF should be recovered. If so, it

would indicate a qualitatively different behaviour of central and peripheral Au+Au

collisions.

(ii) It is worth mentioning that HIJING [24] and the Parton String Model (PSM)

[25] fail to describe the Au+Au data for the forward-backward multiplicity correla-

tion coefficient. However, they are consistent with the p+p data. In the most central

Au+Au collisions, and for the configuration presented in Fig. 1, both models predict

bBF |STAR < 1

2
, which is consistent with the relation bBR > bBF .

7

(iii) It is not straightforward to propose a realistic mechanism that stronger

correlates bins B and F than bins B and R. One possible mechanism is the formation

of certain clusters strongly peaked at η = 0 that decay symmetrically into two

particles. This mechanism obviously correlates bins B and F and introduces no (or

much weaker) correlations between bins B and R. To go beyond speculations more

detailed measurement of the forward-backward correlations between symmetric and

asymmetric bins is warranted.

5. In summary, we analyzed the STAR data on the forward-backward multi-

plicity correlation coefficient bBF |STAR in the most central Au+Au collisions. This

measurement was performed with the intermediate step of fixing the number of

particles in the third reference window R, see Fig. 1, and we emphasized the im-

portance of this step. We derived the general formula that relates bBF |STAR and the

correlation coefficients bBF and bBR measured in B − F and B − R without fixing

the number of particles in R.

The most important result is the observation that for the configuration presented

in Fig. 1, in the most central Au+Au collisions, the correlation coefficient bBR is

significantly smaller than bBF . This is exactly opposite to what is expected and

measured in p+p collisions (the distance between B and R is a factor 2 smaller

than between B and F ). Moreover, we found that in central Au+Au collisions, bBF

is approximately constant as a function of the pseudorapidity separation between

symmetrically located bins B and F . To understand these results it is necessary

6We assume P (nR) to be given by a negative binomial distribution with standard parameters

〈nR〉 = 2.3 and k = 2. Taking, e.g., c1 = 0.1 we obtain bBR ≈ 0.28 and bBF ≈ 0.13.
7In particular bBF |STAR ≈ 0.1 in HIJING and bBF |STAR ≈ 0.4 in PSM, see Ref. [15].
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to assume that in central Au+Au collisions the two-particle correlation function

strongly decreases as a function of |η1 + η2|. It indicates the presence of a specific

mechanism of correlation that strongly correlates bins located symmetrically around

η = 0 for which |η1+ η2| ≈ 0, but is less effective for asymmetric bins |η1+ η2| > 0.8

In this paper we solely concentrated on an analysis of the experimental results

and at the moment we see no compelling explanation of this effect. It would be

interesting to directly measure at RHIC and LHC the multiplicity correlation coef-

ficient for symmetric and asymmetric bins to confirm conclusions presented in this

paper.
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