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We investigate the structure of proto-neutron stars (PNSs) with trapped neutrinos by using a
quark-meson coupling model. We adopt a phenomenological lepton density which is diffuse near
the surface. We calculate the populations of baryons and leptons, the equations of state, and the
mass-radius relation for isentropic PNS models. In addition, the moment of inertia is calculated for
both PNS and cold-neutron-star (CNS) models as a means to study the change of the spin period
due to the neutrino emission from a PNS. Neutrino emission from a hyperonic neutron star is shown
to increase the spin by about 10% of the initial spin, while the spin of a nucleonic neutron star with a
central density above ρC ≈ 5ρ0 is decreased by a few % by the emission of neutrinos. Therefore, the
spin change owing to the leakage of neutrinos from a PNS is a small (<10 %) correction compared
to other processes related to the spin change.

PACS numbers: 25.30.Pt, 21.65.Cd, 24.10.Jv

I. INTRODUCTION

According to numerical simulations [1, 2], proto-
neutron stars (PNSs) are expected to be born in core-
collapse supernovae (SNe) with inferred initial rotation
periods of order 20-300 ms. These high initial spins are a
result of angular momentum conservation, although the
final spin depends upon mechanism for angular momen-
tum transport and the spin of the progenitor star. The
initial spin of a PNS may be determined from the rotation
of the SN core, but the simulations tend to yield rotation
periods that are either ∼ 1 sec too slow [3] or ∼ 1 ms -
15 ms, too fast [4, 5] compared to observations. There-
fore, some other angular-momentum transport mecha-
nism may be in operation in outer environment of PNSs
such as accretion shocks [1]. Of interest to the present
work is the possibility the emission of trapped neutrinos
after the SN explosion may also significantly affect the
kinematics of the newly born PNSs. For example, the
asymmetry of neutrino scattering and emission owing to
strong internal magnetic fields may give rise to observed
pulsar kicks [6]. In this work, therefore, we investigate
the spin up or down of pulsars through the change of the
moment of inertia caused by the neutrino emission and
cooling in the evolution of PNSs.

A PNS is the early state of a neutron star produced
after a core collapse SN. They are known to have trapped
neutrinos within their hot and dense interiors. The evo-
lution of a PNS involves the deleptonization of the star
through the emission of neutrinos over an interval of
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about 20 seconds [7–9] after the initial core bounce. As
long as neutrinos remain trapped inside a PNS, they can
affect the beta equilibrium. Therefore the internal struc-
ture of a PNS is altered through the influence of beta
equilibrium on the relative populations of baryons, the
equation of state (EOS), etc.

In our previous work [10], we introduced a density de-
pendent ratio of neutrinos in a PNS in the framework
of quantum hadrodynamics (QHD) and showed that this
approach is in good agreement with simulations of PNS
evolution. We here extend that previous work and in-
corporate the modified quark-meson coupling (MQMC)
model to describe a PNS with the same density depen-
dent neutrino ratio as the previous QHD model [10]. Us-
ing the MQMC model, we describe the hot dense neutron
star matter with initial conditions corresponding to those
of a PNS just after a supernova core collapse. After the
emission of the trapped neutrinos, the star will evolve
to become a cold neutron star (CNS) at zero tempera-
ture without much change in the central density. Thus,
we can study any possible changes of the rotation rate
by comparing the moments of inertia of the initial PNS
with models for the final CNS.

Since the quark-meson coupling (QMC) model was
first proposed [11], the model has been modified [12] to
recover relativistic phenomena by introducing a density
dependent bag constant. This version is referred to as
the modified quark-meson coupling (MQMC) model. In
both the QMC and MQMC models, a nucleon is treated
as a MIT bag in which quarks interact by exchanging
σ, ω and ρ mesons. Both the QMC and MQMC mod-
els have been applied to finite nuclei [13], nuclear matter
[12], and neutron stars [14, 15].

In particular, the MQMC model benefits from the ex-
tra quark degrees of freedom. For example, the den-
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sity dependence may help to explain [15] the recently
observed data for PSR J1614-2230 [16] which has M ≈
1.97M⊙. As shown in our previous paper [15] and Ref.
[14], the radius constraints for this star [17] agree more
or less with the results obtained in the nucleonic phase of
the MQMC model. In this report we calculate the struc-
ture and evolution of a PNS within the MQMC model
by considering both nucleonic and hyperonic phases with
trapped neutrinos.
The paper is organized as follows. In Sec. II, the

MQMC model for hot and dense matter is briefly ex-
plained. Numerical results and discussions are presented
in Sec. III. A summary and conclusions are given in Sec.
IV.

II. THEORY

A. Models for hot dense hypernuclear matter

The total Lagrangian for hot dense matter in the mean
field approximation can be represented in terms of the
baryon octet, leptons and five meson fields, as follows

L =
∑

B
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[
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where B denotes the octet of baryons and l stands for
the leptons (e−, µ−, νe, νµ). In this work, neutrinos are
regarded as left-handed and massless. Since a baryon is
treated as a MIT bag in the MQMC model, the effective
mass of a baryon is obtained from the MIT bag model
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Here, the bag constant BB(σ, σ
∗) has a density depen-

dence as follows
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where MB is the mass of a baryon in vacuum and nq

is the number of quarks. The bag constant in vacuum
BB0 and a phenomenological constant ZB are fitted to

reproduce the mass of a free baryon at a bag radius of
RB = 0.6 fm. Their values are taken from Ref. [15]. The

quark energy, Ωq =
√
x2q + (Rm∗

q)
2, is calculated from

the momentum of a quark in a bag xq of radius R and
an effective quark mass of m∗

q = mq − gqσσ − gqσ∗σ∗. The
value of xq is determined from a boundary condition on
the bag surface, j0(xq) = βq j1(xq).
The total energy density at finite temperature is then

given by
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where the spin degeneracy factors are γB = 2 for baryons,
γl = 2 for e− and µ−, and γl = 1 for neutrinos. fB and
f̄B are the Fermi-Dirac distribution functions for baryons
and anti-baryons,

fB =
1

e(ǫ
∗

B
−µ∗

B
)/T + 1

, f̄B =
1

e(ǫ
∗

B
+µ∗

B
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(5)

with an effective nucleon energy, ǫ∗B =
√
k2 +M∗

B
2,

and an effective baryon chemical potential, µ∗
B = µB −

gωBω−gφBφ−IBzgρBρ03 with the z-component of baryon
isospin, IBz . Here, the chemical potential µB is deter-
mined for each baryon density ρB

ρB =
γ

(2π)3

∫
d3k(fB − f̄B) , (6)

and the ω, φ and ρ03 meson fields are obtained from ρB
as follows
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The Fermi-Dirac distribution functions for leptons and
anti-leptons, fl and f̄l, are also given by
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where ǫ∗l =
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k2 +m2

l and ml = 0 for neutrinos. The
pressure is calculated from
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The scalar meson fields, σ and σ∗, can be determined
through a minimization of the thermodynamic potential
or the maximizing of the pressure with respect to theses
fields. Here, we employ the maximization of the pressure,
P (M∗

B, σ, σ
∗). Then the self-consistent equation for the

σ meson field is

dP

dσ
=

∑

B

(
∂P

∂M∗
B

)

µB ,T

∂M∗
B

∂σ
+

(
∂P

∂σ

)

M∗

B

= 0. (10)

The equation for the σ∗ field can be also obtained in a
similar way. The ∂M∗

B/∂σ in Eq.(10) is obtained from
the effective mass of a baryon in the MQMC model. The
entropy density is given by

S = −
∑

i

γi
(2π)3

∫
d3k[fi ln fi + (1− fi) ln(1 − fi)

+f̄i ln f̄i + (1 − f̄i) ln(1− f̄i)], (11)

where the summation over i includes the baryon octet
and all leptons (e−, µ−, νe− , νµ−). Thus, the entropy per
a baryon is given as S = S/(∑B ρB). In this work, all
results are obtained assuming a S = 2 isentropic model.

B. Slowly rotating neutron stars

In this subsection, we briefly describe the moment of
inertia for slowly rotating neutron stars. The details are
given in Refs. [18, 19]. The metric of an axially symmet-
ric star can be written as

ds2 = gµνdx
µdxν

= −e2ν(r)dt2 + e2λ(r)dr2 + r2dθ2

+r2 sin2 θdφ2 − 2ω(r)r2 sin2 θdtdφ . (12)

Here, we assume that the neutron star is rotating uni-
formly with a stellar frequency Ω that is well below the
Kepler frequency

Ω ≪ Ωmax ≈
√
M

R3
. (13)

In this case the slow-rotation approximation can be ap-
plied to the star. In this approximation, the moment of
inertia of a uniformly rotating, axially symmetric neutron
star is given by

I ≡ J

Ω
=

8π

3

∫ R

0

r4e−ν(r) ω̄(r)

Ω

(
ε(r) + P (r)

)

√
1− 2M(r)/r

dr , (14)

where J is the angular momentum, while ν(r) and ω̄(r)
are the radially-dependent metric functions. M(r), ε(r)
and P (r) are the mass of the star, energy density, and
pressure, respectively. These are obtained from a solution
to the Tolman-Oppenheimer-Volkoff (TOV) equation.
The metric functions ν(r) and λ(r) in Eq. (12) are

unchanged from the values of a spherically symmetric

neutron star. Thus λ(r) is simply related to the mass
profile M(r) by

g11(r) = e2λ(r) =
(
1− 2M(r)/r

)−1

. (15)

ν(r) can be determined from solving a first-order dif-
ferential equation, or equivalently, from evaluating the
following integral

ν(r) =
1

2
ln

(
1− 2M

R

)
−
∫ R

r

(
M(x) + 4πx3P (x)

)

x2
(
1− 2M(x)/x

) dx .

(16)

In the metric function, the frequency ω(r) appears as a
consequence of the dragging of local inertial frames by
the rotating star. The relative frequency ω̄(r)≡Ω−ω(r)
appearing in Eq. (14) represents the angular velocity
of the fluid as measured in a local inertial reference
frame. In particular, the dimensionless relative frequency
ω̃(r)≡ ω̄(r)/Ω satisfies the following second-order differ-
ential equation

d

dr

(
r4j(r)

dω̃(r)

dr

)
+ 4r3

dj(r)

dr
ω̃(r) = 0 , (17)

where

j(r) = e−ν(r)−λ(r) = e−ν(r)
√
1− 2M(r)/r if r ≤ R ,

1 if r > R .

(18)

Note that ω̃(r) is subject to the following two boundary
conditions:

ω̃′(0) = 0 , (19)

ω̃(R) +
R

3
ω̃′(R) = 1 . (20)

Also note that in the slow-rotation approximation, the
moment of inertia does not depend on the stellar fre-
quency Ω. In practice, one chooses an arbitrary value
for the central frequency ω̃c = ω̃(0) and numerically in-
tegrates Eq. (17) up to the edge of the star. In general,
the boundary condition at the surface, Eq. (20), will not
be satisfied for an arbitrary choice of ω̃c, so one must
rescale the function and its derivative by an appropriate
constant to correct the mismatch.
The moment of inertia can be calculated from an inte-

gration of the equations described above. After solving
for both ω̃(r) and I, one can check the consistency of the
solution by how well is satisfies following condition

ω̃′(R) =
6I

R4
. (21)

C. Conditions of a PNS with trapped neutrinos

Neutron star structure is usually constrained by three
conditions: 1) baryon number conservation; 2) charge
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neutrality; and 3) beta (chemical) equilibrium. For a
PNS with trapped neutrinos, however, the beta chemical
equilibrium has to be modified with the chemical poten-
tial due to the trapped neutrinos, µν , as follows

µn = µp + µe − µν , µΣ+ = µp ,

µΛ = µΣ0 = µΞ0 = µn , µΣ− = µΞ− = µn + µe − µν .

(22)

In chemical equilibrium, the matter becomes symmet-
ric matter if µe = µν . To allow for the dependence of
the neutrino propagation and beta equilibrium on den-
sity and temperature, we assume that the density of elec-
tron neutrinos can be related to the electron density,
i.e. ρνe = x(ρ)ρe. The condition for muon production
is also taken as ρνµ = x(ρ)ρµ by satisfying the chemical
equilibrium µe+µνe = µµ+µνµ . In general, x(ρ) may de-
pend on both baryon density and temperature. However,
for simplicity in our previous work [10], we proposed a
phenomenological formula depending only on the baryon
density,

x(ρ) = x0 [1− exp{−β (ρ/ρ0)γ}] , (23)

with x0 = 0.3, β = 0.05 and γ = 2 [10]. The coupling
constants are taken from Ref. [20].

III. RESULTS AND DISCUSSIONS

The relative populations of particles in both nucleonic
and hyperonic phases are shown in Fig. 1. Results from
the MQMC model show a behavior similar to our previ-
ous work based upon the QHD model [10]. In the nucle-
onic phase ((a) and (b)), the effect of trapped neutrinos
appears as the increase of protons by the modified beta
equilibrium in Eq. (22). For the hyperonic phase (Figs.
1a and 1b) the presence of trapped neutrinos causes the
fraction of protons to be larger and suppresses specific
charged hyperons in order to maintain baryon number
conservation and charge neutrality. Neutrons are also
decreased in both phases because of the increased abun-
dance of protons.
In Fig. 2, the ratio of trapped electron neutrinos is

shown for both nucleonic and hyperonic phases. For sym-
metric and asymmetric matter (or neutron star matter),
both the QHD and MQMC models show quite similar be-
havior for the nucleonic and hyperonic phases [15]. For
the proto-neutron star models taking account of temper-
ature effects, the neutrino populations from the MQMC
model are also similar to the results from our previous
QHD work [10]. The population of electron neutrinos
obtained by our density dependent ratio of trapped neu-
trinos agrees well with that of the transport theory simu-
lation of Refs. [7, 9]. In particular, the electron-neutrino
fraction Yνe ≈ 0.06 − 0.07 at high densities in the np
phase obtained in the simulation is similar to the result
denoted by the red curve in Fig. 2.
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FIG. 1: (Color online) Populations of particles in nucleonic
phase ((a) and (b)) and hyperonic one ((c) and (d)). Effects
of trapped neutrinos are included in (a) and (c) while (b) and
(d) are results without neutrinos.
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FIG. 2: (Color online) Population of electron neutrinos in
both nucleonic and hyperonic phases.

Therefore, populations of particles including neutrinos
in a PNS are well described by the density dependent
neutrino model, independently of whether the QHD or
MQMC model is employed. Notice, however, that ac-
cording to our calculations, the neutrino population in
the hyperonic phase can reduce to half of that of the np
phase.

The upper panel in Fig. 3 shows the effects of trapped
neutrinos on the equation of state (EOS) for both phases.
In beta equilibrium, µn = µp + µe − µν , trapped neutri-
nos make the fraction of protons higher. As a result, the
star at high densities becomes nearly symmetric matter
having the same ratio of neutrons and protons, as shown
in Fig. 1. Thus, in the np phase, trapped neutrinos cause
the EOS to be softer than the np phase without neutri-
nos. On the contrary, for hyperonic matter, hyperons and
protons may be increased by the trapped neutrinos from
the the chemical equilibrium in Eq. (22). The increased
protons, however, suppress hyperons by baryon number
conservation. One should keep in mind that increased
protons make the npHν EOS softer, but the suppression
of hyperons makes the EOS stiffer. Because the effect
of suppressed hyperons is larger than that of increased
protons, the EOS for the npHν gas becomes stiffer than
that of the npH EOS.

The temperature profile is shown in the lower panel
of Fig. 3 for non-trapped (np and npH) and trapped
cases (npν) and (npHν) based upon our density depen-
dent YLe(ρ). To keep the entropy (S = 2) constant, the
np phase needs higher temperature than the npν phase.
This is because the high temperature must compensate
the increased entropy due to the trapped neutrinos. On
the contrary, in hyperonic matter, the trapped neutrinos
do not affect the temperature profile much because the
additional hyperons also make the entropy larger for a
fixed temperature.

The mass radius relation for various hot PNS models
with and without neutrino trapping are shown in the up-
per panel of Fig. 4. These were obtained by solving the
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FIG. 3: (Color online) The equations of state and temperature
profile for non-trapped (np and npH) and trapped cases (npν
and npHν).

TOV equation. For comparison, Fig. 5 shows the mass
radius relation for cold neutron star models based upon
the nucleonic and hyperonic equations of state. A good
figure of merit for an equation of state is the radius of
a cold neutron star of 1.4 M⊙. For both the nucleonic
and hyperonic equations of state we obtain a radius of
13 km for a 1.4 M⊙ star. This is consistent with existing
observations (e.g. R = 12 ± 1 [21]) and other equations
of state (e.g. [17]). We note, however, that our hyper-
onic EOS cannot accommodate the observed neutron star
mass ofM ≈ 1.97M⊙ for PSR J1614-2230 [16]. However,
it is a well known [17] that this problem can be fixed by
the introduction of a repulsive three-body force at high
density.
For the PNS models with the nucleonic EOS (np and

npν), the trapped neutrinos (npν) reduce the mass for a
star of fixed radius by about 0.1M⊙. This is because the
npν EOS is softer than that of np matter alone. How-
ever, in the hyperonic EOS (npH and npHν) the situ-
ation is a bit more complicated. Beyond the maximum
mass ∼ 1.7M⊙, trapped neutrinos increase the mass at
fixed radius by about 0.1M⊙, while the mass of stars for
the npHν EOS below the maximum mass are smaller for
fixed radii than that of the npH EOS because of the con-
tribution from protons. As mentioned above, the EOS
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FIG. 4: (Color online) The mass radius relation and the mo-
ment of inertia for various hot PNS models.

becomes softer as the protons increase and stiffer by the
hyperon suppression. Therefore, if we choose a very high
central density where the effects of the hyperon suppres-
sion are easily expected, the mass of the npHν models
may be slightly larger those based upon the npH EOS. It
is worthwhile to note the comparison of our present mod-
els to the previous QMC models of [14]. The np and npH
phase models used here simply correspond to the ”np”
and QMC II model of Ref. [14], respectively. Of course,
both results for the mass-radius relation by the present
and previous calculations are well matched to each other.
Finally, we discuss the effects of trapped neutrinos

on the moment of inertia by comparing the results of
trapped neutrinos in a PNS with those for a cold neu-
tron star (CNS) calculated from the equation of state in
Ref. [15]. The lower panel of Fig. 4 shows that the mo-
ment of inertia usually decreases by about 10 % by the
neutrino emission. Consequently, the spin of the PNS
is increased and the spin period is decreased by such an
amount at the stage of a CNS. This feature is consistent
with the following conjecture. Since the effect of temper-
ature makes the radius of a PNS increase, the moment
of inertia in PNS models (I ∼ MR2) is larger than that
of CNS models.
However, in the central density region above ρC ≈ 5ρ0

of the np phase, the situation may be changed. One can
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FIG. 5: (Color online) The mass-radius relation for cold neu-
tron star models.

see an interesting behavior, i.e. the moment of inertia for
the nucleonic PNS phase may increase in the CNS phase
by the neutrino emission. This is because the maximum
mass of a CNS may be larger than that of a PNS as
shown at the mass-radius relations in upper figure. The
moment of inertia of the CNS becomes larger in the high
central density region above ρC ≈ 5ρ0.
On the contrary, in the hyperonic phase, the moment

of inertia of the PNS stage is reduced by ≈ 0.1I45 at the
CNS stage, independently of the central density. Thus,
if the neutron star has a hyperonic phase in the core, the
initial spin may be increased about 10% by the neutrino
emission.
For the np phase, however, the spin up or not depends

upon the central density. Namely, the spin change ratio
may depend on the mass of the relevant neutron star.
Therefore, the stars with a np phase in the core may show
either spin up or spin down by the neutrino emission.
Which is the more plausible of the two possibilities is
closely associated with the central density of the np phase
of the neutron stars. However, the amount of the spin
change should be less than about 10 %, irrespective of
the related phases of the neutron stars.

IV. SUMMARY

We have studied the effects of trapped neutrinos on a
PNS by using an MQMC model. The probability of neu-
trino trapping is assumed to depend on the matter den-
sity. With those assumptions, we calculated the popula-
tions of relevant particles, the EOS, and the mass-radius
relation of isentropic PNS models for both nucleonic and
hyperonic neutron stars. We find that the emission of
neutrinos decreases the moment of inertia in both phases,
and hence, can make both nucleonic and hyperonic neu-
tron stars spin up by as much as 10 % of their initial
spin. The spin up in the massive nucleonic phase with
high central density, however, could be reversed into a
spin down.
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During core-collapse SNe, the angular momentum can
be transported by the convection stemming from the
mass accretion shock or carried away by gravitational
radiation. The change in spin due to the leakage of neu-
trinos from a PNS can be a small correction compared to
other processes. Nevertheless, although the correction is
relatively small, a more thorough analyses of the relation
between spin periods and neutron-star star masses may
be necessary steps to better understand the spin distri-
bution of proto-neutron stars.
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