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Precise measurements of the proton electromagnetic form factor ratio R = µpG
p

E/G
p

M using the
polarization transfer method at Jefferson Lab have revolutionized the understanding of nucleon
structure by revealing the strong decrease of R with momentum transfer Q2 for Q2 & 1 GeV2, in
strong disagreement with previous extractions of R from cross section measurements. In particular,
the polarization transfer results have exposed the limits of applicability of the one-photon-exchange
approximation and highlighted the role of quark orbital angular momentum in the nucleon structure.
The GEp-II experiment in Jefferson Lab’s Hall A measured R at four Q2 values in the range 3.5
GeV2 ≤ Q2 ≤ 5.6 GeV2. A possible discrepancy between the originally published GEp-II results
and more recent measurements at higher Q2 motivated a new analysis of the GEp-II data. This
article presents the final results of the GEp-II experiment, including details of the new analysis,
an expanded description of the apparatus and an overview of theoretical progress since the original
publication. The key result of the final analysis is a systematic increase in the results for R,
improving the consistency of the polarization transfer data in the high-Q2 region. This increase is
the result of an improved selection of elastic events which largely removes the systematic effect of
the inelastic contamination, underestimated by the original analysis.
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I. INTRODUCTION

The electromagnetic form factors (FFs) of the nucleon
have been revived as a subject of high interest in hadronic
physics since a series of precise recoil polarization mea-
surements of the ratio of the proton’s electric (Gp

E) and
magnetic (Gp

M ) FFs [1, 2] in Jefferson Lab’s Hall A es-
tablished the rapid decrease with momentum transfer Q2

of R = µpG
p
E/G

p
M , where µp is the proton’s magnetic

moment, for 0.5 GeV2 ≤ Q2 ≤ 5.6 GeV2. These mea-
surements disagreed strongly with previous extractions
of Gp

E from cross section data [3] using the Rosenbluth
method [4], which found µpG

p
E/G

p
M ≈ 1. Subsequent in-

vestigations of both experimental techniques, including a
novel “Super-Rosenbluth” measurement using 1H(e, p)e′

cross section measurements to reduce systematic uncer-
tainties [5], found no neglected sources of error in either
data set, pointing to incompletely understood physics as
the source of the discrepancy.
Theoretical investigations of the discrepancy have fo-

cused on higher-order QED corrections to the cross sec-
tion and polarization observables in elastic ep scattering
[6, 7], including radiative corrections and two-photon-
exchange (TPEX) effects. The amplitude for elastic
electron-proton scattering involving the exchange of two
or more hard1 photons cannot presently be calculated
model-independently. In the Q2 region of the discrep-
ancy, model calculations of TPEX [8, 9] predict relative
corrections to both the cross section and polarization
observables that are typically at the few-percent level.
At large Q2, the sensitivity of the Born (one-photon-
exchange) cross section to Gp

E becomes similar to or
smaller than the sensitivity of the measured cross sec-
tion to poorly-known TPEX corrections, obscuring the
extraction of Gp

E . On the other hand, the polarization
transfer ratio R defined in equations (1) is directly pro-
portional to Gp

E/G
p
M , such that the extraction of Gp

E is
much less sensitive to corrections beyond the Born ap-
proximation. For this reason, a general consensus has
emerged that the polarization transfer data most reliably
determine Gp

E at large Q2. Nonetheless, active exper-
imental and theoretical investigation of the discrepancy
and the role of TPEX continues [10]. Owing to the lack of
a model-independent theoretical prescription for TPEX
corrections, precise measurements of elastic ep scattering
observables sensitive to TPEX effects continue to play an
important role in the resolution of the discrepancy.
The revised experimental understanding of the proton

form factors led to an onslaught of theoretical work. The
constancy of the Rosenbluth data for Gp

E/G
p
M was con-

sistent with a “precocious” onset of pQCD dimensional
scaling laws [11], valid for asymptotically large Q2, an
interpretation which had to be abandoned in light of

1 “Hard” in this context means that both exchanged photons carry
an appreciable fraction of the total momentum transfer.

the polarization data. The decrease of R with Q2 was
later interpreted in a pQCD-scaling framework including
higher-twist corrections [12], demonstrating the impor-
tance of quark orbital angular momentum in the inter-
pretation of nucleon structure. The relations between
nucleon form factors and Generalized Parton Distribu-
tions (GPDs) have placed this connection on a more
quantitative footing [13–15]. Furthermore, the GPD-
form factor sum rules have been used to derive model-
independent representations of the nucleon transverse
charge and magnetization densities as two-dimensional
Fourier transforms of the Dirac (F1) and Pauli (F2) form
factors [16]. In the context of calculations based on
QCD’s Dyson-Schwinger Equations (DSEs) [17, 18], the
form factor data are instrumental in elucidating the dy-
namical interplay between the nucleon’s dressed-quark
core, diquark correlations, and the pseudoscalar meson
cloud [19]. Recent measurements of the neutron form
factors at large Q2 [20, 21] have enabled for the first
time a detailed flavor-decomposition [22] of the form fac-
tor data, leading to new insights. In addition, the form
factor data have been interpreted within a large number
of phenomenological models; a recent review of the large
body of theoretical work relevant to the nucleon FFs is
given in [3], and a current overview is given in section
IVB of this work.
The recoil polarization method exploits the relation

between the transferred polarization in elastic ~ep scatter-
ing and the ratio Gp

E/G
p
M . In the one-photon-exchange

approximation, the polarization transferred to recoiling
protons in the elastic scattering of longitudinally po-
larized electrons by unpolarized protons has longitudi-
nal (Pℓ) and transverse (Pt) components in the reaction
plane given by [23, 24]

Pt = −hPe

√

2ǫ(1− ǫ)

τ

r

1 + ǫ
τ
r2

Pℓ = hPe

√
1− ǫ2

1 + ǫ
τ
r2

(1)

r ≡ Gp
E

Gp
M

= −Pt

Pℓ

√

τ(1 + ǫ)

2ǫ
=

R

µp

,

where h = ±1 is the electron beam helicity, Pe is the
beam polarization, τ ≡ Q2/4M2

p , Mp is the proton mass,

and ǫ ≡
[

1 + 2(1 + τ) tan2 (θe/2)
]−1

, with θe the elec-
tron scattering angle in the proton rest (lab) frame, cor-
responds to the longitudinal polarization of the virtual
photon in the one-photon-exchange approximation.
Recent measurements from Jefferson Lab’s Hall C

[25] extended the Q2 reach of the polarization transfer
method to 8.5 GeV2. The published data from Hall A
are well described by a linear Q2 dependence [3],

R = 1.0587− 0.14265Q2, (2)

with Q2 in GeV2, valid for Q2 ≥ 0.4 GeV2. On the other
hand, all three of the recent Hall C data points are at
least 1.5 standard deviations above this line, including
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the measurement at overlapping Q2 = 5.17 GeV2, which
lies 1.8σ above equation (2). Due to the strong, incom-
pletely understood discrepancy between the Rosenbluth
and polarization transfer methods of extracting Gp

E/G
p
M

and the fact that the new Hall C measurements are the
first to check the reproducibility of the Hall A data us-
ing a completely different apparatus in the Q2 region
where the discrepancy is strongest, understanding pos-
sible systematic differences between the experiments is
important.
This article reports an updated, final data analysis of

the three higher-Q2 measurements ofR from Hall A, orig-
inally published in [2], along with expanded details of the
experiment. To avoid confusion, a naming convention is
adopted throughout the remainder of this article for the
most frequently cited experiments: GEp-I for Ref. [1],
GEp-II for Ref. [2], the subject of this article, GEp-III for
Ref. [25] and GEp-2γ for Ref. [26]. Section II presents the
kinematics of the measurements, an expanded descrip-
tion of the experimental apparatus, and a comparison of
the GEp-II and GEp-III/GEp-2γ experiments. Section
III presents the data analysis method, including the se-
lection of elastic events, the extraction of polarization ob-
servables, and the estimation and subtraction of the non-
elastic background contribution. Section IV presents the
final results of the experiment and discusses the impact
of the revised data on the world database of proton elec-
tromagnetic form factor measurements, in the context
of the considerable advances in theory since the original
publication. The conclusions and summary are given in
section V.

II. EXPERIMENT SETUP

Table I shows the central kinematics of the measure-
ments from the GEp-II experiment. The kinematic vari-
ables given in Table I are the beam energy Ee, the scat-
tered electron energy E′

e, the electron scattering angle
θe, the scattered proton momentum pp, and the proton
scattering angle θp.

A. Experimental Apparatus

The GEp-II experiment ran in Hall A at Jefferson Lab
during November and December of 2000. A polarized
electron beam was scattered off a liquid hydrogen tar-
get. Hall A is equipped with two High Resolution Spec-
trometers (HRS) [27], which are identical in design. In
this experiment, the left HRS (HRSL) was used to detect
the recoil proton, while the right HRS (HRSR) was used
to detect the scattered electron at the lowest Q2 of 3.5
GeV2. For the three highest Q2 points at 4.0, 4.8 and 5.6
GeV2, electrons were detected by a lead-glass calorime-
ter. The focal plane of the HRSL was equipped with a
focal plane polarimeter (FPP) to measure the polariza-
tion of the recoil proton.

The Continuous Electron Beam Accelerator at the
Thomas Jefferson National Accelerator Facility (JLab)
delivers a high quality, longitudinally polarized electron
beam with ∼100% duty factor. The beam energy was
measured using the Arc and ep methods. The ep method
determines the energy by measuring the opening angle
between the scattered electron and the recoil proton in
ep elastic scattering, while the Arc method uses the stan-
dard technique of measuring a bend angle in a series of
dipole magnets. The combined absolute accuracy of both
methods is ∆E/E ∼ 10−4, while the beam energy spread
is at the 10−5 level. The nominal beam energy in this ex-
periment was 4.6 GeV. The beam polarization was mea-
sured by Compton and Möller polarimeters. Details of
the standard Hall A equipment can be found in [27] and
references therein.
The hydrogen target cell used in this experiment was

15 cm long along the beam direction. The target was
operated at a constant temperature of 19 K and pressure
of 25 psi, resulting in a density of about 0.072 g/cm3. To
minimize the target density fluctuations due to localized
heat deposition by the intense electron beam, a fast raster
system consisting of a pair of dipole magnets was used to
increase the transverse size of the beam in the horizontal
and vertical directions. The raster shape was square or
circular in the plane transverse to the beam axis. In this
experiment, the raster size was approximately 4×4 mm2.
Recoil protons were detected in the high resolution

spectrometer located on the beam left (HRSL) [27]. The
HRSL has a central bend angle of 45◦, and subtends a
6.5 msr solid-angle for charged particles with momenta
up to 4 GeV with ±5% momentum acceptance. Two ver-
tical drift chambers measure the particle’s position and
trajectory at the focal plane. With knowledge of the
optics of the HRSL magnets and precise beam position
monitoring, the proton scattering angles, momentum and
vertex coordinates were reconstructed with FWHM reso-
lutions of ∼2.6 (4.0) mrad for the in-plane (out-of-plane)
angle, ∆p/p ∼ 2.6 × 10−4 for the momentum, and ∼3.1
mm for the vertex coordinate in the plane transverse to
the HRSL optical axis.

1. Focal Plane Polarimeter

The central instrument of this experiment was the Fo-
cal Plane Polarimeter (FPP) [1], installed in the focal
plane of HRSL. The FPP measures the transverse polar-
ization of the recoil proton. The protons are scattered in
the focal plane region by an analyzer, as shown in Fig-
ure 1. If the protons are polarized transverse to their
momentum direction, an azimuthal asymmetry results
from the spin-orbit interaction with the analyzing nuclei.
The FPP has been described in detail in [1], so only

a brief summary of its characteristics will be given here.
The only significant difference in the configuration of the
FPP between the GEp-I and GEp-II experiments was a
change of the analyzer material from carbon to polyethy-
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TABLE I. Central kinematics of the GEp-II experiment. The central Q2 value is defined by the central momentum of the left
HRS in which the proton was detected. ǫ is the parameter appearing in equation (1), Ee is the beam energy, E′

e is the scattered
electron energy, θe is the electron scattering angle, pp is the proton momentum, θp is the proton scattering angle, χ is the
central spin precession angle, Pe is the beam polarization, and Rcal is the distance from the target to the calorimeter surface.
At the lowest Q2 of 3.5 GeV2, the scattered electron was detected in the right HRS.

Nominal Q2 (GeV2) ǫ Ee (GeV) E′
e (GeV) θe (◦) pp (GeV) θp (◦) χ (◦) Pe (%) Rcal (m)

3.5 0.77 4.61 2.74 30.6 2.64 31.8 241 70 HRSR
4.0 0.71 4.61 2.47 34.5 2.92 28.6 264 70 17.0
4.8 0.59 4.59 2.04 42.1 3.36 23.8 301 73 12.5
5.6 0.45 4.60 1.61 51.4 3.81 19.3 337 71 9.0

Rear straw chambers

CH2 analyzer

Front straw chambers

���� �� �� ����

φ
θ

FIG. 1. (color online) Layout of the Focal Plane Polarimeter.

lene. During GEp-I, the analyzer consisted of four doors
of carbon which could be combined to produce a maxi-
mum thickness of 51 cm. For cost, safety and efficiency
reasons, carbon is ideal for measuring proton polarization
with a momentum up to 2.4 GeV, which was sufficient
for GEp-I. For GEp-II, the maximum proton momentum
was 3.8 GeV. At this momentum, the analyzing power of
carbon, which contributes to the size of the asymmetry,
and therefore to the size of the error bar, decreases signif-
icantly. An experiment was carried out at the Laboratory
for High Energy (LHE) at the Joint Institute for Nuclear
Research (JINR) in Dubna, Russia to find an optimal an-
alyzing material and its thickness for protons at 3.8 GeV
[28]. Polyethylene, a compound of carbon and hydrogen,
was found to increase the analyzing power relative to car-
bon as shown in Figure 2. A stack of eighty 2.5 cm-thick
plates, each 58 cm deep along the direction of incident
protons, was installed between the unused, opened, doors
of the carbon analyzer, as shown in Figure 3. This 58 cm
thickness was used for the Q2 = 3.5 GeV2 kinematics.
For the three higher Q2 kinematics, an additional stack
of polyethylene with a thickness of 42 cm was installed
on a rail just upstream of the 58 cm stack to give a total
thickness of 100 cm.

 (deg)ϑ
0 10 20 30

y
A

0.00

0.05

0.10

0.15

0.20

0.25
 = 2.64 GeV

p
p

C

2CH

FIG. 2. (color online) Analyzing power versus scattering angle
in the analyzer for graphite (49.5 cm-thick) and polyethylene
(58 cm-thick) at a proton momentum of 2.64 GeV, corre-
sponding to Q2 = 3.5 GeV2.
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FIG. 3. (color online) Stack of polyethylene plates for the
analyzer. The dimensions shown on the plate are for the
58 cm (42 cm) stack, and were chosen to match the envelope
of elastically scattered protons in HRSL.

2. Electron detection at Q2 = 3.5 GeV2

For the measurement at Q2 = 3.5 GeV2, the electron
was detected in the high resolution spectrometer located
on the beam right (HRSR). The trigger was defined by a
coincidence between an electron in HRSR and a proton in
HRSL. The precise measurement of the scattered electron
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kinematics using a high-resolution magnetic spectrome-
ter provides for an extremely clean selection of elastic ep
events with cuts on the reconstructed missing energy and
momentum, as shown in Fig. 4.8 of Ref. [29].

3. Electron detection at Q2 ≥ 4.0 GeV2

For the measurements at Q2 ≥ 4.0 GeV2, a lead-
glass calorimeter was used to detect electrons due to the
larger electron solid angle compared to the proton solid
angle defined by HRSL. The lead-glass blocks from the
standard HRSR calorimeter were used to assemble this
calorimeter along with some additional spare blocks. Fig-
ure 4 shows a front and a side view of the calorimeter on
its platform. The blocks of lead-glass, of cross-sectional
area 15 × 15 cm2, were individually wrapped in one foil
of aluminized mylar, and one foil of black paper, to avoid
light leaks. Each block was then tested, and the current
drawn in the phototube due to noise was found to be less
than 100 nA for all blocks. The blocks were assembled
in a rectangular array of 9 columns and 17 rows, requir-
ing a total of 153 blocks. Most of the blocks, in green
in Figure 4, were 35 cm long, corresponding to 13.7 ra-
diation lengths. 37 blocks positioned on the edges of
the calorimeter were only 30 cm long, corresponding to
11.8 radiation lengths (in blue in Figure 4). The highest
electron energy, at Q2 = 4.0 GeV2, was 2.5 GeV. At this
energy, the shower stops after 7.7 radiation lengths, so
that the entire shower is contained in the block. Since
only 147 blocks were available, 6 blocks were missing to
form a complete rectangle. These were replaced by wood
placeholder blocks at the corners of the detector (in red in
Figure 4). The active area of the calorimeter was 3.31 m2.
The blocks were placed in the steel support frame (1),

and held together using wood plates (2). The front of
the support was covered with a one inch thick aluminum
plate (3) to absorb very low energy particles. The ensem-
ble was lifted by the top steel plate (4) onto the platform
(5) using the Hall A crane. Balance on the platform was
maintained by the steel support legs (6). The ensemble
was placed on wheels and moved with the help of the
Hall A crane attached to the steel lifting frame (7). The
calorimeter was placed at the distance from the target
required to match the electron solid angle to that of the
proton at each kinematic setting. The acceptance match-
ing was only approximate, due to the complicated shape
of the spectrometer acceptance. Overall, about 5% of
elastic events with a proton detected in HRSL were lost
due to acceptance mismatching. The Cherenkov light
emitted by primary electrons and shower secondaries in
the lead-glass was collected by Photonis XP2050 photo-
multipliers (8), and the signals were digitized by LeCroy
1881 integrating ADCs and LeCroy 1877 TDCs. The
trigger for the measurements at Q2 ≥ 4.0 GeV2 was de-
fined by a single proton in the HRS, signaled by a coin-
cidence of two planes of scintillators in the focal plane.
For each single proton event in the left HRS, the ADC

135 cm

174.2 cm

255 cm

(1)

(2)

(4)

(5)

(6)(7)

(8)

Front view Side view

35 cm block

30 cm block

electron

(3)
"dead block"

FIG. 4. (color) Design of the calorimeter used to detect the
scattered electron. In the front view, the 2.54 cm-thick alu-
minum plate in front of the blocks is not shown. See text for
details.

and TDC information from the calorimeter was read out
for all blocks, and elastic events were selected offline by
applying software cuts to the calorimeter data.

B. Comparison to Hall C Experiments

The GEp-II experiment shares several important fea-
tures with GEp-III. Both experiments used magnetic
spectrometers instrumented with Focal Plane Polarime-
ters (FPPs) to detect protons and measure their polariza-
tion, and large acceptance electromagnetic calorimeters
to detect electrons in coincidence. The use of calorime-
ters in both experiments was driven by the requirement of
acceptance matching; at large Q2 and θe, the Jacobian of
the reaction magnifies the electron solid angle compared
to the proton solid angle fixed by the spectrometer ac-
ceptance. The drawbacks of this choice compared to elec-
tron detection using a magnetic spectrometer are twofold.
First, the energy resolution of lead-glass calorimeters is
relatively poor, so that elastic and inelastic reactions are
not well separated in reconstructed electron energy. Sec-
ond, the signals in lead-glass from electrons and pho-
tons of similar energies are indistinguishable, leaving one
vulnerable to photon backgrounds from the decay of π0,
which played an important role in the analysis of both
experiments.
The high-Q2 measurements of the GEp-III experiment

[25] were carried out consecutively with the GEp-2γ
experiment, a series of precise measurements of R at
Q2 = 2.5 GeV2 [26] designed to search for effects be-
yond the Born approximation, thought to explain the
disagreement between Rosenbluth and polarization data
[7]. Using the same apparatus and analysis procedure as
GEp-III, the results of GEp-2γ [26] are in excellent agree-
ment with the GEp-I data from Hall A [1] at nearly iden-
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tical Q2, as shown in Figure 12. The background correc-
tions to the GEp-2γ data were negligible after applying
the cuts described in [25, 26]. Similarly, electrons were
detected in the HRSL in the GEp-I experiment, so that
the selection of elastic events was practically background-
free [1]. In the absence of major background corrections,
the agreement between precise measurements at the same
Q2 using different polarimeters and magnetic spectrome-
ters limits the size of any potentially neglected systematic
errors arising from sources other than background.

The liquid hydrogen targets used in Halls A and C
had radiation lengths of ∼2%, leading to a significant
Bremsstrahlung flux across the target length, in addi-
tion to the virtual photon flux due to the presence of the
electron beam. The kinematics of π0 photoproduction
(γ+p → π0+p) near end point (Eγ → Ee) are very sim-
ilar to elastic ep scattering at high energies (Eγ ≫ mπ),
such that protons from γ+ p → π0 + p overlap with elas-
tically scattered protons within experimental resolution.
In the lab frame, asymmetric π0 decays with one photon
emitted at a forward angle relative to the π0 momen-
tum, carrying most of the π0 energy, are detected with a
high probability. At high energies and momentum trans-
fers, the π0 photoproduction cross section is observed to
scale as s−7 for fixed ΘCM [30], where s is the center-
of-momentum (CM) energy squared and ΘCM is the CM
π0 production angle. In addition, the CM angular distri-
bution is peaked at forward and backward angles. The
goal of the GEp-III experiment was to measure to the
highest possible Q2, given the maximum available beam
energy of 5.71 GeV. At Q2 = 8.5 GeV2, the relatively
high Q2/s ratio, with ΘCM ∈ 129-143◦, led to a π0p:ep
ratio of ∼40:1. The severity of the background condi-
tions required maximal exploitation of elastic kinematics
to suppress the π0 background. Even after all cuts de-
scribed in [25], the remaining background was estimated
at ∼6% of accepted events. Given the large difference be-
tween the signal and background polarizations, this level
of contamination required a substantial positive correc-
tion to R.

In light of the improved understanding of the impor-
tance of the π0 background gained during the analysis
of the GEp-III data, an underestimation of its effect in
the GEp-II analysis was considered as a potential source
of disagreement between the two experiments. There-
fore, the GEp-II data for Q2 = 4.0, 4.8, and 5.6 GeV2

were reanalyzed to investigate the systematics of the π0

background. The data from GEp-II at Q2 = 3.5 GeV2

were not reanalyzed, since electrons were detected in the
HRSR and the π0 background was absent. The systemat-
ics of this configuration were thus irrelevant to the com-
parison between GEp-II and GEp-III at higher Q2.

III. DATA ANALYSIS

A. Elastic Event Selection

Figure 5 shows a representative example of the proce-
dure for isolating elastic events in the GEp-II data, at
Q2 = 4.8 GeV2. As described in [2] and [29], cuts were
applied to the difference between the HRS and calorime-
ter time signals (±4 ns at Q2 = 4.0 and 4.8 GeV2,
and ±5 ns at Q2 = 5.6 GeV2) and the missing energy
(∣

∣

∣Emiss ≡ Ee +Mp −
√

p2p +M2
p − Ecalo

∣

∣

∣ ≤ 1000 MeV
)

to suppress random coincidences and low-energy inelastic
backgrounds, respectively2. The remaining backgrounds
from 1H(γ, π0p) and quasielastic Al(e, e′p) reactions
in the target cell windows were rejected using the
kinematic correlations between the electron and proton
arms. The measured proton kinematics were used to
predict the scattered electron’s trajectory assuming
elastic scattering, and then the predicted electron trajec-

tory, defined by the polar scattering angle θ
(p)
e and the

azimuthal scattering angle φ
(p)
e (where (p) denotes the

value predicted from the measured proton kinematics),
was projected from the measured interaction vertex3 to
the surface of the calorimeter.
Figures 5(a) and 5(b) show the horizontal (∆x) and

vertical (∆y) differences between the measured shower
coordinates at the calorimeter and the coordinates cal-
culated from the measured proton kinematics assum-
ing elastic scattering. Figure 5(c) shows the difference
δp ≡ pp(θp) − pp between the measured pp and the mo-
mentum required by elastic kinematics at the measured
θp, given by

pp(θp) =
2MpEe(Mp + Ee) cos θp

M2
p + 2MpEe + E2

e sin
2 θp

. (3)

In each panel of Figure 5, the distribution of the plotted
variable is shown before and after applying cuts (illus-
trated by vertical lines) to both of the other two variables,
which most nearly corresponds to the GEp-III analysis.
In addition, the ∆x (∆y) distribution is shown after ap-
plying the cut to ∆y (∆x), regardless of δp, which most
nearly corresponds to the selection of the original GEp-II
analysis, in which no cut was applied to δp. Each spec-
trum exhibits a clear elastic peak near zero on top of
a smooth background distribution. The background in
the ∆x and ∆y spectra is dominated by π0 photopro-
duction events. The estimated background curves shown
in panels (a) and (b) of Figure 5 were obtained using
the polynomial sideband fitting method described in sec-
tion III C 2. The δp cut clearly has significant additional

2 The loose missing energy cut reflects the relatively poor energy
resolution of lead-glass.

3 The interaction vertex is defined as the intersection of the beam-
line with the projection of the reconstructed proton trajectory
on the horizontal plane.
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FIG. 5. (color online) Elastic event selection at Q2 = 4.8 GeV2. The effects of cuts are shown for the horizontal calorimeter
coordinate difference ∆x in panel (a), the vertical difference ∆y in panel (b), and the proton momentum difference δp ≡
pp(θp) − pp in panel (c). Solid vertical lines indicate the cut applied. Empty triangles show the distribution of events before
applying any cuts. Filled squares show events passing the cuts on both of the other two variables. Empty circles in panels (a)
and (b) show the ∆x (∆y) distribution of events passing the ∆y (∆x) cut, regardless of δp. In panels (a) and (b), the dashed
and solid curves show the estimated background before and after the δp cut. Dot-dashed vertical lines indicate the range of
the elastic peak excluded from the fit to the background.

background suppression power relative to ∆x and ∆y
cuts alone. In the δp spectrum, the background distribu-
tion is highly asymmetric about the peak, reflecting the
fact that elastically scattered protons carry the highest
kinematically allowed momenta at a given θp.

Since the two-body reaction kinematics are overdeter-
mined, the method used to calculate ∆x and ∆y is not
unique. In combination with the precisely known beam

energy, the expected electron polar scattering angle θ
(p)
e

can be calculated from either the measured proton mo-
mentum pp, the measured proton scattering angle θp, or a
combination of both. Different methods were used by the
GEp-II and GEp-III data analyses to calculate ∆x and
∆y. In the original GEp-II analysis, the calculation was
formulated in terms of Cartesian components of the out-
going particle momenta rather than polar and azimuthal

scattering angles. The effective θ
(p)
e in the GEp-II ap-

proach depends on both θp and pp. The exact equa-
tions used can be found in Appendix D of Ref. [29]. In

the GEp-III analysis, θ
(p)
e was calculated from pp, as de-

scribed in [25]. Both methods were tested in the present
reanalysis. The ∆x and ∆y distributions in Figures 5(a)
and 5(b) were calculated using the GEp-II method, in
order to demonstrate the background suppression power
of the added δp cut of Fig. 5(c) relative to the original

analysis. For events selected by this cut, pp ≈ pp(θp),
such that the ∆x values obtained from the GEp-II and
GEp-III methods are equal up to detector resolution.

A key difference between the GEp-III and GEp-II ex-
periments is the dominant source of resolution in the
variables used to select elastic events. The cell size of
the GEp-II calorimeter was 15 × 15 cm2, compared to
the 4 × 4 cm2 cell size of the GEp-III calorimeter. In
GEp-II, the resolution of ∆x and ∆y is dominated by

the calorimeter coordinate measurement, and is therefore
largely insensitive to the choice of proton variables used
to calculate the expected electron angles. In GEp-III, on
the other hand, the scattered electron angles were mea-
sured with excellent resolution by the highly-segmented
BigCal, such that the proton arm resolution was domi-
nant. Given the kinematics of GEp-III and the angular
and momentum resolution of the High Momentum Spec-
trometer (HMS) in Hall C [31], the best ∆x resolution

was obtained by using pp to calculate θ
(p)
e . In the GEp-II

analysis, the main practical difference between the two
methods is the resulting background shape. In kinemat-
ics for which the reaction Jacobian necessitates the use of
a calorimeter for electron detection, the GEp-III method
generally results in a wider and more asymmetric ∆x dis-
tribution of the background, with inelastic events assum-
ing predominantly negative ∆x values. In the GEp-III

analysis, using θ
(p)
e (pp) provided the best possible ∆x res-

olution and a wider ∆x distribution of the background.
In the GEp-II case, calculating ∆x using the GEp-III
method spreads out the background without affecting the
width of the elastic peak, thus reducing the background
in the ∆x spectrum with no δp cut. After applying the δp
cut, however, the ∆x distributions obtained from the two
calculations are practically identical, and the choice be-
comes arbitrary. As discussed in section IIID, the results
for R obtained with the δp cut included do not depend
on the method used to calculate ∆x. The final reanalysis
results were obtained with ∆x and ∆y calculated using
the GEp-II method.

The original GEp-II analysis applied a two-dimensional
polygon cut to the correlated ∆y versus ∆x distribution.
Using identical cuts to the original analysis, the pub-
lished results [2] were successfully reproduced. In the fi-
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nal analysis, however, one-dimensional (rectangular) cuts
were applied to ∆x and ∆y, which simplifies the back-
ground estimation procedure. For all three Q2 points, a
cut of ±12(±16) cm was applied to ∆x(∆y), centered at
the midpoint between half-maxima on either side of the
elastic peak, as in Figure 5. The width of the cuts was
chosen to be similar to the effective width of the poly-
gon cut applied by the original analysis, and reflects the
dominant contribution of the calorimeter cell size to the
resolution of ∆x and ∆y. In addition, a cut of ±15 MeV,
also centered at the midpoint between half-maxima of the
elastic peak, was applied to δp, as in Figure 5(c). The
width of the δp cut was chosen to be ±3σ, where σ ≈ 5
MeV is the δp resolution, which was roughly independent
of the proton momentum in this experiment. While the
difference in the selection of events from using a different
shape of the ∆x and ∆y cuts is small, the δp cut removes
a rather substantial 6.0%, 7.3%, and 10.7% of events rel-
ative to the original analysis for Q2 = 4.0, 4.8 and 5.6
GeV2, respectively.
While a fraction of the events rejected by the δp cut

are elastic, including events in the ep radiative tail and
elastic events with δp smeared by non-Gaussian tails of
the HRS resolution, most of the rejected events are part
of the background, and contribute very little to the sta-
tistical precision of the data. Moreover, even real elastic
events reconstructed outside the peak region of δp do
not meaningfully contribute to the accurate determina-
tion of the form factor ratio, because such events are
either (a) part of the radiative tail and therefore subject
to radiative corrections that are in principle calculable [6]
but practically difficult due to large backgrounds in the
radiative tail region, or (b) have unreliable angle or mo-
mentum reconstruction, which distorts the spin transport
matrix of the HRS (see Ref. [32] and section III B 2 below)
in an uncontrolled fashion. Therefore, the application of
the δp cut has benefits beyond mere background suppres-
sion, as it also suppresses radiative corrections and the
(potential) systematic effects of large angle or momentum
reconstruction errors. The estimation of the background
contamination and the background-related corrections to
the polarization transfer observables are discussed in sec-
tion III C. The next section discusses the procedure for
the extraction of polarization observables from the “raw”
asymmetries measured by the FPP.

B. Extraction of Polarization Observables

As detailed in [1, 29], useful scattering events in the
FPP were selected by requiring a good reconstructed
track in both the front and rear straw chambers and
requiring the scattering vertex zclose, defined by the
point of closest approach between incident and scattered
tracks, to lie within the physical extent of the CH2 ana-
lyzer. Events with polar scattering angles ϑ < 0.5◦ were
rejected, since at small angles comparable to the angu-
lar resolution of the FPP, the azimuthal angle resolution

diverges. Moreover, the small-angle region is dominated
by multiple Coulomb scattering, which has zero analyz-
ing power.

1. Focal Plane Asymmetry

Spin-orbit coupling causes a left-right asymmetry in
the angular distribution of protons scattered by carbon
and hydrogen nuclei in the CH2 analyzer of the FPP
with respect to the transverse polarization of the incident
proton4. The measured angular distribution for incident
protons with momentum p and transverse polarization
components PFPP

x and PFPP
y for a beam helicity of ±1

can be expressed as5

N±(p, ϑ, ϕ) = N±

0

ε(p, ϑ)

2π

[

1 + (±AyP
FPP
x + c1) cosϕ+

(∓AyP
FPP
y + s1) sinϕ+

c2 cos(2ϕ) + s2 sin(2ϕ) + . . .] , (4)

where N±

0 is the total number of incident protons for
beam helicity ±1, ε(p, ϑ) is the polarimeter efficiency

defined as the fraction of protons of momentum p scat-
tered at an angle ϑ, Ay(p, ϑ) is the analyzing power of
the ~p + CH2 reaction, and ϕ is the azimuthal scatter-
ing angle. The additional terms c1, s1, c2, s2, . . . represent
false or instrumental asymmetries caused by non-uniform
acceptance or efficiency, and possible ϕ-dependent re-
construction errors. These terms depend on p, ϑ, and
the incident proton trajectory, on which the geomet-
ric acceptance depends. Normalized angular distribu-
tions n± ≡ N±(ϕ)/N±

0 can be defined for each helic-
ity state. The helicity-sum distribution n+ + n− can-
cels the helicity-dependent asymmetries corresponding
to the transferred polarization, providing access to the
false asymmetries, while the helicity-difference distribu-
tion n+−n− cancels the helicity-independent false asym-
metries, providing access to the physical asymmetries.
False asymmetry effects are strongly suppressed in the

extraction of the transferred polarization components by
the rapid (30 Hz) beam helicity reversal, which cancels
the false asymmetry contribution (to first order) and also
cancels slow variations of luminosity and detection effi-
ciency, resulting in the same effective integrated luminos-
ity for each beam helicity state. Since the elastic scatter-
ing cross section on an unpolarized proton target is in-
dependent of electron helicity, equal numbers of protons
incident on CH2 are detected for positive and negative
beam helicities. In the GEp-II experiment, the numbers

4 In this context, “transverse” means orthogonal to the incident
proton’s momentum direction.

5 In the assumed coordinate system, the z axis is along the incident
proton momentum, while the x and y axes describe the transverse
coordinates in relation to the proton trajectory and the detector
coordinate system, as described in the text.
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FIG. 6. (color online) Focal-plane helicity-difference asymme-
try n+ − n− ≡ (Nbins/2)

[

N+(ϕ)/N+

0 −N−(ϕ)/N−

0

]

, where

Nbins is the number of ϕ bins and N±(ϕ), N±

0 are defined as
in equation (4), for the three highest Q2 points from GEp-II.
Curves are fits to the data. See text for details.

of events in each helicity state were always found to be
equal within statistical uncertainties at the 10−4 level. In
a polarization transfer measurement, equal integrated lu-
minosities for each beam helicity are not strictly required
to robustly separate the physical from the instrumental
asymmetries, since the angular distribution can be nor-
malized to the number of incident protons for each he-
licity state. Nonetheless, having equal numbers of events
in each helicity state maximizes the statistical precision
of the measured asymmetry while minimizing the sys-
tematic uncertainty in its extraction. The false asymme-
try coefficients determined from Fourier analysis of the
helicity-sum distribution can be used to correct the resid-
ual second-order effect of the false asymmetry, which is
small compared to other uncertainties in the data of this
experiment and therefore neglected (see section III B 4).

Figure 6 shows the helicity-difference asymmetry n+−
n− for the three highest Q2 points from GEp-II, inte-
grated over the range of polar angles ϑ with non-zero
analyzing power. The data were fitted with n+ − n− =
a cosϕ+ b sinϕ, with a resulting χ2/ndf of 0.90, 0.53 and
0.92 forQ2 = 4.0, 4.8 and 5.6 GeV2, respectively. At each

Q2, the asymmetry exhibits a clear sinusoidal behavior,
with a large cosϕ amplitude proportional to PFPP

x and
a smaller sinϕ amplitude proportional to PFPP

y . There
is no evidence in the data for a constant offset or the
presence of higher harmonics, judging from the good χ2

of the fit with only cosϕ and sinϕ terms6. The ampli-
tude of the asymmetry is proportional to the product
of the weighted-average analyzing power and the magni-
tude of the proton polarization, while the phase of the
asymmetry is determined by the ratio PFPP

y /PFPP
x of

the proton’s transverse polarization components at the
focal plane.

2. Spin Precession

The asymmetry measured by the FPP is determined
by the proton’s transverse polarization after undergoing
spin precession in the magnets of the HRS. To extract the
transferred polarization components at the target corre-
sponding to equations (1) requires accurate knowledge of
the spin transport properties of the HRS. It is worth not-
ing that without spin precession in magnetic spectrom-
eters, a common feature of the GEp-I, GEp-II, GEp-III
and GEp-2γ experiments, proton polarimetry based on
nuclear scattering would not work, since the spin-orbit
coupling responsible for the azimuthal asymmetry is in-
sensitive to the proton’s longitudinal polarization, which
can only be measured by rotating the longitudinal com-
ponent into a transverse component.
The precession of the spin of particles moving relativis-

tically in a magnetic field is governed by the Thomas-
B.M.T. equation [33]. The dominant precession effect
in all of the aforementioned experiments is caused by the
large vertical bend of the proton trajectory in the dipoles
of the magnetic spectrometers. In first approximation,
the proton spin precesses in the dispersive (vertical) plane
by an angle χ = γκpθbend relative to the proton trajec-
tory, where γ2 = 1 + p2p/M

2
p is the proton’s relativistic

boost factor, κp is the proton’s anomalous magnetic mo-
ment, and θbend is the vertical trajectory bend angle. In
this idealized approximation, the proton spin does not
precess in the horizontal plane. The sensitivity of the
FPP asymmetry to Pℓ is maximized when |sinχ| = 1.
The central values of χ for the four kinematic settings of
GEp-II are given in Table I.
Because the central value of χ is close to 360◦ at

Q2 = 5.6 GeV2 and the range of χ accepted by the HRSL
is roughly 285◦ ≤ χ ≤ 390◦, the dominant cosϕ am-
plitude of the focal plane asymmetry, which is roughly
proportional to Pℓ sinχ, is reduced when averaged over
the full χ acceptance, as in the bottom panel of Figure

6 Fits with Fourier modes up to 4ϕ and a constant term found
that the coefficients of all terms other than cosϕ and sinϕ were
zero within statistical uncertainties.



10

6. However, the adverse impact of the unfavorable pre-
cession angle on the precision of the data is mitigated
by the large χ acceptance of the HRS and the fact that
Pℓ is quite large for the kinematics in question. The χ-
dependence of the asymmetry is accounted for by the
weighting of events in the unbinned maximum-likelihood
analysis described below, which optimizes the statistical
precision of the extraction without explicitly removing
events near χ = 360◦. Moreover, the χ and Q2 accep-
tances of the HRSL are only weakly correlated, so that
the range of Q2 contributing to the determination of R
is not strongly affected.

The presence of quadrupole magnets complicates the
spin transport calculation by introducing precession in
the horizontal (non-dispersive) plane, which mixes Pt

and Pℓ. The trajectory bend angle in the non-dispersive
plane is zero for the spectrometer central ray, but non-
zero for trajectories with angular and/or spatial devia-
tions from the HRS optical axis. Because of the strong
in-plane angle (θp) dependence of the cross section, the
acceptance-averaged horizontal precession angle is gen-
erally significantly non-zero. The quadrupole effects are
qualitatively characterized by the non-dispersive preces-
sion angle χφ ≡ γκpφbend, where φbend is the total tra-
jectory bend angle in the non-dispersive plane.

The spin transport calculation for the final analysis
was performed using COSY [34], a differential algebra-
based software library for charged particle optics and
other applications. Since each proton trajectory through
the HRS magnets is unique, the spin transport matrix
must be calculated for each event. Rather than per-
form a computationally expensive numerical integration
of the BMT equation for each proton trajectory, a poly-
nomial expansion of the forward spin transport matrix
up to fifth order in the proton trajectory angles, vertex
coordinates and momentum was fitted to a sample of
random test trajectories that were propagated through a
detailed layout of the HRS magnetic elements including
fringe fields. The coefficients of this polynomial expan-
sion were then used to calculate the spin rotation matrix
for each event. Unlike the optics matrices used for parti-
cle transport, which are independent of the HRS central
momentum setting due to the fixed central bend angle,
the spin transport matrix depends on the central momen-
tum setting because the precession frequency relative to
the proton trajectory is proportional to γ. Therefore, the
fitting procedure for the COSY matrices had to be car-
ried out separately for each Q2. The Taylor expansion
of the matrix elements in powers of the small deviations
from the central ray within the acceptance of the HRSL
converges quite rapidly to an accuracy better than the
spectrometer resolution.

Several coordinate rotations are involved in the cal-
culation of the spin transport matrix elements for each
event. First, the reaction plane coordinate system defines
Pt and Pℓ: Pℓ is directed along the recoiling proton’s mo-
mentum and Pt is transverse to the proton momentum
but parallel to the scattering plane, in the direction of de-

creasing θp. A rotation is applied from the reaction plane
to the fixed transport coordinate system in which the z-
axis is along the HRS optical axis, the x-axis points along
the dispersive plane in the direction of increasing parti-
cle momentum (vertically downward), and the y-axis is
chosen as ŷ = ẑ× x̂ so that (x̂, ŷ, ẑ) forms a right-handed
Cartesian coordinate system. The COSY calculations are
performed in this fixed coordinate system. After apply-
ing the COSY rotation, which transports the spin from
the target to the focal plane in transport coordinates, a
final rotation is applied to express the rotated spin vec-
tor in the comoving coordinates of the proton trajectory
at the focal plane, in which the z axis is along the pro-
ton momentum, the y axis is chosen perpendicular to the
proton momentum and parallel to the yz plane of the
transport coordinate system, and the x axis is chosen as
x̂ = ŷ × ẑ. The definition of the x and y axes of the co-
moving coordinate system at the focal plane is arbitrary
as long as it is applied consistently with the other coordi-
nate systems involved. In the original analysis of GEp-II
[2, 29], the azimuthal FPP scattering angle ϕ was mea-
sured counterclockwise from the y axis toward the x axis,
as viewed along the z axis. This convention is also used
in the present work, but it is worth noting that a different
convention was used in the analysis of the GEp-III [25]
and GEp-2γ [26] experiments, in which ϕ was measured
clockwise from the x axis toward the y axis.
The observables Pt, Pℓ, and R were extracted from

the data using an unbinned maximum-likelihood method.
Up to an overall normalization constant independent of
Pt and Pℓ, the likelihood function is given by

L(Pt, Pℓ) =

Nevent
∏

i=1

1

2π

[

1 + λ0(ϕi) +

hiPeA
(i)
y

(

(S
(i)
xt Pt + S

(i)
xℓ Pℓ) cosϕi−

(S
(i)
yt Pt + S

(i)
yℓ Pℓ) sinϕi

)

]

, (5)

where λ0 represents the sum of all false asymmetry terms,
hi and Pe are the beam helicity and polarization, re-

spectively, A
(i)
y is the analyzing power, and the S

(i)
jk with

j = x, y and k = t, ℓ are the spin transport matrix el-
ements. The values of Pt and Pℓ extracted by maxi-
mizing the likelihood function (5) correspond to those of
equations (1) in the case Pe = 1, i.e., the beam is 100%
polarized. Converting the product over all events into
a sum by taking the logarithm and keeping only terms
up to second order in the Taylor-expansion7 of the loga-
rithm (ln(1 + x) = x− x2/2+Ox3, where x corresponds
to the asymmetry) reduces the coupled, nonlinear system

7 The maximum truncation error in the expansion of the loga-
rithm for x = 0.1, an upper limit corresponding to the largest
ϑ-dependent asymmetries observed in the GEp-II data, is ap-
proximately 0.3% (relative).
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of partial differential equations to a linear system of alge-
braic equations for the polarization transfer components:






(

λ
(i)
t

)2

λ
(i)
t λ

(i)
ℓ

λ
(i)
t λ

(i)
ℓ

(

λ
(i)
ℓ

)2







(

Pt

Pℓ

)

=

(

λ
(i)
t (1− λ

(i)
0 )

λ
(i)
ℓ (1− λ

(i)
0 )

)

,(6)

in which a sum over all events (
∑Nevent

i=1 ) is implied, and
the coefficients λt and λℓ are defined for the ith event as

λ
(i)
t ≡ hiPeA

(i)
y

(

S
(i)
xt cosϕi − S

(i)
yt sinϕi

)

λ
(i)
ℓ ≡ hiPeA

(i)
y

(

S
(i)
xℓ cosϕi − S

(i)
yℓ sinϕi

)

. (7)

Equation (6) can be written as a matrix equation
MP = b, where M is the 2× 2 matrix of sums multiply-
ing the vectorP of polarization transfer components, and
b is the vector of sums on the right-hand-side of (6). The
solution of this equation is P = M−1

b, and the standard
statistical variances in Pt and Pℓ are obtained from the
diagonal elements of the covariance matrix M−1. The
corresponding statistical error in R = µpG

p
E/G

p
M is ob-

tained by appropriate error propagation through equa-
tion (1). The kinematic factor in equation (1) is calcu-
lated for each event from the reconstructed kinematics,
and is averaged over all events in the calculation of R.
Since the reconstruction of the kinematics is not unique
and can be fixed by choosing any two of Ee, E

′
e, θe, pp

and θp, the choice was made to use the quantities mea-
sured with the highest precision, namely pp and Ee, to
calculate Q2 and ǫ for each event. The kinematic fac-
tor

√

τ(1 + ǫ)/2ǫ is known to a much better accuracy
than the statistical and systematic accuracy of Pt/Pℓ and
therefore makes a negligible contribution to the total un-
certainty.
It is worth remarking that “bin centering” effects due

to the finite Q2 and ǫ acceptance within each data point
are essentially negligible, since the Q2 acceptance is
small compared to the magnitude of Q2. The differ-
ence between the average value of the kinematic factor
√

τ(1 + ǫ)/2ǫ and its value calculated at the average Q2

is negligible compared to the uncertainty in the ratio
Pt/Pℓ. Furthermore, both the observed and expected8

variations of Pt, Pℓ and R within the acceptance of each
data point are small compared to their statistical un-
certainties. Therefore, all data from each Q2 point are
combined into a single result quoted at the average Q2.
The forward spin transport matrix depends on all pa-

rameters of the scattered proton trajectory before it en-
ters the HRSL. Since the expected variation of R within
the acceptance of each data point is small, any anoma-
lous dependence of the extracted R on the reconstructed
proton trajectory parameters is a signature of problems

8 Expected variations are based on the best current knowledge of
the Q2 dependence of Gp

E
/Gp

M
.
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FIG. 7. Dependence of extracted R = µpG
p
E/G

p
M values on

the reconstructed proton trajectory parameters at Q2 = 4.8
GeV2: θtgt (φtgt) is the proton trajectory angle relative to the
HRS optical axis in the dispersive (non-dispersive) plane, ytgt
is the position of the interaction vertex in spectrometer coor-
dinates (see text for details), and δ is the percentage deviation
of the proton momentum from the central HRS momentum
setting. In each panel, the data are integrated over the other
three variables.

with the spin transport calculation. Conversely, the ab-
sence of anomalous dependence serves as a powerful data
quality check. Figure 7 shows the dependence of R at
Q2 = 4.8 GeV2, extracted using equation (6), on all four
proton trajectory parameters that enter the spin trans-
port calculation. These include the trajectory angles
θtgt = tan−1(dx/dz) and φtgt = tan−1(dy/dz) relative
to the HRS optical axis, the vertex coordinate ytgt, de-
fined as the horizontal position of the intersection of the
proton trajectory with the plane normal to the HRS opti-
cal axis containing the origin9, and δ ≡ 100×(p−p0)/p0,
the percentage deviation of the measured proton momen-
tum from the HRS central momentum setting. There is
no evidence for a dependence of R on any of the variables
involved in the precession calculation, indicating the ex-
cellent quality of the COSY model. Linear and quadratic
fits to the individual dependencies were also performed,
and all non-constant terms included in the fits were found
to be consistent with zero.

9 Assuming that the HRSL points at the origin of Hall A, ytgt is
related to the position zvtx of the interaction point along the
beamline by ytgt = −zvtx (sinΘp + cosΘp tanφtgt), where Θp

is the HRS central angle (given as θp in Table I).
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polar scattering angle ϑ for the three highest Q2 values of
GEp-II. The constant behavior of R confirms the cancellation
of Ay in the ratio Pt/Pℓ.

3. Analyzing Power Calibration

The ~p + CH2 analyzing power relating the size of the
measured asymmetry to the proton polarization depends
on the initial proton momentum and the scattering angle
ϑ. Given the relatively small momentum acceptance of
the HRS, the p-dependence of Ay within the acceptance
of each Q2 point is much weaker than the very strong ϑ
dependence, and can be neglected as a first approxima-
tion. Dedicated measurements of Ay [28] at and above
the momentum range of the GEp-II experiment were per-
formed prior to the GEp-III experiment. However, pre-
cise independent knowledge of Ay is not required in the
analysis because of the self-calibrating nature of elastic
ep scattering, explained below.

Provided that the effective ϑ acceptance is ϕ-
independent, the analyzing power cancels in the ratio
Pt/Pℓ from which the form factor ratio R is extracted,
implying that the result for R is independent of Ay. Uni-
form ϑ acceptance is guaranteed by applying a “cone
test” in the selection of FPP events, which requires that
the projection to the rearmost FPP detector plane of a
track originating at the reconstructed ~p+CH2 scattering
vertex zclose at a polar angle ϑ falls within the active
detector area for all azimuthal angles ϕ. Moreover, the
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FIG. 9. (color online) Top panel: extracted analyzing power
as a function of p sinϑ, where p is the proton momentum inci-
dent on CH2 (corrected event-by-event for energy loss in CH2

up to the reconstructed scattering vertex), using the Pe values
of Table I, for all four Q2 values of the GEp-II experiment.
Curves are fits to the data (see text for details). Bottom
panel: maximum analyzing power vs. 1/p0 in GeV−1, where
p0 is the central proton momentum, for the four Q2 points.
Error bars in Ay and Amax

y values are statistical only. See
Supplemental Material at [35] for data tables with numerical
Ay and Amax

y results.

cancellation can be verified by binning the results in ϑ
and checking the constancy of R ∝ Pt/Pℓ as a function
of ϑ. Figure 8 shows the ϑ dependence of R for the three
highest Q2 points of GEp-II. At each Q2, a constant fit
to the data gives a good χ2 and no systematic trends are
observed.
The fact that Pt and Pℓ depend only on R and kine-

matic factors implies that the product PeAy can be ex-
tracted by comparing the measured asymmetries PeAyPt

and PeAyPℓ to the values of Pt and Pℓ obtained from
equation (1). Combined with the measurements of Pe to
within an overall accuracy of ±3% by Möller and Comp-
ton polarimetery, Ay was directly extracted from the data
of this experiment. The p and ϑ dependences of Ay thus
obtained were then used in equation (6) to improve the
statistical precision of the form factor ratio extraction by
weighting events according to their analyzing power.
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Q2 (GeV2) p0T (GeV) α β
3.5 0.030 ± 0.008 0.89± 0.06 1.19 ± 0.10
4.0 0.031 ± 0.003 0.88± 0.03 0.95 ± 0.04
4.8 0.029 ± 0.005 1.02± 0.04 1.03 ± 0.05
5.6 0.038 ± 0.011 1.14± 0.09 1.12 ± 0.11

Q2 (GeV2) b χ2/n.d.f. Amax
y

3.5 3.51 ± 0.15 1.23 0.149 ± 0.005
4.0 3.28 ± 0.06 1.22 0.123 ± 0.003
4.8 3.44 ± 0.06 1.30 0.109 ± 0.002
5.6 3.67 ± 0.15 2.02 0.099 ± 0.004

TABLE II. Ay fit results. Parametrization is Ay(pT ) =
(

pT − p0T
)α

e−b(pT −p0T )
β

. The uncertainty in Amax
y was cal-

culated from the full covariance matrix of the fit result.

Figure 9 shows the measured Ay as a function of the
“transverse momentum” pT ≡ p sinϑ for each Q2 point,
where p is the incident proton momentum corrected for
energy loss in CH2 up to the reconstructed scattering ver-
tex, illustrating the approximate scaling of the angular
distribution of Ay with momentum. The results shown
in Figure 9 are in fairly good agreement with the unpub-
lished results from the original analysis in [29], despite us-
ing the more restrictive elastic event selection cuts of the
present work. This is due in part to the fact that the sen-
sitivity of Pℓ, from which Ay is primarily determined, to
r = Gp

E/G
p
M is rather weak (see equation (1)). Nonethe-

less, for the three highest Q2 points, the improved sup-
pression of the background in this analysis leads to a
slight systematic increase in Ay , since the asymmetry of
the background included in the original analysis partially
cancels that of the signal. Ay rises rapidly from zero in
the region dominated by Coulomb scattering to a maxi-
mum at pT ≈ 0.3 GeV and then tapers off to nearly zero
beyond about 1.5 GeV. The measured angular distribu-
tion at each Q2 was fitted using a simple parametrization

Ay(pT ) = (pT − p0T )
αe−b(pT−p0

T )β , where p0T , α, b and
β are adjustable parameters. This parametrization in-
corporates the main features of the angular distribution
with sensible limiting behavior and is sufficiently flexible
to give a good description of the data. The fit results
for each Q2 are given in Table II. The quality of the
fit was improved by including the zero offset p0T , as the
data seem to prefer a vanishing Ay at finite p0T ≈ 0.03
GeV, independent of Q2. For pT < p0T , Ay = 0 was
assumed. The results for the exponents α and β are
essentially compatible with the product of a linear rise
and an exponential decay. An alternate parametrization
which fixes α = 1 and β = 1 and adds an overall nor-
malization constant as a free parameter in addition to
the slope parameter b does not describe the data as well
as the chosen parametrization in which α and β are free
parameters but the overall normalization is fixed. The
amplitude of the measured Ay distribution, as measured
by its maximum value, scales approximately with 1/p,
as shown in the bottom panel of Figure 9. Notably, the
intercept of the linear fit to the 1/p dependence of Amax

y

is compatible with zero, suggesting that the analyzing
power for ~p+CH2 scattering vanishes for asymptotically
large proton momenta, rather than crossing zero at a fi-
nite momentum. The fitted curves shown in Figure 9
were used to describe Ay(pT ) in the analysis.
The observed proportionality of Ay to 1/p allows the

momentum dependence of Ay to be accounted for in the
analysis by simply scaling its value for each event by a
factor p0/p, where p0 is the central proton momentum
and p is the proton momentum for the event in ques-
tion10. This is because the fitted Ay(pT ) curve, which
is averaged over the ±5% momentum bite of the HRS
at each Q2, essentially gives Ay(p0, pT ), where p0 is the
central momentum. Assuming that the 1/p slope of Ay

is the same at any pT ; i.e., assuming a factorized form
Ay(p, pT ) = C(pT )/p, the ratio of Ay(p, pT ) to its known
value Ay(p0, pT ) at a reference momentum p0 is given by
p0/p, regardless of C(pT ). While the observed shape of
the pT dependence of Ay is approximately momentum-
independent for the three higher Q2 points, the pT de-
pendence of Ay at Q2 = 3.5 GeV2 is slightly different,
with a larger maximum value than suggested by a lin-
ear extrapolation from the higher-Q2 data and a faster
falloff at large pT . A plausible, but unproven explana-
tion for the difference in behavior is that the thicker 100
cm analyzer used for the three highest-Q2 measurements
smears out the pT distribution of both the efficiency and
the analyzing power of the FPP relative to the thinner
58 cm analyzer used for the measurement at Q2 = 3.5
GeV2. This observation does not, however, invalidate
the p0/p scaling of Ay in the analysis, because the data
from the three higher-Q2 points, as well as data from
other experiments [1, 28], show that the 1/p scaling is
respected for any given FPP configuration, though the
details of Ay(pT ) may differ slightly between different
configurations. In any case, the value of Ay assigned in
the analysis is never changed by more than ±5% for any
individual event, so the actual effect of this prescription
on the relative weighting of events is rather small.
The description of Ay(p, ϑ) in the present reanalysis

differs slightly from that of the original analysis. In this
reanalysis, Ay(p, ϑ) is assigned to each event based on the
smooth parametrization of Ay(pT ) shown in the curves
of Figure 9, which describe the data very well, and an
overall 1/p scaling. The original analysis, on the other
hand, neglected the momentum dependence of Ay and
assigned Ay(ϑ) to each event based on the calibration
results in discrete ϑ bins. Since Ay cancels in the ra-
tio Pt/Pℓ, its description only matters to the extent that
it optimizes the statistical precision of the extraction.
Different descriptions of Ay(p, ϑ) correspond to different
event weights in the analysis, leading to slight differences

10 For this purpose, the central momentum p0 was corrected for
energy loss in half the thickness of CH2, while the momentum p
for the event in question was corrected for energy loss up to the
reconstructed scattering vertex.
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in the results for Pt, Pℓ and R reflecting statistical fluc-
tuations of the data as a function of p and ϑ. While
these differences are always well within the statistical
uncertainty of the combined data, better descriptions of
Ay(p, ϑ) naturally lead to better overall results.

4. False Asymmetries

Consistent with the original analysis, no false asym-
metry corrections were applied in the present work; i.e.,
λ0 = 0 was assumed in equations (5) and (6). “Weighted
sum” estimators, as defined in [36], can be constructed for
the focal plane asymmetries AFPP

y ≡ −PeAyP
FPP
y and

AFPP
x ≡ PeAyP

FPP
x , equivalent to equation (6) in the

absence of precession effects. Including false asymmetry
terms up to 2ϕ, it can be shown that the weighted-sum
estimators ÂFPP

x and ÂFPP
y for the focal plane asymme-

tries are given to second order in the false and physical
asymmetry terms by

ÂFPP
x = AFPP

x

(

1− c2
2

)

−AFPP
y

s2
2

ÂFPP
y = −s2

2
AFPP

x +AFPP
y

(

1 +
c2
2

)

, (8)

where c2 and s2 are the false asymmetries as in equa-
tion (4). Only the 2ϕ Fourier moments of the false
asymmetry contribute at this order. The cos(2ϕ) false
asymmetry moment induces a “diagonal” correction to
each physical asymmetry term proportional to the asym-
metry itself, while the sin(2ϕ) false asymmetry moment
induces an “off-diagonal” correction to AFPP

x (AFPP
y )

proportional to AFPP
y (AFPP

x ).
Fourier analysis of the helicity sum distribution n+ +

n− showed that the acceptance-averaged magnitude of
c2 and s2 did not exceed 2.5× 10−3 at any Q2, and nei-
ther term exceeded 1% at any ϑ within the useful range.
The possible effect of c2 on the “diagonal” terms is there-
fore at the 10−3 (relative) level, while the “off-diagonal”
correction is at the 10−5 level (absolute) for the small
AFPP

y term, and even smaller for the larger AFPP
x term.

Compared to both the size and statistical uncertainty in
the asymmetries (see Fig. 6), and the systematic uncer-
tainties in Pt and Pℓ resulting from the spin transport
calculation, such corrections are completely negligible.
This is in contrast to the GEp-III and GEp-2γ analyses,
in which a sizeable cos(2ϕ) false asymmetry in the Hall
C FPP induced a correction that, while small, made a
non-negligible contribution to the total systematic un-
certainty.

C. Background Estimation and Subtraction

From Figure 5, two qualitative features of the data
are obvious. First, the non-elastic background before ap-
plying two-body correlation cuts is substantial. Second,
examination of the ∆x and ∆y spectra before and after

applying the δp cut reveals that the δp cut provides signif-
icant additional background suppression power relative
to ∆x and ∆y cuts alone, with minimal reduction of the
elastic peak strength, implying that events outside the
δp cut are background-dominated, even after calorimeter
cuts.
As alluded to in sections II B and IIIA, the non-elastic

background for the measurements using a calorimeter for
electron detection consists predominantly of two reac-
tions, quasi-elastic Al(e, e′p) scattering in the cryocell en-
trance and exit windows, and π0 production initiated by
the flux of real Bremsstrahlung photons radiated along
the target material (photoproduction) as well as virtual
photons present in the electron beam independent of tar-
get thickness (electroproduction). Due to the kinematic
acceptance of the experiment and the Q2 dependence of
the respective cross sections, the contribution of π0p elec-
troproduction is mostly limited to “quasi-real” photons;
i.e., Q2 ≈ 0, and is practically indistinguishable from
real photoproduction. By detecting both scattered par-
ticles in coincidence, the two-body ep → ep kinemat-
ics are overdetermined, providing for a clean selection of
elastic events and a direct determination of the remain-
ing background from the data, with no external inputs,
using the sideband-fitting method described in section
III C 2 below. The main disadvantage of this approach
to background estimation is that it makes no reference
to the underlying physics of the signal and background.
For this reason, a Monte Carlo simulation of the experi-
ment was carried out to confirm the conclusions regarding
backgrounds obtained directly from the data. However,
the results of the simulation were not used in any way as
input to the final analysis.

1. Monte Carlo Simulation

The simulation code is the same as that used in the
data analysis of [5], which already includes a realistic
model of the HRSL. Modifications of the code used in
the analysis of Ref. [5] to reproduce non-Gaussian tails
of the HRS resolution, caused by multiple scattering and
other effects, were not included here. The only signifi-
cant addition to the code was a description of the accep-
tance and resolution of the GEp-II calorimeter. Because
the 15 × 15 cm2 cell size of the GEp-II calorimeter is
large compared to the Moliére radius of lead-glass, coor-
dinate reconstruction essentially consists of assigning the
shower coordinates to the center of the cell with maxi-
mum energy deposition. Furthermore, the discriminator
threshold applied to form the timing signal was roughly
20% of the elastically scattered electron energy, meaning
that signals below this amplitude would be rejected in
software by the timing cut. The electron energy and co-
ordinates were thus defined by the signal in a single block
in the overwhelming majority (& 90%) of elastic events.
Physics ingredients of the simulation include cross sec-
tion models for 1H(e, e′p), Al(e, e′p) and 1H(γ, π0p) reac-
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FIG. 10. (color online) Contributions to the δp distribution at
Q2 = 4.8 GeV2 estimated from the Monte Carlo simulation.
Monte Carlo distributions are shown for elastic ep (empty
circles), γp → π0p (empty triangles), and quasi-elastic (e, e′p)
in the target windows (empty inverted triangles). The sum of
all Monte Carlo contributions (empty squares) is compared to
the data of Figure 5(c) (solid inverted triangles). Monte Carlo
and data distributions are obtained after applying ∆x and ∆y
(calorimeter) cuts. Black vertical lines show the δp cut region
of the final analysis. Uncertainties shown are statistical only.
See text for details.

tions, a realistic calculation of the Bremsstrahlung flux
for π0 photoproduction, and event-by-event radiative cor-
rections to the (e, e′p) cross sections following the ap-
proach of [37], providing for a rigorous deconvolution of
the signal and background contributions to the ∆x, ∆y,
and δp distributions for arbitrary cuts. Another reaction
that can contribute to the background is Real Compton
Scattering γp → γp (RCS), whose end-point kinemat-
ics are identical to ep → ep. However, the cross section
for this reaction is generally much smaller than for π0

photoproduction [38, 39], and was neglected.

Figure 10 shows the simulated δp distribution in the
vicinity of the elastic peak for each reaction considered,
after applying ∆x and ∆y cuts. As described below, the
simulated target window yield was normalized to match
the window yield obtained from the data in the super-
elastic (δp < 0) region. Then, the overall normaliza-
tion constants for π0p and elastic ep events were fitted
simultaneously to minimize the statistics-weighted sum
of squared differences between the data and the sum of
Monte Carlo yields. The agreement between data and
Monte Carlo is good, but not perfect, primarily because
non-Gaussian tails are not included in the simulated δp
resolution. Nonetheless, the δp distribution after cuts is
described to within ∼ 20% in the relevant δp range, with

the exception of disagreements of up to ∼ 40% in the δp
region from 20-40 MeV just above the elastic peak, which
is rather sensitive to non-Gaussian tails and the details
of the Bremsstrahlung spectrum and the π0 production
cross section near end-point. Since the purpose of the
simulation was to provide a qualitative illustration of the
physics of the signal and the background, and since the
background contamination and its polarization were de-
termined directly from the data for the final analysis, no
additional fine-tuning of the simulation was attempted.
Two key features of the simulation results deserve spe-

cial emphasis. First, the contribution of the ep radiative
tail in the inelastic region falls off too quickly to describe
the observed tail of the data. This is a consequence of
the ∆x cut, with ∆x calculated using the GEp-II method
[29]11. The background fraction exceeds 80% above 50
MeV and 90% above 75 MeV. The ep yield falls below
the π0p yield at ∼40 MeV and becomes negligible above
∼ 120 MeV, confirming the conclusion that the inelas-
tic region of the δp distribution is dominated by the π0p
background rather than the ep radiative tail. Second,
the target window contribution is vanishingly small com-
pared to the elastic and π0p contributions in the entire δp
range of interest. More specifically, in the region below π0

threshold, the window contribution is the dominant com-
ponent of the background, but is too small relative to the
elastic yield to affect the measured asymmetry, while in
the region where the contamination is sufficiently large
to affect the asymmetry, the π0 contribution is domi-
nant. Moreover, the proton recoil polarization in quasi-
elastic Al(~e, e′~p) scattering at high Q2 should be similar,
in principle, to that in elastic ~ep → e~p, since the for-
mer process is simply the latter process embedded in a
nucleus, whereas the spin structure of ~γp → π0~p can be
(and is) dramatically different.
The only kinematically allowed reactions producing

protons in the super-elastic region are quasi-elastic
Al(e, e′p) and other reactions occurring on the Al nu-
clei in the cryocell windows, in which the initial Fermi
motion of the struck proton can lead to proton knockout
with pp > pp(θp). However, a significant fraction of the
yield in the super-elastic region actually comes from hy-
drogen, because the combined thickness of the entrance
and exit windows of the Hall A cryotarget [27] in g cm−2

is only about 4% of the liquid hydrogen thickness, and the
non-Gaussian tails of the δp resolution smear a fraction
of hydrogen events into the unphysical δp region. The
reconstructed vertex distribution in this region exhibits
narrow peaks at the window locations and a smooth hy-
drogen background extending over the full target length.
To estimate the yield from the target windows, the vertex
z distribution was plotted as a function of δp in the super-
elastic region for events failing the ∆x and ∆y cuts, in
order to enhance the very small window “signal” relative

11 The ∆x cut suppresses the ep radiative tail even more strongly
when ∆x is calculated using the GEp-III method.
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to the large hydrogen elastic “background”. For each
of six δp bins in −180 ≤ δp (MeV) ≤ 0, a polynomial
fit to the smooth hydrogen background was subtracted
from the vertex z distribution, leaving only the window
peaks. For each window, the simulated δp distribution
with identical cuts applied was normalized to match the
background-subtracted window yield obtained from the
data. The resulting normalization factor was then ap-
plied to the simulated δp distribution of window events
passing the ∆x and ∆y cuts, leading to the contribution
shown in Fig. 10.
Given the vertex resolution of the HRS, a vertex cut

chosen to exclude the windows at the 3σ level can further
suppress the very small window background, at the ex-
pense of a ∼20% reduction in elastic ep statistics. How-
ever, the aforementioned analysis of the window yield
suggests that even when the full target length is included,
the fraction of the total yield from the windows is negli-
gible after all cuts are applied, making additional ver-
tex cuts unnecessary. This conclusion is further sup-
ported by comparing the δp distributions with and with-
out such a vertex cut, and by comparing the δp spectra
for the Q2 ≥ 4.0 GeV2 settings to the δp spectrum of the
Q2 = 3.5 GeV2 setting, for which the precise measure-
ment of the electron kinematics with a magnetic spec-
trometer provides an essentially background-free selec-
tion of elastic events, as discussed in Section IIA 2. Based
on these considerations, the window contamination was
deemed negligible, and the study of the background con-
tamination focused mainly on the inelastic (δp > 0) re-
gion.
The background subtraction procedure used for the fi-

nal analysis is agnostic regarding the reaction mechanism
responsible for the contamination, with the caveat that
the conclusion of negligible window contamination is used
to justify the assumption of constant background polar-
ization, which reduces the statistical uncertainty in the
background correction. In summary, the simulation pro-
vides a qualitative description of the data that supports
the conclusions of this analysis regarding backgrounds.
Averaged over the final δp cut region, the fractional
background contamination obtained from the simulation
agrees with that obtained directly from the data at a level
similar to its systematic uncertainty, which is determined
by the data.

2. Sideband subtraction

For the final analysis, the fractional background con-
tamination in the sample of elastic ep events selected by
a given set of cuts was estimated by fitting the tails of
the ∆x and ∆y distributions on either side of the elastic
peak and extrapolating into the peak region, as shown in
Figures 5(a) and 5(b). This approach to background esti-
mation implies two assumptions. First, the contribution
of elastic scattering to the tails of the ∆x and ∆y distri-
butions is assumed to be negligible for values of ∆x and

∆y sufficiently far away from the elastic peak. Second,
the background is assumed to have a smooth distribu-
tion under the elastic peak, so that joining the tails with
a smooth interpolating function is a good approximation
to the true background shape. The first assumption can
in principle be violated by the ep radiative tail and by
non-Gaussian smearing effects in the HRS angle and mo-
mentum reconstruction. Radiation redistributes elastic
ep events away from the elastic peak toward negative ∆x
values, but does not markedly affect the ∆y distribution
of elastic events, since ∆y reflects the extent to which the
two detected particles are non-coplanar, and the copla-
narity of outgoing particles is not strongly affected by
radiation. Furthermore, the δp cut suppresses the radia-
tive tail of the ∆x distribution. Non-Gaussian smearing
effects do not contribute a significant fraction of events in
the tails except when the background contribution is very
small. The second assumption (smooth background dis-
tribution) was confirmed by inspecting the correlations
between ∆x and ∆y; i.e., by plotting ∆x (∆y) for ∆y
(∆x) well outside the elastic peak. This assumption was
also supported by the simulations described in section
III C 1. Although the simulation does not include the
contribution of random coincidences, the contamination
of the data by random coincidences is negligible after
timing and kinematic cuts.

In the following discussion, the fractional background
contamination f is defined as f ≡ B/(S + B), where B
is the number of background events and S is the num-
ber of signal events; i.e., f is the ratio of the background
yield to the total yield. The value of f and its system-
atic uncertainty ∆f were estimated using a conserva-
tive approach involving a total of twelve different fits.
The tails of the ∆x and ∆y distributions, obtained after
applying all other cuts, were each fitted with Gaussian
and polynomial background shapes, for three different
sizes of the elastic peak region excluded from the fit (two
spectra × two parametrizations × three sideband ranges
= twelve fits). The average fit result was taken as the
value of f , while the rms deviation of the fit result from
the mean was taken as the systematic uncertainty ∆f .
The variations among the different fit results reflect the
level of agreement (or disagreement) among the differ-
ent spectra, assumed background lineshapes, and regions
excluded from the fit.

A central conclusion of the present reanalysis is that
the background was underestimated in the original anal-
ysis. Using the polynomial sideband fitting method, the
estimated average values of f for the cuts of the original
analysis, in which no δp cut was applied, are 1.6%, 2.8%
and 5.3% for Q2 = 4.0, 4.8 and 5.6 GeV2, respectively.
Compared to the estimates reported in [29] for the origi-
nal analysis, these estimates are higher by factors of 2.3,
7.0 and 3.8, respectively. Even at the few percent level,
neglected or underestimated inelastic contamination can
have a non-negligible effect on the measured asymme-
tries if the polarization of the background differs strongly
enough from that of the signal, as in this case.
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With the addition of the δp cut, the present analy-
sis maximally exploits the two-body kinematic correla-
tions of both detected particles. In the inelastic region,
π0 production dominates. In terms of δp, the π0 pro-
duction “threshold” is very close to the elastic peak.
When reconstructed assuming elastic scattering, protons
from γp → π0p at the Bremsstrahlung end-point have
δp = 7.4, 8.1 and 8.8 MeV for Q2 = 4.0, 4.8 and 5.6
GeV2, respectively. When compared to the δp resolution
of ∼ 5 MeV, there is clearly substantial overlap of the
π0p kinematic phase space with the elastic peak, as in
the example of Figure 10. As Q2 increases at a given
beam energy, the π0p cross section becomes large com-
pared to the ep cross section.
The effect of underestimating the π0 background on

the form factor ratio extraction is illustrated in Figure 11,
which shows Pt, Pℓ and f as a function of δp, for events
identified as elastic in the original analysis, at Q2 = 4.8
GeV2. The data were divided into eight δp bins, includ-
ing six equal-statistics bins inside the cut region of Fig-
ure 5(c), where f is very small (−7.3 ≤ δp ≤ 22.7 MeV),
a seventh bin with a significant fraction of both signal
and background (22.7 ≤ δp ≤ 60 MeV), and an eighth
bin dominated by background (δp > 60 MeV). Because
the ∆x and ∆y distributions in the last δp bin showed
no obvious signature of an elastic peak, f = 1 was as-
sumed for this bin, consistent with the simulation results
shown in Figure 10. Meaningful background estimation
and subtraction were not possible for this bin. As δp
increases, the raw transferred polarization components
P obs
t and P obs

ℓ evolve from their roughly constant values
in the signal-dominated region to values that are consis-
tent with the background polarization components P inel

t

and P inel
ℓ . The δp-integrated results for the background

polarization, extracted from events rejected by the cuts
of Figure 5, are plotted at an arbitrary δp = 115 MeV
for comparison.
The background polarization components were ob-

tained by applying anti-cuts twice as wide as the final
elastic event selection cuts; i.e., ∆x(∆y) was required to
be at least 24(32) cm away from the midpoint between
half-maxima of the peak. Events selected by this anti-
cut are background-dominated and have negligible elas-
tic contamination. In order to study the δp dependence
of P inel

i , no cut was applied to δp in the extraction of
the background polarization. No statistically significant
δp dependence of the background polarization was ob-
served, consistent with dominance of the background by
π0p events. Therefore, P inel

i was assumed constant in
the background subtraction procedure.
In Figure 11, the signal polarization P el

i (i = t, ℓ) was
obtained from P obs

i in the first seven bins using the sub-
traction

P el
i =

P obs
i − fP inel

i

1− f
. (9)

By comparing the weighted average of all uncorrected
data in Figure 11 to the weighted average of the six
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(filled squares) and P obs
ℓ (filled circles) approach the back-

ground polarizations P inel
t (filled triangle) and P inel

ℓ (empty
triangle) at large δp. Corrected values P el

t (empty squares)
and P el

ℓ (empty circles) are offset in δp for clarity. Dashed and
solid horizontal lines are weighted averages of the corrected
and raw data, respectively. Bottom panel: δp dependence of
the fractional background contamination f . Uncertainties in
f are systematics-dominated, while the uncertainties in the
polarization components are statistics-dominated. See text
for details.

corrected data points inside the cut region, it is found
that the background contamination of the sample with
no δp cut induces relative systematic shifts of |∆Pt/Pt| =
15.8% and |∆Pℓ/Pℓ| = 2.4%. From Figure 11, it is clear
that the tails of the δp distribution outside the cut region
of Figure 5(c) contribute very little to the statistical pre-
cision of the measurement of Pt/Pℓ while causing a large
systematic effect. For the final analysis, rather than cor-
recting the results bin-by-bin in δp using equation (9),
as in Figure 11, the background fraction f and polariza-
tion P inel

i were included at the individual event level in
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equation (6) by making the following replacements:

λ
(i)
t,ℓ → λ

(i)
t,ℓ(1− fi)

(

1− λ
(i)
0

)

→
(

1− λ
(i)
0 − λ

(i)
inel

)

, (10)

where fi is the background contamination as a function of

δp(i) and λ
(i)
inel, representing the background asymmetry,

is given by

λ
(i)
inel ≡ fihiPeA

(i)
y

[(

S
(i)
xt cosϕi − S

(i)
yt sinϕi

)

P inel
t +

(

S
(i)
xℓ cosϕi − S

(i)
yℓ sinϕi

)

P inel
ℓ

]

. (11)

This method is functionally equivalent to correcting the
results “after the fact” using equation (9). It also simpli-
fies the evaluation of systematic uncertainties associated
with the background correction, which were obtained by
varying f , P inel

t and P inel
ℓ within their uncertainties and

observing the shift in R.

D. Systematic Uncertainties

As a result of the cancellation of the beam polarization
and analyzing power in the ratio Pt/Pℓ and the cancel-
lation of the FPP instrumental asymmetry by the beam
helicity reversal, there are few significant sources of sys-
tematic uncertainty in the results of this experiment (as
is also the case in the GEp-I, GEp-III and GEp-2γ exper-
iments). The dominant source of systematic uncertainty
is the spin transport calculation. Since the procedure
for the evaluation of systematic uncertainties associated
with this calculation is documented at length in Refs.
[1, 29, 40, 41], only a brief summary of the studies and
the conclusions is given here.
The range of non-dispersive plane trajectory bend

angles φbend accepted by the HRS is roughly ±60
mrad, independent of momentum. The maximum ac-
cepted range of the non-dispersive plane precession an-
gle χφ = γκpφbend is roughly ±30◦ at the highest Q2

of 5.6 GeV2. To first order in χφ, the ratio Pt/Pℓ is
given in terms of the focal plane ratio PFPP

y /PFPP
x

by Pt/Pℓ ≈ χφ − sinχPFPP
y /PFPP

x . Because the non-
dispersive plane precession mixes Pt and Pℓ, the ratio
is highly sensitive to uncertainties in φbend. To first
order, an uncertainty ∆φbend leads to an uncertainty

∆R ≈
(

µp

√

τ(1 + ǫ)/2ǫ
)

γκp∆φbend in the extracted

form factor ratio. The error magnification factor multi-
plying ∆φbend grows as large as 33 at Q2 = 5.6 GeV2. To
manage the systematic uncertainty due to the precession
calculation, φbend must be known to very high accuracy.
On the other hand, since θbend only enters Pt/Pℓ through
the factor of sinχ multiplying PFPP

y /PFPP
x , and since

the reconstruction of θbend involves relatively small de-
viations about the 45◦ central bend angle, the accuracy
of Pt/Pℓ is far less sensitive to systematic errors in θbend
and pp.

The major sources of uncertainty in φbend are horizon-
tal misalignments and rotations of the three quadrupoles
relative to the HRSL optical axis defined by the dipole
magnet. In order to control the uncertainty in φbend to
the highest possible accuracy, dedicated studies of the
optical properties of HRSL in the non-dispersive plane
were performed. Electrons were scattered from a thin
carbon foil aligned with the HRSL optical axis, and a
special “sieve-slit” collimator was installed in front of
the entrance to HRSL before the first quadrupole mag-
net. The sieve-slit collimator, part of the standard equip-
ment of the HRSs, consists of a 5 mm thick stainless steel
sheet with a pattern of 49 holes (7 × 7), spaced 25 mm
apart vertically and 12.5 mm apart horizontally, used for
optics calibrations [27]. In the studies described here,
electrons passing through the central sieve hole aligned
with the HRS optical axis were selected. For a series of
deliberate mistunings of the HRS quadrupoles relative
to the nominal tune, the displacements in both position
and angle of the image of the central sieve hole at the
focal plane were observed. Combined with the known
first-order HRS optics coefficients describing the effects
of quadrupole misalignments and rotations, the informa-
tion gained from these studies placed a much more strin-
gent constraint on the misalignments than the nominal
accuracy of the quadrupole positions. By reducing the
uncertainty ∆φbend to ±0.3 mrad, the optical studies re-
duced the systematic uncertainty in R at Q2 = 5.6 GeV2,
where the result is most sensitive to φbend, to a level com-
parable with other contributions.

Additional model uncertainties in the precession calcu-
lation due to the field layout in COSY are more difficult
to quantify, but are typically smaller than the errors asso-
ciated with the accuracy of the inputs to the calculation;
i.e., the reconstructed proton kinematics. The COSY
model uncertainties were estimated by performing the
calculation in several different ways. For the final analy-
sis, the proton trajectory angles, momentum and vertex
coordinates, calculated using the standard HRS optics
matrix tuned to calibration data as described in [27], were
used to calculate the forward spin transport matrix, as
described in section III B 2. To estimate systematic un-
certainties, the calculation was also performed using the
same forward spin transport matrix, but the kinematics
were reconstructed using an alternate set of optics ma-
trix elements calculated by COSY. Finally, COSY was
used to calculate the expansion of the reverse spin trans-
port matrix, which was then inverted to obtain the for-
ward matrix elements that enter the likelihood function
of equation (5). A model systematic uncertainty was as-
signed based on the variations in the results among the
different methods, as described in [29].

Apart from the uncertainties associated with the non-
elastic background, which were underestimated by the
original analysis, the main additional source of uncer-
tainty is the accuracy of the scattering angle reconstruc-
tion in the FPP. Uncertainties associated with FPP re-
construction were minimized by a software alignment
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procedure using “straight-through” data obtained with
the CH2 analyzers removed. The systematic errors in R
due to the absolute accuracy in the determination of the
beam energy (δE/E ∼ 2 × 10−4) and the proton mo-
mentum (δp/p ∼ 4 × 10−4) [27], which mainly enter the

ratio R through the kinematic factor µp

√

τ(1 + ǫ)/2ǫ of
equation (1), are negligible compared to the precession-
related uncertainties.

The updated systematic uncertainties associated with
the background estimation and subtraction procedure are
very small as a result of the added δp cut, and are gener-
ally at the 10−3 level. The “Bckgr.” uncertainty in Table
III was obtained by varying f , P inel

t and P inel
ℓ within

their uncertainties, which are systematics-dominated for
f and statistics-dominated for P inel

i , and observing the
shift in R. The contributions from f and P inel

t are
comparable, while the contribution from P inel

ℓ is much
smaller.

The present analysis also examined the sensitivity of R
to variations in elastic event selection cuts. The analysis
was performed for various ∆x, ∆y and δp cut widths,
using both the GEp-II and GEp-III definitions of ∆x and
∆y (see section III A). The analysis was also performed
using the original polygon cut, supplemented by the new
δp cut. For consistency of background corrections, the
contamination was estimated separately for each case.
The rms variation of R due to cut variations is quoted
as the “Cuts” uncertainty of Table III. It is generally
larger than the “Bckgr.” uncertainty calculated using
the final cuts, and reflects fluctuations among slightly
different selections of events, not necessarily related to
the background. It is, however, much smaller than the
statistical uncertainty at each Q2.

The present reanalysis of the GEp-II data is identi-
cal to the original analysis in event reconstruction, spin
transport calculations, and all cuts other than ∆x, ∆y
and δp used to select elastic events. The only other mean-
ingful difference between the present reanalysis and the
original analysis is the improved description of the ana-
lyzing power discussed in section III B 3, which only af-
fects the results through slight modification of the p and
ϑ-dependent weighting of events. Therefore, aspects of
systematic uncertainty analysis other than elastic event
selection and background subtraction were not revisited.
These aspects of the analysis are documented at length
in [29].

Table III shows all known contributions to the sys-
tematic uncertainty in R at each Q2, including the po-
lar (ϑFPP ) and azimuthal (ϕFPP ) angle reconstruction
in the FPP, the dispersive (θbend) and non-dispersive
(φbend) trajectory bend angles, the COSY model uncer-
tainty (COSY), the non-elastic background contribution
(Bckgr.) and the cut sensitivity (Cuts). All contribu-
tions are added in quadrature to obtain the total system-
atic uncertainty. Uncertainties due to FPP instrumental
asymmetries are negligible as discussed in section III B.
In the final analysis of the GEp-II experiment, the total
accuracy of the results is statistics-limited, with system-

TABLE III. Total systematic uncertainty in R and its contri-
butions. See text for details.

Q2, GeV2 3.5 4.0 4.8 5.6
ϑFPP 1.4× 10−3 0.8× 10−3 1.4× 10−3 0.7× 10−3

ϕFPP 5.1× 10−3 6.3× 10−3 6.1× 10−3 2.9× 10−3

θbend 4.6× 10−3 0.1× 10−3 2.6× 10−3 4.3× 10−3

φbend 1.3× 10−3 1.1× 10−3 6.1× 10−3 12.3× 10−3

COSY 0.4× 10−3 0.4× 10−3 1.2× 10−3 12.7× 10−3

Bckgr. N. A. 0.9× 10−3 1.1× 10−3 1.2× 10−3

Cuts N. A. 5.4× 10−3 7.2× 10−3 3.9× 10−3

Total 7.0× 10−3 8.5× 10−3 11.7 × 10−3 18.9× 10−3

atic uncertainties at a much lower level.
As in the original publication [2], no radiative correc-

tions have been applied to the data presented here. Stan-
dard, model-independent radiative corrections to R were
calculated in [6] for kinematics very close to those of the
GEp-II experiment and found to be less than 1% (rel-
ative) for all four Q2 values. Though even 1% relative
corrections are much smaller than the statistical uncer-
tainties in the data, the calculations in [6] were performed
assuming a much wider “inelasticity” cut than that ef-
fected by the combination of cuts applied in the present
analysis, such that in reality, the standard radiative cor-
rections to the GEp-II data are even smaller, which jus-
tifies neglecting them here.

IV. RESULTS

A. Discussion of the Data

The final results of the GEp-II experiment are reported
in Table IV and presented in Figure 12. The values and
statistical uncertainties of P el

t and P el
ℓ presented in Ta-

ble IV (and Figure 11) are obtained from equation (6).
Because the analyzing power is calibrated using equation
(1), the extracted P el

t and P el
ℓ values are, by definition,

equal to those of equations (1), which depend only on
R and kinematic factors, regardless of the value of Pe

assumed in the analysis. For reference, the values of Pe

used in the analysis at each Q2 are shown in Table I.
These values are based on the average of all beam po-
larization measurements at a given setting. Because Pe

was stable at the few percent level throughout the du-
ration of each kinematic setting, a single Pe value was
assigned to all data taken at a given Q2. As presented,
the statistical uncertainties in P el

t and P el
ℓ correspond to

the uncertainties in the raw asymmetries measured by
the FPP, which are large compared to the corresponding
systematic uncertainties.
Pt and Pℓ can also be calculated from R and kine-

matic factors using equation (1). Neglecting the very
small covariance of Pt and Pℓ and the uncertainty in the
kinematic factors involved, the uncertainty in R is given
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TABLE IV. Final results of the GEp-II experiment.
〈

Q2
〉

is the acceptance-averaged Q2, while ∆Q2 is the half-width of the

total Q2 interval, which is centered at the nominal Q2. The raw (P obs
i ), background (P inel

i ) and corrected (P el
i ) polarization

transfer components and the raw form factor ratio R are presented with statistical uncertainties only. The background fraction
〈f〉 averaged over the final cut region is quoted with its systematic uncertainty ∆f . The final results for R = µpG

p
E/G

p
M

are quoted with statistical and systematic uncertainties. The data at Q2 = 3.5 GeV2 were not reanalyzed, and the quoted
result is identical to that of the original publication [2]. The originally published results [2] are quoted on the bottom line for
comparison.

Nominal Q2 (GeV2) 3.5 4.0 4.8 5.6
〈

Q2
〉

±∆Q2 (GeV2) 3.50 ± 0.23 3.98 ± 0.26 4.76± 0.30 5.56 ± 0.34
P obs
t ±∆P obs

t N. A. −0.108 ± 0.011 −0.094± 0.011 −0.070 ± 0.017
P obs
ℓ ±∆P obs

ℓ N. A. 0.683 ± 0.012 0.795 ± 0.013 0.886 ± 0.030
R±∆R (raw) N. A. 0.514 ± 0.055 0.445 ± 0.052 0.350 ± 0.085
〈f〉 ±∆f N. A. (0.30± 0.04)% (0.38± 0.06)% (0.47 ± 0.07)%
P inel
t ±∆P inel

t N. A. 0.116 ± 0.051 0.264 ± 0.038 0.128 ± 0.034
P inel
ℓ ±∆P inel

ℓ N. A. 0.224 ± 0.053 0.006 ± 0.049 0.278 ± 0.072

P el
t ±∆P el

t −0.118 ± 0.015 −0.109 ± 0.011 −0.096± 0.011 −0.071 ± 0.017
P el
ℓ ±∆P el

ℓ 0.616 ± 0.017 0.685 ± 0.012 0.799 ± 0.013 0.890 ± 0.030
R±∆Rstat ±∆Rsyst (final) 0.571 ± 0.072 ± 0.007 0.517 ± 0.055 ± 0.009 0.450 ± 0.052 ± 0.012 0.354 ± 0.085 ± 0.019
Pt ±∆Pt (equation (1))a −0.118 ± 0.014 −0.109 ± 0.011 −0.096± 0.011 −0.071 ± 0.017
Pℓ ±∆Pℓ (equation (1))a 0.616 ± 0.005 0.685 ± 0.003 0.799 ± 0.002 0.890 ± 0.002
R±∆Rstat ±∆Rsyst ([2]) 0.571 ± 0.072 ± 0.007 0.482 ± 0.052 ± 0.008 0.382 ± 0.053 ± 0.011 0.273 ± 0.087 ± 0.028

a These are the values of Pt and Pℓ calculated from equation (1), with uncertainties due solely to the uncertainty in R.

by (∆R/R)2 = (∆Pt/Pt)
2 + (∆Pℓ/Pℓ)

2. While the un-
certainties in Pt and Pℓ obtained from equation (6) are
similar, and ∆P el

ℓ is generally larger than ∆P el
t due to

the unfavorable precession angle, the uncertainty in R is
nevertheless dominated by the uncertainty in Pt, since
Pℓ is generally large compared to Pt. Due to the weak
sensitivity of Pℓ to R, the uncertainty in Pℓ calculated
from equation (1) is much smaller than the uncertainty
in Pℓ extracted from the FPP asymmetry. On the other
hand, since Pt is proportional to R and the relative un-
certainties in Pt and R are similar, the uncertainty in Pt

calculated from equation (1) is very similar to the uncer-
tainty in its extraction from the measured asymmetry.
Figure 12 shows the final results with the GEp-I

data [1], the originally published GEp-II data [2], the
GEp-III data [25], and the combined GEp-2γ result [26],
consisting of a weighted average of measurements of R
at three ǫ values for a fixed Q2 of 2.5 GeV2. The curves
illustrate the effect of the revised data on a global fit
using the Kelly parametrization [42] of Gp

E and Gp
M to

elastic ep cross section and polarization data, including
the GEp-III data [25]. The data selection and fit method
are detailed in [43]. The dashed “Old fit” curve uses the
original GEp-II results, while the solid “New fit” curve
replaces the three highest-Q2 points from GEp-II with
the results of the present reanalysis. The combined con-
tribution of the six highest-Q2 data points to the χ2 of
the “Old” global fit is 2.68. In the “New” fit, the same
χ2 contribution12 drops to 0.55, indicating a significant
improvement in the consistency of the data at high Q2.

12 In this context, the χ2 contribution of the six data points is

The noticeable systematic increase in the results for R
in the improved data analysis is mostly attributable to
the systematic effect of the background, underestimated
by the original analysis. Indeed, the added δp cut of the
present work suppresses the background contamination
to well below 1%, minimizing the associated correction
and its uncertainty. The most significant difference be-
tween the final and original results not attributable to
background or changes in elastic event selection cuts is
caused by the improved description of the FPP analyz-
ing power in the present analysis. In the original analysis,
the momentum dependence of the analyzing power was
neglected, and the data were divided into discrete bins
in the FPP polar scattering angle ϑ. In each bin, the
analyzing power was extracted from the measured asym-
metries using equation (1) as described in section III B 3.
Then, the analyzing power, which enters equation (5) as
a weight, was assigned to each event in a given ϑ bin
according to the extracted Ay result in that bin. This
method is approximately equivalent to analyzing the data
in bins of ϑ assuming Ay = 1, and then combining the
results of all ϑ bins in a weighted average to obtain the
final result.
In the present work, the final results were obtained

from a completely unbinned maximum-likelihood analy-
sis in which Ay(p, pT ) was described using the smooth
parametrization of the pT dependence presented in sec-
tion III B 3 and a global momentum scaling Ay ∝ 1/p,
leading to a slightly different relative weighting of events

defined as
∑6

i=1

(

Ri −Rfit(Q
2
i )
)2

/(∆Ri)
2; i.e., it is not nor-

malized by the number of data points.
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FIG. 12. (color) Polarization transfer data for Gp
E/G

p
M

from [1] (Jones00), [2] (Gayou02), [25] (Puckett10), [26]
(Meziane11) and the present work. Error bars are statistical.
The data of [2] are offset slightly in Q2 for clarity. System-
atic uncertainties for the present work and [25] are shown as
bands below the data. The inset shows a zoomed view of
the data near Q2 = 2.5 GeV2, demonstrating the excellent
agreement between high-precision data from Hall A [1] and
Hall C [26] at this Q2. Curves are global proton form factor
fits using the originally published GEp-II data [2] (Old fit)
and the present work (New fit), with standard 1σ point-wise
uncertainty bands. Both fits include the GEp-III data. The
linear fit of equation (2) is shown for comparison. See text
for details.

as a function of p and ϑ. At Q2 = 5.6 GeV2, where
the statistical uncertainty is large, roughly half the dif-
ference between the originally published result and the
final result is attributable to the different description of
Ay (with the other half coming from the background),
while at Q2 = 4.0 and 4.8 GeV2, the effect of the Ay

description is small and the difference is dominated by
the background effects. This observation can be under-
stood by examining the ϑ dependence of R in Figure 8
and the pT -dependence of Ay in Figure 9 at Q2 = 5.6
GeV2. A negative fluctuation of R in the ϑ bin near 11◦

coincides with a positive fluctuation of Ay in the pT bin
near 0.7 GeV. Assigning this value of Ay to all events in
this bin artificially overweights the corresponding nega-
tive statistical fluctuation in R, inducing a slight negative
bias to the result. Because this particular fluctuation is
relatively large, the effect of using a smooth parametriza-
tion of the analyzing power instead of a discretely binned
description is noticeable. This is in contrast to the two
lower-Q2 points, for which no large ϑ-dependent statis-
tical fluctuations of Ay or R are observed, making the
combined result rather insensitive to the description of

Ay. It cannot be too strongly emphasized that the de-
pendence of the result on the description of Ay derives
only from p and ϑ-dependent statistical fluctuations of
the data, since Ay cancels in the ratio Pt/Pℓ (see Fig-
ure 8 and the discussion in section III B 3). Therefore,
the sensitivity of the results to the description of Ay is
properly regarded as part of the statistical uncertainty,
and no additional systematic uncertainty contribution is
assigned.

Despite discarding up to 10% of the events included in
the original analysis, the statistical error of the final re-
sult for R is actually slightly reduced at Q2 = 4.8 and 5.6
GeV2 relative to the original publication. The improve-
ment reflects an increase in the effective Ay of the final
sample of events due to the improved suppression of the
background, which tends to dilute the measured asymme-
try. On the other hand, the statistical error at Q2 = 4.0
GeV2 has slightly increased relative to the original pub-
lication, since at this Q2 the loss of statistics slightly
outweighs the increase in Ay from improved background
suppression. Nonetheless, the quality of the result is im-
proved by the removal of a previously underestimated
systematic error.

Compared to the situation before the GEp-III exper-
iment, the emerging picture of the large-Q2 behavior of
Gp

E/G
p
M is considerably modified. Before GEp-III, the

GEp-I and GEp-II data suggested a strong linear de-
crease of R continuing to high Q2. The linear trend of
the data suggested a zero crossing of Gp

E/G
p
M before 8

GeV2. The GEp-III data showed that the linear decrease
probably does not continue to higher Q2, at least not at
the slope suggested by the GEp-I and original GEp-II
results. Although the lower-Q2 data from GEp-2γ ap-
peared to rule out any neglected systematic error in the
GEp-III data, the fact that all three data points from
GEp-III were systematically above the trendline of the
previous data raised concern about the consistency be-
tween different experiments and the reproducibility of
the polarization transfer method. Moreover, while there
was no a priori reason to expect the linear decrease to
continue, and the apparent ∼ 1.8σ disagreement between
GEp-II and GEp-III did not rise to the level of statistical
significance, the lessons learned from the GEp-III analy-
sis, particularly with respect to backgrounds, motivated
a reanalysis of the GEp-II data, leading to the results
presented in this article. With improved analysis, the
data from Halls A and C [1, 2, 25, 26] are now in ex-
cellent agreement over a wide Q2 range, bringing added
clarity to the experimental situation regarding Gp

E/G
p
M .

In a simple global analysis using the Kelly parametriza-
tion [43], the data before GEp-III implied a zero cross-
ing at Q2 = 9 GeV2, with an uncertainty range of
7.7 GeV2 ≤ Q2 ≤ 12.5 GeV2, based on the pointwise
1σ error bands of the fit result. After adding the GEp-
III data and replacing the GEp-II data with the final
analysis results, the zero crossing is shifted to 15 GeV2,
with an uncertainty range of roughly 12 GeV2 ≤ Q2 ≤ 29
GeV2. Although the size of the error band in Gp

E shrinks
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by a factor of two at large Q2 when the GEp-III data
are added, the reduced slope of Gp

E increases the uncer-
tainty in the location of the potential zero crossing. The
Kelly parametrization, despite having the correct static
limit and sensible pQCD-based asymptotic behavior at
high Q2, does not describe the actual physics involved
in the transition between low and high-Q2 asymptotic
behavior. Therefore, its extrapolation beyond the range
of the existing data necessarily understates the true un-
certainty in the behavior of Gp

E at large Q2. Only future
measurements at higher Q2 with higher precision [44] can
definitively reveal the behavior of Gp

E in the region where
the predictions of leading models of the nucleon diverge,
as discussed in the following section.

B. Physics Interpretation

1. Perturbative QCD

Perturbative QCD (pQCD) makes rigorous predictions
for the Q2 dependence of the nucleon form factors when
Q2 is sufficiently large that the scattering amplitude can
be factorized as the convolution of a baryon distribution
amplitude with a perturbatively calculable hard scatter-
ing kernel [45]. At leading order in 1/Q2, the Dirac form
factor is proportional to αs/Q

4 times slowly varying loga-
rithmic terms, because the large momentum transfer ab-
sorbed by the struck quark must be shared among the two
spectator quarks via two hard gluon exchanges in order
for the nucleon to recoil as a whole. The Pauli form fac-
tor is suppressed by an extra power of Q2 at leading order
due to helicity conservation [11], implying that Q2F2/F1

(and therefore GE/GM ) becomes constant at very high
Q2. While pQCD predicts the asymptoticQ2 dependence
of the nucleon form factors, it does not predict the value
of Q2 at which the hard scattering mechanism becomes
dominant. Isgur and Llewellyn Smith [46, 47] have ar-
gued that pQCD is not applicable to observables of exclu-
sive reactions such as the nucleon form factors in the ex-
perimentally accessible Q2 region. Ralston and Jain [48],
inspired by the results of the GEp-I and GEp-II exper-
iments, revisited the leading power behavior in 1/Q of
F2/F1 in the pQCD hard-scattering picture by consider-
ing the violation of hadron helicity conservation that en-
sues when quark wavefunction components with nonzero
orbital angular momentum are included, and found that
F2/F1 ∝ 1/Q.
Belitsky, Ji and Yuan [12], like Ralston and Jain [48],

argued that quark orbital angular momentum is the dom-
inant mechanism for nucleon helicity flip at large Q2

in pQCD, owing to the very small mass of the current
quarks involved in the hard scattering. They performed
a pQCD analysis of the proton’s Pauli form factor F p

2 in-
cluding the subleading-twist contribution to the proton’s
light-cone wavefunction. The leading-order pQCD con-
tribution to F p

2 involves intial and final-state light-cone
wavefunctions differing by one unit of quark orbital an-
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p
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polarization experiments including Refs. [1, 25, 32, 49–53] and
the final GEp-II data from Table IV of this work. From top
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where Λ = 236 MeV was fitted to the data for Q2 ≥ 1 GeV2.
The curves in the top panel are GPD model fits from [14]
(Guidal05) and [15] (Diehl05).

gular momentum, with zero orbital angular momentum
in either the initial or final state. In this calculation, log-
arithmic singularities in the convolution integrals lead to
the modified scaling Q2F p

2 /F
p
1 ∝ ln2

(

Q2/Λ2
)

, where Λ
is an infrared cutoff parameter related to the size of the
nucleon.
Figure 13 shows the experimental data for F p

2 /F
p
1 plot-

ted as Q2F p
2 /F

p
1 , QF p

2 /F
p
1 and Q2/ ln2

(

Q2/Λ2
)

F p
2 /F

p
1 .

Clearly, the leading-twist, leading-order pQCD scaling
behavior is not respected by the data in the presently
accessible Q2 region, although the slope of Q2F p

2 /F
p
1

does appear to be trending toward a flat behavior at
the highest-Q2 values measured so far. The scaling of
QF2/F1 predicted by [48] is approximately satisfied up
to 8.5 GeV2, although there is a hint that F2 may start
to fall faster than F1/Q for higher Q. The logarithmic
scaling of [12] is satisfied for Q2 & 1 GeV2 at a value of
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the cutoff parameter Λ = 236 MeV (~c/Λ = 0.835 fm)
determined by fitting the data for Q2 ≥ 1 GeV2.
While the “precocious” scaling of F p

2 /F
p
1 is interesting,

it is probably largely accidental, perhaps a consequence
of delicate cancellations of higher-order effects in the ra-
tio [12]. The scaling of F p

2 /F
p
1 is a necessary but insuffi-

cient condition for the onset of the perturbative regime.
pQCD-based form factor predictions based on light-cone
sum rules [54, 55] have yet to reach the level of accu-
racy achieved by the phenomenological models discussed
below in describing all four nucleon form factors. In the
GPD model fits shown in Figure 13, the ’Feynman’ mech-
anism corresponding to the overlap of soft wavefunctions
dominates the form factor behavior. The neutron data
for Fn

2 /F
n
1 do not scale in the currently measured Q2 re-

gion up to 3.4 GeV2 for values of Λ similar to that which
describes the proton data [20]. Moreover, combining the
proton and neutron data to separate the up and down-
quark contributions to the nucleon form factors [22] re-
veals that the ratios Fu

2 /F
u
1 and F d

2 /F
d
1 become approx-

imately constant above 1 GeV2, at odds with the asymp-
totic pQCD picture, while the ratios F d

1 /F
u
1 and F d

2 /F
u
2

decrease at high Q2, a behavior that can be explained in
terms of diquark degrees of freedom [17]. Based on these
and other considerations, it is generally believed that the
nucleon form factors are dominated by non-perturbative
physics in the 1-10 GeV2 region addressed by present
experiments.

2. Generalized Parton Distributions

The generalized parton distributions (GPDs) are uni-
versal non-perturbative matrix elements involved in the
QCD factorization of hard exclusive processes such as
deeply virtual Compton scattering (DVCS) [13, 56–58].
The GPDs are functions of the longitudinal momentum
fraction x, the momentum fraction asymmetry or “skew-
ness” ξ and the squared momentum transfer to the nu-
cleon t (not to be confused with the photon virtuality
Q2). GPDs play a crucial role in the synthesis of seem-
ingly disparate nucleon structure information obtained
from inclusive and exclusive reactions. The Dirac and
Pauli form factors F1 and F2 equal the first x moments
of the vector (H(x, t)) and tensor (E(x, t)) GPDs, re-
spectively. In the forward (t → 0) limit, H(x, t = 0) is
the valence quark density. Precise measurements of the
Pauli form factor F2 at large Q2 constrain the behavior
of E(x, t), yielding new information on nucleon structure
that is inaccessible in inclusive deep inelastic scattering
(DIS). With increasing Q2, the strength in the GPD in-
tegrals corresponding to the form factors is increasingly
concentrated in the high-x region. Therefore, the x → 1
behavior of H(x, t) and E(x, t) can be constrained by
fitting the high-Q2 nucleon form factors.
While systematic studies of the observables of DVCS

and other hard exclusive reactions promise an eventual
direct extraction of GPDs from global analysis (for re-

cent examples, see [59–63]), the experimental mapping
of these observables is still at an early stage. Meanwhile,
constraints from the elastic form factors and the forward
parton distributions measured in DIS have been explored
using physically motivated GPD parametrizations based
on Regge phenomenology [14, 15]. In both models, the
high-x behavior of E was determined by the high Q2

behavior of F p
2 measured by the GEp-I and GEp-II ex-

periments, enabling an evaluation of Ji’s sum rule [13, 57]
for the total angular momentum carried by the up (Ju)
and down (Jd) quarks in the nucleon. The calculations
of [14] found 2Jd = −0.06 and 2Ju = +0.58, in qualita-
tive agreement with lattice QCD calculations available at
the time [64], as well as more recent calculations [65, 66].
The predictions of the GPD models of [14] and [15] are
compared to the data for Q2F p

2 /F
p
1 in Figure 13.

The two-dimensional Fourier transform of the t-
dependence of the GPDs at ξ = 0 yields a three-
dimensional impact parameter representation ρ(x,b⊥)
in two transverse spatial dimensions and one longitudi-
nal momentum dimension [67]. By forming the charge-
squared weighted sum over quark flavors and integrating
over all x, Miller [16] derived the model-independent in-
finite momentum frame transverse charge density ρch(b)
as the two-dimensional Fourier transform of the Dirac
form factor F1. The Pauli form factor F2 can also be
related to the transverse anomalous magnetic moment
density ρm(b) [68]. Miller et al. [69] performed the first
analysis of the uncertainties in the transverse charge and
magnetization densities of the proton due to the uncer-
tainties and incomplete Q2 coverage of the form factor
data. Measurements of Gp

E at yet higher Q2 are needed
to reduce the uncertainty in ρm(b) at small b.
Since an exact solution to QCD in the non-

perturbative regime is not yet possible, predicting nu-
cleon form factors in the domain of strong coupling and
confinement is rather difficult. Consequently, many phe-
nomenological models have aimed to unravel the compli-
cated internal structure of the nucleon in this domain.
The following discussion provides an overview of a wide
range of models.

3. Vector Meson Dominance

The global features of the nucleon form factors were
explained by early models based on vector meson dom-
inance (VMD) [70]. VMD models are a special case
of dispersion relation analyses, which provide a model-
independent, non-perturbative framework to interpret
the electromagnetic structure of the nucleon in both the
space-like and time-like regions. Early VMD model cal-
culations included the ρ and its excited states for the
isovector form factors, and the ω and φ for the isoscalar
form factors. The number of mesons included and the
coupling constants and masses can be varied to fit the
data. In practice, many parameters are fixed or strongly
constrained by experimental data, including but not lim-
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ited to nucleon FF data, reducing the number of free
parameters and increasing the predictive power of the
approach. More recent calculations have used the pQCD
scaling relations to constrain the large Q2 behavior of the
fits. An example is Lomon’s fit [71], which uses ρ(770),
ω(782), φ(1020), ρ′(1450) and ω′(1420) mesons and has
a total of 12 variable parameters [71, 72]. Bijker and
Iachello [73] updated the 1973 model of Iachello, Jack-
son and Landé [70], performing a new fit including the
ρ(770), ω(782), and φ(1020) mesons, and a phenomeno-
logical “direct coupling” term attributed to an intrinsic
three-quark structure of rms radius ∼ 0.34 fm.
Despite the relatively good fits obtained by VMD mod-

els, the approach is at odds with general constraints from
unitarity. This difficulty can be overcome using disper-
sion relations. Höhler’s dispersion relation analysis [74]
was extended in the mid-nineties by Mergell, Meissner,
and Drechsel [75] to include nucleon form factor data in
the time-like region [76]. The analysis of [75] has been
further improved by Belushkin et al. [77]. In addition
to the 2π continuum present in the isovector spectral
functions, the ρπ and KK̄ continua were included in the
isoscalar spectral functions. In [77], the 2π continuum
was reevaluated using the latest experimental data for
the pion form factors in the time-like region. A simul-
taneous fit to the world data for all four form factors in
both the space-like and time-like regions was performed.
The results are in very good agreement with the data
available at the time. Dubnicka et al. developed a uni-
tary and analytic ten-resonance model including the 2π
continuum [78, 79], which fits all nucleon form factors in
both the space-like and time-like regions.
Figure 14 compares the predictions of selected VMD-

based models to the experimental data for µpG
p
E/G

p
M .

Of the models shown, the latest version of Lomon’s fit
[72] with twelve adjustable parameters achieves the best
overall agreement with the data for all four form factors
at spacelike Q2, emphasizing a smooth evolution from
VMD behavior at low Q2 to pQCD scaling at asymptot-
ically high Q2. Apart from fitting to a more complete
data set, the main added feature of the model of Bijker
and Iachello [73] relative to the 1973 model of Iachello,
Jackson and Landé is the inclusion of a “direct” coupling
term in the isoscalar Pauli form factor which improves the
large-Q2 behavior of Gp

E and Gn
E . This model achieves a

rather good fit to all four FFs using just six adjustable
parameters (compared to five in the 1973 model).

4. Lattice QCD

Lattice QCD calculations provide ab initio evaluations
of static and dynamic hadron properties, including the
nucleon electromagnetic form factors, from numerical so-
lutions of QCD on a finite-volume lattice of discrete
space-time points. At present, the lattice calculations
are done using unphysically large quark masses which
are given in terms of the pion mass, mπ. Moreover, most
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FIG. 14. (color online) Comparison of selected VMD model
predictions from [70] (Iachello73), [72] (Lomon06), [73] (Bi-
jker04), and [79] (Adamuscin05) to selected µpG

p
E/G

p
M data.

Data are from cross section [5, 80, 81] (empty circles) and
polarization [1, 2, 25] (filled circles) measurements, where the
results of [2] are replaced by the results of the present work.
See text for details.

recent calculations focus on the isovector form factors,
for which the contributions from disconnected diagrams
are reduced. Calculations are performed for various mπ

values and lattice spacings a and then extrapolated to
the physical pion mass and the continuum limit a → 0.
Recently the QCDSF/UKQCD Collaboration has per-
formed calculations [82] at mπ = 180 MeV with different
lattice spacings and volume sizes, but the upper Q2 range
is limited to 3 GeV2. Lattice QCD form factor calcula-
tions in the Q2 region measured by the GEp-II and GEp-
III experiments are difficult due to large statistical and
systematic errors. Calculations by Lin et al. employ a
novel technique to extend the reliableQ2 range of the cal-
culations toQ2 = 6 GeV2 atmπ > 450MeV for quenched
and dynamical ensembles [83]. Nonetheless, calculations
at such high Q2 must ultimately be performed with a
finer lattice spacing to reduce the systematic error.

5. Constituent Quark Models

In the constituent quark model (CQM), the nu-
cleon consists of three constituent quarks, which can
be thought of as valence quarks that become much
heavier than the elementary quarks appearing in the
QCD Lagrangian when dressed by gluons and quark-
antiquark pairs. The dressing effects are absorbed into
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the masses of these quasiparticle effective degrees of free-
dom. The early non-relativistic constituent quark model
achieved considerable success in describing the spectrum
of baryons and mesons with correct masses [84]. In or-
der to describe dynamical quantities such as form factors
in terms of constituent quarks, a relativistic description
(rCQM) is mandatory because the Q2 values involved in
modern experiments have reached as high as ten times
the nucleon mass squared and ∼ 106 times the “bare”
quark mass squared.

Frank et al. [85] calculated Gp
E and Gp

M in the light-
front CQM using the light-front nucleon wave function of
Schlumpf [86], and predicted that Gp

E might change sign
near 5.6 GeV2, a behavior inconsistent with current data,
though qualitatively correct. In this model, constructing
a Poincaré-invariant nucleon wavefunction that is also
an eigenstate of spin leads to the substantial violation
of hadron helicity conservation [87] responsible for the
observed scaling of QF2/F1 in the Q2 range of present
experiments. This feature is a consequence of the unitary
Melosh rotation [88] which mixes quark spin states in the
process of boosting the nucleon spin-flavor wavefunction
from the rest frame to the light front. Miller extended
this model to include pion-cloud effects [89], important
to the understanding of the low-Q2 behavior generally
and Gn

E in particular.

Gross et al. [90, 91] modeled the nucleon as a bound
state of three dressed valence constituent quarks in the
covariant spectator formalism, in which the virtual pho-
ton is absorbed by an off-shell constituent quark, and
the two spectator quarks always propagate as an on-shell
diquark. In this model, the constituent quarks have in-
ternal structure described by form factors which become
pointlike at large Q2 as required by pQCD and exhibit
VMD-like behavior at low Q2. The model nucleon wave-
function of [91] obeys the Dirac equation, includes only s-
wave components, and its spin-isospin structure reduces
to that of the SU(2) × SU(2) quark model in the non-
relativistic limit.

Cardarelli et al. [92] calculated the ratio using light-
front dynamics and investigated the effects of SU(6) sym-
metry breaking. As in [85], they showed that the decrease
of R with increasing Q2 is caused by the relativistic effect
of the Melosh rotations of the constituent quark spins.
De Sanctis et al. calculated the nucleon form factors
in the relativistic hypercentral constituent quark model
(hCQM) [93]. A good fit to all the nucleon form factors
was obtained using a linear combination of monopole and
dipole constituent quark form factors. The calculation
was recently extended to Q2 = 12 GeV2 [94]. The same
group also performed calculations within the relativis-
tic interacting quark-diquark model [95], which does not
achieve the same level of agreement with the data as the
hCQM.

De Melo et al. [96] examined the non-valence compo-
nents of the nucleon state in light-front dynamics, achiev-
ing a good description of all spacelike and timelike nu-
cleon FF data with the inclusion of the Z-diagram involv-
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FIG. 15. (color online) Selected rCQM predictions from
[89] (Miller02), [91] (Gross08), [92] (Cardarelli00), [94] (San-
topinto10) and [96] (deMelo09) for R = µpG

p
E/G

p
M , compared

to selected data from cross section [5, 80, 81] (empty circles)
and polarization [1, 2, 25] (filled circles) experiments, where
the results of [2] are replaced by the results of the present
work. See text for details.

ing qq̄ pair creation in addition to the triangle (valence)
diagram. The chiral constituent quark model based on
Goldstone-boson-exchange dynamics was used by Boffi et

al. [97] to describe the elastic electromagnetic and weak
form factors in a covariant framework using the point-
form approach to relativistic quantum mechanics.
Figure 15 compares the predictions of selected rCQM

calculations to selected data for R. Of the calcu-
lations shown, those in which the constituent quarks
have internal structure represented by CQ form factors
([91, 92, 94]) and/or significant VMD-related contribu-
tions to the photon-nucleon vertex ([96]) describe the
data better than those in which the constituent quarks
are pointlike ([89]) and have only direct coupling to the
photon. Although this may be related to the greater
number of adjustable parameters in models with CQFFs,
it is apparently physically meaningful that most of the
models require structure of the constituent quarks and/or
significant nonvalence (qq̄ pair creation) contributions to
achieve a good description of the data.

6. Dyson-Schwinger Equations

A different theoretical approach to the prediction of
nucleon form factors is based on QCD’s Dyson-Schwinger
equations (DSEs). The DSEs are an infinite tower of
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coupled integral equations for QCD’s Green functions
that provide access to emergent phenomena of non-
perturbative QCD, such as dynamical chiral symme-
try breaking and confinement [98]. The DSEs admit a
symmetry-preserving truncation scheme that enables a
unified description of meson and baryon properties. The
approach has already achieved considerable success in
the pseudoscalar meson sector [19]. The prediction of
nucleon form factors in the DSE approach involves the
solution of a Poincaré-covariant Faddeev equation. In
the calculations of [17], dressed quarks form the elemen-
tary degrees of freedom and correlations between them
are expressed via scalar and axial vector diquarks. The
only variable parameters in this approach are the diquark
masses, fixed to reproduce the nucleon and ∆ masses,
and a diquark charge radius r+1 embodying the electro-
magnetic structure of the diquark correlations. A dif-
ferent approach to DSE-based form factor calculations
effects binding of the nucleon through a single dressed
gluon exchange between any two quarks [18] without ex-
plicit diquark degrees of freedom. In this calculation, the
only parameters are a scale fixed to reproduce the pion
decay constant and a dimensionless width parameter η
describing the infrared behavior of the effective coupling
strength of the quark-quark interaction.

The predictions of several DSE-based calculations for
the proton Sachs form factor ratio R = µpG

p
E/G

p
M are

shown in Figure 16. The quark-diquark model calcula-
tion [17] underpredicts the data at low Q2 but agrees rea-
sonably well at higher Q2. The disagreement at low Q2 is
attributed to the omission of meson cloud effects. The ad-
dition of dynamically generated, momentum-dependent
dressed-quark anomalous magnetic moments [99] that be-
come large at infrared momenta improves the description
of R at low Q2. The three-quark model calculation [18]
agrees with the data at low Q2, but underpredicts the
data at higher Q2, becoming numerically unreliable for
Q2 & 7 GeV2.

The deficiencies of the DSE approach, including the ap-
proximation schemes required to make the calculations
analytically tractable and the omission of meson-cloud
effects, are evident in the disagreement between the pre-
dicted form factors and the experimental data, which is
more severe than in the various models described above,
which have more adjustable parameters. The advantage
of the approach is that it provides a systematically im-
provable framework for the ab initio evaluation of hadron
properties in continuum non-perturbative QCD, that is
complementary to discretized lattice simulations. As fun-
damental measurable properties of nucleon structure, the
electromagnetic form factors are essential to the feedback
between theory and experiment required to make further
progress in this direction.
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FIG. 16. (color online) Predictions of DSE-based calcula-
tions for R = µpG

p

E/G
p

M compared to experimental data
from cross section [5, 80, 81] (empty circles) and polariza-
tion [1, 2, 25] (filled circles) experiments, where the results of
[2] are replaced by those of the present work. The results of
[17] (Cloët09) are shown for a particular choice of the diquark
charge radius. The curve from [99] (Chang11) is that of [17]
with the addition of dressed quark anomalous magnetic mo-
ments. The results of [18] (Eichmann11) are shown for two
values of η, showing the weak sensitivity of the form factor
results to this parameter.

7. AdS/QCD

In the past decade, theoretical activity has flourished
in modeling QCD from the conjecture of the anti-de
Sitter space/conformal field theory (AdS/CFT) corre-
spondence [133–135], a mapping between weakly coupled
gravitational theories in curved five-dimensional space-
time and strongly coupled gauge theories in flat four-
dimensional space-time. Since QCD is not a conformal
field theory, the symmetry of the anti-de Sitter space
is broken by applying a boundary condition. Brodsky
and de Teramond [136] have calculated F1 for the pro-
ton and neutron and emphasized the agreement of the
predicted Q2F1 dependence with the data. Abidin and
Carlson [137] have calculated both proton and neutron F1

and F2 along with the tensor form factors using both hard
and soft wall boundary conditions. This model predicts
the same asymptotic Q2 dependence as the dimensional
scaling of pQCD, but does not reproduce the detailed
features of the data in the presently measured Q2 region.
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FIG. 17. (color online) Comparison of selected theoretical predictions to data for all four nucleon FFs at space-like Q2.
Theory curves are [15] (Diehl05), [18] (Eichmann11), [72] (Lomon06), [91] (Gross08) and [94] (Santopinto10). Gp

E data are
from [5, 80, 81, 100–105] (cross section data, empty circles) and [1, 2, 25, 49–53, 106] (polarization data, filled circles), where
the results of [2] have been replaced by the results of the present work (Table IV). Gp

M data are from [5, 80, 81, 100–

102, 104, 105, 107–109]. Gn
E data are from [20, 110–121]. Gn

M data are from [21, 122–132]. GD =
(

1 +Q2/Λ2
)−2

, with

Λ2 = 0.71 GeV2, is the standard dipole form factor.

8. World nucleon form factor data compared to theory

Figure 17 summarizes the theoretical interpretation
of the nucleon electromagnetic form factors, with rep-
resentative examples from each of the classes of models
discussed compared to the world data for all four nu-
cleon electromagnetic form factors. Published results for
R = µpG

p
E/G

p
M were converted to Gp

E values using the
global fit of Gp

E and Gp
M from [43], updated to use the R

values of the present work, a change that does not notice-
ably affect Gp

M . Except at very low Q2, the contribution
of the uncertainty in Gp

M to the resulting uncertainty in
Gp

E is negligible. At this juncture, it is worth recalling
that the Gp

E results extracted from cross section data are
believed to be unreliable at high Q2 due to incompletely
understood TPEX corrections, which have not been ap-
plied to the data shown in Figures 14-17. Except for the

DSE calculation of [18], all of the models shown describe
existing data very well, which is to be expected given that
the parameters of the models are fitted to reproduce the
data. However, their predictions tend to diverge when
extrapolated outside the Q2 range of the data. That
the DSE-based calculation of [18] fails to describe the
data as well as the other calculations is not surprising,
since it represents a more fundamental ab initio approach
with virtually no adjustable parameters, but requires ap-
proximations that are not yet well-controlled. Significant
progress in the quality of the predictions is nonetheless
evident, as the data expose the weaknesses of different
approximation schemes. Since the hard scattering mech-
anism leading to the asymptotic pQCD scaling relations
is not expected to dominate the form factor behavior at
presently accessible Q2 values, phenomenological mod-
els and the ambitious ongoing efforts in lattice QCD and
DSE calculations are of paramount importance to under-



28

standing the internal structure and dynamics of the nu-
cleon. Planned measurements at higher Q2 following the
12 GeV upgrade of JLab promise to be of continuing in-
terest and relevance owing to their power to discriminate
among the various models and to guide the improvement
of the more fundamental calculational approaches.

V. CONCLUSION

This work has presented an expanded description and
an improved final data analysis of the GEp-II experiment,
originally published in [2], which measured the proton
electromagnetic form factor ratio for 3.5 GeV2 ≤ Q2 ≤
5.6 GeV2 in Jefferson Lab’s Hall A using the polariza-
tion transfer method. The improved data analysis finds
a systematic increase in the results for R = µpG

p
E/G

p
M

that improves the agreement between the GEp-II and
GEp-III [25] data. This increase mainly reflects the un-
derestimated impact of the π0 production background
in the original analysis of GEp-II. Section II presented
the details of the experimental apparatus and described
the differences between the GEp-II and GEp-III experi-
ments. Section III presented the full details of the data
analysis, including the selection of elastic events in sec-
tion III A, the extraction of polarization observables in
section III B, and the treatment of the background in
section III C. The analysis of systematic uncertainties
was presented in section III D. In section IVA, the fea-
tures of the data and the sources of the increase in the

results relative to the original analysis were discussed at
length. An overview of recent progress in the theoretical
understanding of nucleon form factors was given in sec-
tion IVB. In conclusion, this work represents the final
results of the GEp-II experiment. The revised data pre-
sented here and the results of the GEp-III experiment [25]
have considerably improved the experimental knowledge
of Gp

E at large Q2.
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