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The upcoming p + Pb run at the LHC will probe the nuclear gluon distribution at very small
Bjorken x (from x ∼ 10−4 at mid-rapidity down to x ∼ 10−6 in the proton fragmentation region)
and will allow to test approaches based on parton saturation. Here, we present the predictions
of the KLN model for hadron multiplicities and multiplicity distributions in p + Pb collisions at a
center-of-mass energy of 4.4 TeV. We also compare the model to the existing pp, dA and AA data
from RHIC and LHC.

Very soon, the Large Hadron Collider will record the first data on p+ Pb collisions at the center-of-mass energy of
4.4 TeV. This data will allow to probe the nuclear gluon distributions at very small Bjorken x: from x ∼ 10−4 at mid-
rapidity down to x ∼ 10−6 in the proton fragmentation region. Since the QCD evolution makes parton distributions
increase at small x, the LHC experiments will allow to probe the nuclear wave functions at unprecedented parton
densities. These measurements are crucial for testing the current theoretical approaches to high energy QCD.

Due to the breaking of scale invariance by quantum effects, QCD possesses a dimensionful scale ΛQCD that deter-

mines the characteristic distance ∼ Λ−1
QCD at which the dynamics becomes non-perturbative. The asymptotic freedom

[1, 2] makes the perturbative expansion valid only if a hard external scale Q2 ≫ Λ2
QCD is present. Multiparticle pro-

duction in hadron collisions is dominated by soft interactions and so in general is not amenable to the weak coupling
treatment. However when the density of partons in the transverse plane Q2

s becomes large compared to Λ2
QCD, it

regularizes the infrared behavior of the parton transverse momentum distributions at the “saturation momentum” [3]
Qs and thus prevents the running coupling of QCD from growing large, αs(Qs) = g2/4π ≪ 1 [3–5]. The gluon field
A in this weak coupling regime has a large occupation number, A ∼ 1/g > 1 and can be treated as a classical ”Color
Glass Condensate” (CGC) [5–7].

While the complete theory of multi-particle production based on the ideas outlined above is still being developed,
its main ingredients are clear and can serve as the basis for phenomenology. This was the motivation for the KLN
model [8–10] combining the Glauber approach to proton-nucleus and nucleus-nucleus collisions (for a complete set of
formulae see e.g. [11]) with a simple ansatz for the unintegrated parton distributions that accounts for the existence
of a new dimensionful scale – the saturation momentum. The KLN model was successful in describing the RHIC
data [12–15] on the centrality and rapidity dependence of charged hadron production in heavy ion collisions. The
predictions for Pb Pb and p Pb collisions at the LHC were made in [16]. The comparison to the first LHC data [17] on
hadron production in Pb-Pb collisions revealed that while the KLN model describes the centrality dependence rather
well, the overall normalization exceeds the observed one by about 10-15 %. This implies that the energy dependence
of the saturation momentum assumed in [16] was slightly too steep1.

Regarding pA collisions, we also have to remember that the number of “participants” (the nucleons that underwent
at least one inelastic interaction) in this case is much smaller than in A A collisions, and that fluctuations are much
more important. Therefore a Monte-Carlo (MC) based formulation [18] of the numerical integration of the KLN
model [19] can be expected to provide more accurate predictions. Indeed, the MC method leads to a better agreement
between the data and the model prediction [20] in d Au collisions at RHIC. The MC based KLN model [18] has been
used to generate initial conditions for the hydrodynamical description of collective flow, see e.g. [21–23].

1 While it is evident that the model has to be refined, let us put this discrepancy in perspective by noting that some of the early pre-RHIC

predictions for the LHC that did not take into account the concepts of parton saturation and coherence overestimated the measured

hadron multiplicity by almost an order of magnitude.
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The goal of this letter is to provide updated predictions for p Pb collisions at the LHC. Let us explicitly list the
differences between the present and the previous [16] papers: i) we consider the c.m.s. energy of the forthcoming
p Pb run – 4.4 TeV; ii) we have reduced the intercept describing the energy dependence of saturation momentum
by ∼ 20%; iii) we employ the MC method of evaluating the number of participants. Of course, after making these
changes we have to make sure that the RHIC data is still adequately described – therefore we present the comparison
to the RHIC AA and dA as well. While these changes may seem insignificant, the p Pb LHC data present a chance
to test saturation ideas, and this requires quantitative predictions made to the best of our current knowledge.

Let us briefly recall the basic ingredients of the KLN approach; for details, see [9, 16]. The multiplicity per unit
rapidity
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is evaluated using the gluon density obtained from a simple ansatz for the unintegrated gluon distribution [9] encoding
the saturation phenomenon:

xG(x, p2t ) =

{

S
αs(Qs)

p2t (1− x)
4

, pt < Qs(x)
S

αs(Qs)
Q2

s (1− x)4 , pt > Qs(x)
(2)

where x = x1 or x2, with x1,2 = (pt/W )e±y; the +(-) sign in the exponent applies to the projectile (target), and
W ≡ √

s is the c.m.s. energy. The factor S in eq. (1) is the transverse area involved in the collision (see below). The
normalization factor K describes the conversion of partons to hadrons and is determined by a global fit to pp data at
various energies, and to d+Au data from RHIC.

To describe the running of QCD coupling, we use the β-function in the one-loop approximation with Nf = 3 light
quark flavors and Λ2

QCD = 0.05 GeV2 but assume that the coupling freezes at αmax = 0.52 [24]:

αs(Q
2) = min





12π

27 log Q2

Λ2
QCD

, αmax



 , (Q2 ≥ Λ2
QCD). (3)

The factor of αs(Q
2) in the integral (1) is evaluated at the scale p2t , if this is the largest scale, or else at the lower of

Q2
s,P (y) and Q2

s,T (y). The saturation momenta are defined as

Q2
s(y) = Q2

0 Npart

(

x0
W

Q0
e∓y

)λ̄

, (4)

where again the +(-) sign in the exponent applies to the projectile (target). We fix the parameters to Q0 = 0.6 GeV,
x0 = 0.01, and λ̄ = 0.205. In the midrapidity region of collisions at RHIC energy, this results in a gluon saturation
momentum Qs ≃ 0.68 GeV for a proton. On account of the large radius of the deuteron, we have used Npart,P = 1
in (4) in this case assuming that the parton substructure of the nucleon in the deuteron is not modified. For minimum
bias d + Au collisions we multiply dN/dy by a factor of 1.52 which is our estimate for the corresponding equivalent
number of p+Au collisions at an energy of W = 200 GeV. For pp collisions we choose the effective area Spp ≃ 0.7 SpA

somewhat smaller than for pA collisions, as suggested by the data. This may be an indication that in proton-proton
collisions only part of the proton takes part in the interaction. On the other hand, the large nucleus makes all of the
proton’s constituents to interact.

To evaluate the pseudo-rapidity distributions, Eq. (1) needs to be rewritten using the transformation

y(η) =
1

2
log

√

cosh2 η + µ2 + sinh η
√

cosh2 η + µ2 − sinh η
(5)

with the Jacobian

J(η) =
∂y

∂η
=

cosh η
√

cosh2 η + µ2
. (6)

The scale µ2(W ) is allowed to exhibit a weak energy dependence according to

µ(W ) =
0.24

0.13 + 0.32 W 0.115
, (7)
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with W expressed in units of TeV. This parameterization reproduces approximately the “shoulder” structure of dN/dη
observed in symmetric pp collisions. We did not modify µ(W ) for the case of pA collisions.

The multiplicity discussed above represents the average multiplicity 〈Nch〉 observed in collisions with a fixed number
of participants. In experiment, the multiplicity fluctuates both due to the fluctuations in the number of participants
and due to “intrinsic” fluctuation at fixed number of participants. To model the “intrinsic” fluctuations of the number
of produced particles we consider the multiplicity (per unit rapidity) as a random variable distributed according to a
negative binomial distribution,

P (Nch) =
Γ(k + n)

Γ(k)Γ(n+ 1)

〈Nch〉Nchkk

(〈Nch〉+ k)
Nch+k

. (8)

The quantity k which characterizes the fluctuations in the saturation approach has been estimated as be [25, 26]

k = κ
N2

c − 1

2π
Q2

s(y,W ) σk(W ) . (9)

In our numerical estimates we have assumed that σk(W ) = σin(W )/10 is proportional to the inelastic pp cross section,
and that Qs is the saturation scale of the proton. We find that the value of κ which describes best the multiplicity
distributions in pp collisions is about κ ≃ 0.05.

All observables for pA collisions finally need to be averaged also over an ensemble of Npart,A, which enters through
eq. (4). We obtain the number of participants in the heavy ion target from a Monte-Carlo Glauber simulation2:
assume a uniformly distributed random number 0 < ν < 1 and let

Npart,A(~b) =
∑

i=1···A

Θ
(

P (~b − ~ri)− νi

)

. (10)

Here, b is the impact parameter of the p+A collision, i.e. the transverse distance of the proton from the center of the
target nucleus; it is a random variable with the probability density b db. The set {~ri} corresponds to the coordinates of
the nucleons in the target which are picked randomly according to a Woods-Saxon distribution. Finally, P (r) denotes
the interaction probability of two nucleons separated by a transverse distance r; for simplicity, here we assume “hard
sphere” nucleons:

P (r) = Θ

(
√

σin(W )

π
− r

)

. (11)

We use the measured values σin(s) = 42, 52, 60, 65.75, 70.45 mb at W = 200, 900, 2360, 4400, 7000 GeV, respectively.

Let us now present and describe our results. First we re-check the model against the RHIC data. Fig. 1 shows
the comparison to the d Au data; in the range −1 < η < 2 the agreement is satisfactory. Note that at η >∼ 2 the
saturation momentum of the projectile becomes small and so the validity of the saturation approach is questionable
at best. Also, in the fragmentation region of the nucleus one would have to account for the contribution from valence
quarks to improve agreement with the data.
The centrality dependence of the charged particle multiplicity in Au+Au collisions at RHIC is shown at Fig. 2; the

agreement is very good. The reduction of the intercept of the gluon distribution (by ∼ 20% in comparison to [16])
allows us to reproduce well also the LHC Pb+Pb data, see Fig. 2. Figs. 3,4,5 show the comparison of our model
to the pp data from the LHC on charged hadron multiplicities and multiplicity distributions at

√
s = 0.9, 2.36 and

7 TeV, respectively. The agreement is seen to be quite good. Finally, in Figs. 6,7 we present our predictions for the
upcoming p Pb run at

√
s = 4.4 TeV.

To summarize, we have presented updated predictions of the KLN model for p Pb collisions at the LHC, as well
as comparisons to the RHIC and LHC data on hadron multiplicities and multiplicity distributions. Clearly, our
treatment has been somewhat model-dependent and involves a few adjustable parameters. Nevertheless, our model
does capture the emergence of a new dimensionful scale governing QCD interactions at high energies, and thus

2 On the other hand, in AA collisions the fluctuations of Npart do not affect the multiplicity strongly; we have calculated Npart directly,

in a “mean field approximation”, from a nuclear Woods-Saxon distribution.
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FIG. 1: Rapidity distribution of charged particles in minimum bias d+Au collisions at W = 200 GeV. PHOBOS and BRAHMS
data from refs. [30, 31].
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FIG. 2: Centrality dependence of the charged hadron multiplicity at η = 0 in AuAu collisions at W = 200 GeV [14] and PbPb
collisions at W = 2.76 TeV [17, 27]

.

expresses in quantitative form the essence of the parton saturation phenomenon. The comparison of our model to the
existing Pb Pb and the forthcoming p Pb data would also allow to deduce the amount of additional entropy produced
during the evolution of the quark-gluon fluid in heavy ion collisions [32]. Our present treatment assumes no additional
entropy production, which corresponds to the zero viscosity limit; a deviation from our prediction could signal the
presence of viscous effects.
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FIG. 3: Left: rapidity distribution of charged particles in pp collisions at W = 900 GeV. Right: Charged particle multiplicity
distribution. ALICE and CMS data from refs. [28, 29].
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FIG. 4: Left: rapidity distribution of charged particles in pp collisions at W = 2360 GeV. Right: Charged particle multiplicity
distribution. ALICE and CMS data from refs. [28, 29].
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FIG. 5: Left: rapidity distribution of charged particles in pp collisions at W = 7000 GeV. Right: Charged particle multiplicity
distribution. ALICE and CMS data from refs. [28, 29].
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FIG. 6: Left: rapidity distribution of charged particles in minimum bias p+ Pb collisions at W = 4400 GeV. A ∼ 10% overall
normalization uncertainty is not shown explicitly. Right: Charged particle multiplicity distribution.
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