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As part of an effort to understand how neutron-induced reactions on excited states in deformed
nuclei differ from those on ground states, we have carried out coupled-channels calculations of the
angle-integrated cross sections on the ground and excited states of several actinide nuclei with
differing K-values for the ground-state band (233U7 K = %; U, K = %; 28U, K = 0; and 23°Pu,
K= %) Of particular interest is the compound-nucleus formation cross section. We find that the
ratio of the excited to ground-state compound formation cross sections is very close to unity in all
cases (within ~0.1%) over the range studied (1 keV to 20 MeV). This result requires that sufficient
levels be coupled to ensure convergence (approximately 14 levels for odd-A nuclei). These results are
close to the predictions of the adiabatic model for scattering from statically deformed nuclei. This
model yields compound formation cross sections, as well as total cross sections, that are independent
of both the K-value of the band and the spin of the target state within the band. Our calculations
show that the actual cross sections are surprisingly close to the adiabatic limit, even at very low
incident energies. We find similar results for statically deformed rare-earth and s-d shell nuclei.

PACS numbers: 24.10.Eq, 24.10.Ht, 25.40.-h, 28.20.Cz, 28.20.Fc

I. INTRODUCTION

In many applications we want the cross sections for the
production of compound-nucleus (CN) states when neu-
trons are incident on rotational nuclei. This cross section,
also known as the fusion or absorption cross section, is
needed for rotational nuclei which are particularly com-
mon in the rare earth and actinide regions. In some hot
astrophysical environments we also need the equivalent
cross sections for nuclei in initial excited states.

It is well known that coupled-channels calculations
are needed for these reactions, and the recent paper of
Kawano et al. [1] reported on such calculations where five
levels of '%°Tm were included to calculate the compound-
nucleus cross section for neutrons incident on both the
ground and first-excited states. They also studied the
target-state dependence of the 239Pu fission cross section.
The results of that paper were an important stimulus for
the present work, in which we have made a systematic
study of the behavior of the excited wvs. ground-state
cross sections in statically deformed nuclei in three re-
gions of the periodic table, including an investigation of
the dependence of the cross sections on the number of
states included in the coupled-channels calculations.

In the course of the present research it became appar-
ent that the calculations converge surprisingly slowly as
the number of states included in the rotational band is
increased, and that there are large variations in the inter-
mediate un-converged calculations. We have found that,
for symmetric-rotor nuclei with K # 0 that have ground
state bands up to sufficiently large angular momenta, cal-
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culation of the CN production cross sections requires at
least the inclusion of states Imax up to I ~ Iz + 14 in
order to have converged results. This applies to both
angle-integrated cross sections, and to elastic angular dis-
tributions, although only the former are discussed in this
paper.

When the rotational excitation energies are small (the
case of large moment of inertia, applicable to the actinide
and rare-earth nuclei), we show that the converged CN
production cross section is in fact very nearly indepen-
dent of initial spin I, and independent of the band-head
spin projection K = Iz on the symmetry axis. This is
also true for the total cross section and the sum of the
elastic and all inelastic-channel cross sections. The ‘very
near’ independence refers to deviations of less than 1%,
and sometimes only 0.02%, that come from finite excita-
tion energies.

In the adiabatic limit of zero excitation energies, we
provide a rigorous proof that the angle-integrated cross
sections discussed herein are exactly independent of both
the initial spin I and band-head spin projection K. In
the adiabatic limit, these quantities are simply the cross
sections calculated for a fixed orientation of the deformed
nucleus, averaged over all possible orientations. We con-
clude that rare-earth and actinide nuclei very nearly fol-
low the adiabatic limit.

The independence of many important cross sections
on K and I suggests that cross sections for K > 0 nuclei
and/or cross sections for I > I, may be most simply
and efficiently calculated by equivalent calculations with
I = K = 0. This revisits the discussion of Lagrange et
al. [2], where we conclude that the small difference they
did find can be almost entirely attributed to insufficient
convergence of their coupled-channels calculations.

We note several features that are relevant to applica-



tions of the present work. All of the coupled channels
calculations carried out in this paper are for reactions
on the ground and excited states of a single rotational
band, assuming a rotational model and an optical poten-
tial that depends on incident neutron energy but not on
the spectroscopic properties of the coupled states. The
individual calculations directly apply to cases such as the
ground vs. first-excited state of 239Pu, since both states
are members of the same K = % band, but not to cases
where the states belong to different bands (such as the
ground and first-excited (76.5 eV) states of 23°U). The
calculations certainly do not predict the cross sections for
transitions between bands, since this requires excitation
of the internal nuclear degrees of freedom rather than just
the rotational excitations. However, the K-independence
predicted by the adiabatic model and found to be a good
approximation by the full calculations indicates that the
absorption and total cross sections are very close even for
states in different bands, as long as the optical potential
is not dependent on the band properties. As discussed
in Sec. V, there is very little experimental evidence for
dependence on target spin in optical-model observables
such as total cross sections and strength functions in
low-energy neutron reactions. Some caution is necessary
in making this assumption for estimating transmission
coefficients for Hauser-Feshbach calculations of neutron-
induced deexcitation of very high spin isomeric states,
such as the 167 2.45-MeV isomer in "8Hf [3] or the 9~
isomer in '89Ta near 77 keV [3, 4]. In such cases the
optical potential, particularly its imaginary part, may be
altered because of the reduced density of 2-particle 1-
hole states that serve as doorways for the development
of a compound system.

One situation in which the conclusions of this paper
do not hold is the subbarrier absorption of charge parti-
cles. In this case excitation or deexcitation of the inter-
nal modes of the target by channel coupling can alter the
effective height of the Coulomb barrier, which can signifi-
cantly affect the absorption cross section. This effect has
been explicitly studied for fusion from an excited state
by Kimura and Takigawa [5], and has also been discussed
in a general theory of heavy-ion fusion by Hussein [6].

This article is organized as follows: Sec. II shows re-
sults of the study we carried out of the convergence of the
cross sections in actinide nuclei as a function of the num-
ber of coupled states. It also shows that when sufficient
states are included in the calculation, the cross sections
calculated with a target in its first-excited state are very
close to those for the ground state. These results provide
the motivation for a re-examination of the adiabatic ap-
proximation, which is described in Sec. ITI. Tests of the
accuracy of the cross sections calculated in the adiabatic
approximation and of its prediction that these cross sec-
tions are independent of the I and K quantum numbers
are shown in Sec. IV for three regions of statically de-
formed nuclei: the actinides, deformed rare earths, and
the s-d shell nuclei. The summary and conclusions are
presented in Sec. V. Some details of the formalism used

in Sec. IIT and of the numerical calculations are shown in
Appendix A, and the optical potential used in the rare-
earth calculations is described in Appendix B.

II. CONVERGENCE OF COUPLED-CHANNEL
CALCULATIONS

In the early days of the development of coupled chan-
nel calculations, computations of neutron scattering on
deformed nuclei were carried out either in the adiabatic
approximation or with only a few coupled levels (see, for
example, Refs. [7, 8]). In fact, until the past decade, cal-
culations on rare-earth and actinide nuclei carried out as
input for Hauser-Feshbach calculations typically coupled
only three states in a ground state band of an even-even
nucleus, for which K = 0, and five states in odd-mass
nuclei. In a more recent careful study of the conver-
gence of such calculations, Sukhovitskii et al. [9] found
that for scattering on 238U, it was necessary to extend
the coupling scheme to five levels in order to achieve a
stable result (i.e. one in which adding additional levels
yields negligible changes in important quantities such as
the total and compound-nuclear formation cross sections
Ucmpd)-

In the present work, in which a major goal is to es-
tablish the connection between the values of ocp,pq for
reactions with neutrons incident on the ground state of
a nucleus and those for an excited-state target, we have
found it necessary to revisit the question of convergence
of the calculations as the number of coupled states N is
increased. We find that coupling a sufficient number of
states is crucial for getting an accurate result, and that
for odd-mass nuclei in the actinide region as many as 14
states must be coupled.

In the calculations in this section we use the Flap 2.2
optical potential [10], which had been tuned to reproduce
neutron total cross sections in the actinides with a mini-
mal coupling scheme (3 levels for even-even targets). In
view of our findings that a much larger coupling scheme
is necessary to generate reliable cross sections on excited
states, we intend to adjust this potential so that it is
consistent with the extended coupling scheme.

A common set of deformation parameters was used
for all of the actinide calculations in the present work.
These parameters were adopted from the study of 233U
of Ref. [9] for B2 = 0.219 and B4 = 0.053; the small value
of B¢ was ignored. These parameters were converted to
deformation lengths d2 and d4 by multiplying them by the
7.8183 fm radius of the real central potential in Ref. [9],
yielding 6o = 1.7122 fm and §, = 0.4144 fm. For calcu-
lations on other actinides in the present work we scale
the deformation lengths by (A/238)'/3. These values of
02 and 4 were used to deform the real and imaginary
central potentials; the spin-orbit potential was not de-
formed. We found that it was sufficient to expand the
deformed optical potential up to a maximum Legendre-
polynomial order of 6; the calculations in the actinide



and rare-earth regions were carried out with a maximum
order of either 6 or 8. The calculations were carried out
with the ECIS06 coupled-channel code [11], and checked
with both the FRESCO code [12, 13] and the CoHjs code
[14].

Unless stated otherwise, the level schemes for the tar-
get states in the coupled-channels calculations were taken
from their experimental values as reported in the ENSDF
data base [3]. For all calculations, including those for re-
actions on excited states, the target states included in the
calculation begin with the bandhead I = K and include
N levels that are consecutive in their spin I.

In this paper we are concerned only with angle-
integrated cross sections. The compound formation cross
section values o.mpq Were obtained by subtracting the
sum of the inelastic cross sections ;,¢; from the reaction
cross section o,eqe, where the latter is defined by the
difference of the total and shape elastic cross sections,
Otot — Oelas-
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FIG. 1: Upper panel: dependence of compound formation
cross sections for neutrons on 238U on N, the number of cou-
pled states. Lower panel: ratio of cross section for neutrons
incident on the first excited state to that on the ground state.
Note that the excited- to ground-state ratio is very close to
unity when a sufficient number of levels is coupled.

The upper portion of Fig. 1 shows the convergence of
the compound formation cross section Ocmpd for neutrons
on the K = 0 23U ground state as the number of cou-
pled states N increases. The lower portion shows the
corresponding ratios of the cross section for neutrons in-
cident on the first-excited state to that on the ground

state. We see that for the chosen potential and deforma-
tion parameters at least 6 states must be coupled to yield
stable results for ocmpq Over the entire energy range. For
the excited- to ground-state ratio, 7 to 8 states must be
coupled, and the result is remarkably close to unity, with
deviations of only a few tenths of a percent. In this as
well as all other cases studied, the calculations for the
various N converge at high energies, which is consistent
with the known behavior of direct-interaction models for
inelastic scattering (e.g. adiabatic and Born approxima-
tions).

38 L AN -

34 b h .

32 ] N

30, 239Pu(gropnd)
' L |

oN=10_-1214
1000 fr===== e
0.995 [~ ]
0.990 - 11\ ]
05 .+ *pu erted] 12 “Putgroun)

Ratio of compound cross sections Compound cross section (b)

0.01 0.1 1 10
Neutron energy (MeV)

FIG. 2: Same as Fig. 1, but for 2°Pu. As for 22®U, the
excited- to ground-state ratio is very close to unity when a
sufficient number of levels is coupled.

Figure 2 shows the same information for 23°Pu, for
which the ground state has I = K = % and the 7.86-keV
first-excited state has I = % The results are similar to
those for 23%U; however, for bands with K # 0, a much
larger set of states is necessary. In the case of 239Pu, 13
to 14 coupled states are required for the cross section on
the ground state, and 14 for the excited- to ground-state
ratio. Calculations with N=15 to 17 confirm that 14
states are sufficient. When fully converged, the excited
to ground ratio is much closer to unity than for 238U;
note the greatly expanded vertical scale in the bottom
part of the figure.

A curious feature of the approach to stability with in-
creasing N, evident in the lower portion of Fig. 2, is the
odd-even staggering of the ratios. That is, the calcula-
tions with even N are systematically closer to the con-
verged value than those for the adjacent odd N. This is
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FIG. 3: Calculated compound formation cross sections at
1 MeV incident energy for neutron on the ground (filled cir-
cles) and first excited (open triangles) states of *°Pu, as a
function of the number of coupled states.

further illustrated in Fig. 3, which shows the values of
Ocmpd as a function of N separately for ground and first-
excited targets, at a specific incident energy (1 MeV). For
even N, the two calculations are in agreement, even when
the common value is quite different from the fully con-
verged result. On the other hand, the two values for odd
N are significantly different, at least until convergence
is reached at high N. This behavior appears consistent
with the signature selection rule for quadrupole matrix
elements within rotational bands (see Egs. (4-68a),(4-71)
in Ref. [15]), which favors AT = 2. In the present case,
we see that the number of strong upward coupling matrix
elements is the same when N is even, but differs for odd
values of N. The same pattern i§ seen for 1%9Tm (see

Sec. IV B), which also is a K = 5 nucleus with a very

low-lying I = % first excited state. However, this simple
odd-even effect was not found in any of the other cases
studied.

Figure 4 shows the fully converged first-excited to
ground-state ratios of o¢mpq for four actinide nuclei cov-
ering a range of K values. The cases shown are 233U

(31, 25U (17), 288U (0%), and 2*?Pu (7). We find
that N = 14 is sufficient to achieve convergence for the
odd-mass nuclei (for which K # 0), and have used this

value in the calculations shown in the figure. For 238U we
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FIG. 4: Ratio of compound formation cross sections on the
first-excited and ground states for four nuclei with different
ground-state spins: 23U (g+), U (27), **%U (01), and
29py (%+) In these calculations sufficient levels are coupled
to ensure the reliability of these ratios, which are very close

to unity. Note in particular the highly expanded vertical scale
for 239Pu.

have used N = 8. We see that all deviations of the ratio
from unity are small, not exceeding 0.3%. The energy
dependence of the deviation has a similar shape for all
four cases, and the deviations damp out quickly above
1 MeV. There are no features of the energy dependence
that are clearly correlated with the opening of specific
inelastic channels in the various nuclei.

Most of the excited-state cross sections in the present
work refer to the first excited state within a band. The
very small deviations of this ratio from unity raise the
question of whether the same result holds for targets in
higher excited states. We show an example of the ex-
cited/ground ratio for neutrons incident on the second
excited state of 22U in Fig. 5, along with the correspond-
ing result for the first excited state that was shown in
Fig. 4. We chose N = 10 for these calculations to ensure
convergence. We see that the deviations from unity of the
second excited state calculation are larger than those for
the first excited state by an amount very roughly con-
sistent with the 10/3 ratio of excitation energies. The
deviations from unity are still small, remaining below
1%.

The near equality of cross sections on the ground and
excited states of a given nucleus that is uncovered when
sufficient levels of a rotational band are coupled has its
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FIG. 5: Solid curve: ratio of compound cross sections on
the second excited state of 2°3U to that on the ground state.
Dashed curve: same, for the first excited state. The deviation
of the ratio from unity scales roughly as the excitation energy.

origin in the adiabatic approximation for scattering from
deformed nuclei. This approximation is discussed in the
next section.

III. ADIABATIC MODEL
A. General expressions for the cross sections

Before dealing with the adiabatic model and other ap-
proximations, it is useful to exhibit general expressions
that relate the scattering wave functions and the coupled-
channels scattering potential to the cross sections of in-
terest in this paper. The total cross section may be writ-
ten as the sum of two terms. One of these is the com-
pound formation cross section, and the other is the sum
of the scattering cross sections to all of the explicitly cou-
pled channels, which we call the direct cross section:

Otot = Ocmpd + O'dir- (1)

The direct cross section may be further divided into the

shape elastic cross section agllgs and the sum of cross

sections to all of the remaining directly coupled states,
dir

Oinel

o = ol + ohar- (2)

We choose a linear-momentum representation in which
the noninteracting states of a coupled-channels system
are represented by |ka), where fik is the relative momen-
tum of the projectile and target, and a represents all
intrinsic quantum numbers of the projectile and target
required to specify a given channel. We define a non-
interacting Hamiltonian Hy, which includes the relative
kinetic energy of the projectile and target, as well as the

sum of their masses in a particular channel a, including
their internal excitation energies. The Schrédinger equa-
tion for the noninteracting pair in channel a is

(E — Hy)ka) = 0. (3)

For the noninteracting solutions, we use plane waves nor-
malized to unity in a large box of volume  with pe-
riodic boundary conditions, so that the noninteracting
wave functions in the coordinate representation are

(ra’|ka) = Q712 %7 5, (4)

We may also choose to add a constant offset to Hy so that
the energy E corresponds to the relative projectile-target
kinetic energy in a particular channel a of a coupled sys-
tem.

To describe the full coupled-channels problem, we in-
troduce an interaction U = V + ¢W, which is not Her-
mitian and can also couple channels distinguished by dif-
ferent values for the parameters a. The components V
and W are separately Hermitian and are to be identified
with the real and imaginary parts of a deformed optical
potential. The Schrédinger equation for the fully inter-
acting state that develops from an initial state |ka) when
the interaction U is turned on is

(B — Ho— U)yi)) = 0. (5)
The (+) superscript indicates the solution that contains
a plane wave in the incident channel a, together with
outgoing scattered waves in the incident channel as well
as all other channels coupled to it via U. Because of
the coupling represented by U, the state vector |wl(:;))
contains components in all coupled channels, not just the
incident channel; the subscript ka and superscript (4)
simply indicate the boundary conditions imposed on the
solution of Eq. (5). This can be made explicit by writing
the wave function in a coordinate representation,

(ra'[) = 9. (), (6)

which can be viewed as a column vector with channel
indices a’. Similarly, the interaction can be written (for
a local potential) as

(ralU|r'a’y = Uy (v) 6(r — 1), (7)

which is a matrix in the channel indices a, a’. The usual
set of coupled differential equations is obtained by mul-
tiplying Eq. 5 on the left by (ra’|, and inserting a com-
plete set 1 = >, [dr”|r"a”)(r"a"| to the right of U.
In numerical calculations, a partial-wave expansion and
a recoupling to states of total angular momentum and
parity is normally made, but this is not necessary for our
purposes.

We will make use of the Lippman-Schwinger equation,
which is equivalent to the above Schrodinger equation
with the specified boundary conditions. It relates the



fully interacting solution to the noninteracting solution
as

) = ka) + GSOU D), 8)

in which Géﬂ, the outgoing-wave Green’s function for
the noninteracting system, is given by

GSP = (E - Hy +ie)™, (9)

where € is a positive infinitesimal quantity. Note that
Géﬂ does not couple different channels.

Using the above definitions, we can write the needed
expressions for oempq and o%" . These expressions are
derived in Appendix A. The compound formation cross
section is

Q2u,

Cempd = =7 75 I (Uil [Ule)) — (10)
Q2u,

= oo e W), (11)

and the direct cross section is

r 92/1’11
odir — s Im (p 0 [UTGSP Uy (12)
w8 21,
= o W IUTS(E — H)U ). (13)

Expressions similar to Egs. (10) and (11) frequently oc-
cur in scattering problems involving complex potentials.
Examples related to the present work include an early
expression for the s-wave neutron strength function by
Porter [16], which was further studied by Cugnon [17].
Schiff [18] obtained the same expression in a study of
the optical theorem in the presence of a complex scatter-
ing potential. Further studies by Hussein and collabora-
tors [6, 19, 20] have considered complex potentials and
the effects of channel coupling on absorption. The deriva-
tion in Appendix A yields results close to those in [20],
and our results are compared with that work in the Ap-
pendix. The expressions above for o¢pmpq are also correct
for charged incident particles, but those for %" are not,
due to the Coulomb divergence in the elastic cross sec-
tion.

B. The adiabatic approximation for rigid rotors

We treat the situation in which the projectile interacts
with the target through an axially deformed, parity con-
serving complex interaction U = V + W that does not
depend on the spin or other internal quantum numbers of
the target. With this assumption, the only dependence
on these quantum numbers appears in the symmetric-top
rotational wave functions [15]

21 +1

IMK) =
WITME) =/ 2

(-DF M DY), (14)

where [ is the spin of the target state, and M and K are
its projections on the space-fixed z-axis and the body-
fixed symmetry axis, respectively. We employ the defini-
tion of Edmonds [21] for the rotation matrices D, (w),
where w = (a, 8,7) represents the set of Euler angles
required to rotate the space-fixed axes of the deformed
target into the body-fixed axes®. Eq. 14 also defines the
coefficients of a transformation between an angular (w)
and angular-momentum (I M K') representation for states
in the space of target orientations. For an ideal axially-
symmetric rotor, the excitation energy of an excited state
of spin I above the bandhead is

2
EI—EK:%[I(I—FI)—K(K—FI)], (15)
where J is the moment of inertia about an axis perpen-
dicular to the symmetry axis. For K = %, there is an
additional term due to Coriolis coupling [15], which is
also inversely proportional to J.

For the present case we replace the asymptotic quan-
tum numbers ka by kI M K, where we explicitly show the
spin quantum numbers of the target state, but suppress
the projectile quantum numbers. In this paper we are
interested in the case where the target is unpolarized, so
we will calculate the compound cross section averaged
over the target spin projections M:

Q2,ua 1 + +
_EF 21—-}-1 Z< l(<IJ)\4K|W|¢l(<IJ)\4K>

M
(16)
We do not impose restrictions on the polarization state
of the projectile, and in principle appropriate averages
should be taken over the substates of the projectile. How-
ever, the main conclusion that in the adiabatic approx-
imation certain cross sections are independent of the I
and K quantum numbers of the target is independent of
the polarization of the projectile.

The adiabatic approximation was developed and ap-
plied early in the history of coupled-channel problems [7,
8, 23, 24], presumably because it is computationally eco-
nomical compared to the exact solution. It appears to
have fallen into disuse with the development of comput-
ers with sufficient memory and speed to carry out the
full solutions easily. In reexamining the adiabatic ap-
proximation for the present work, we have found that it

<Ucmpd>M -

I The angles (a,f3,7) are identical to (¢,0,%) as defined in
Ref. [22], p. 76. The present notation avoids possible confu-
sion with the scattering angles of the projectile. The phase of
the symmetric-top wave function of Eq. (14) is identical to that
of [15], p. 6; the extra factor (—1)X~M appears because the
Bohr-Mottelson and Edmonds definitions of the rotation matri-
ces differ by this factor. We also define a volume element for
the Euler angles by dw = da sin8df dvy, and a delta function
by §(w —w') = d(a — ') 6(cos B — cos ') §(y — ~'). The Euler-
angle eigenvectors |w) form a complete orthonormal set; that is,
(wlw") = 6(w — ') and [ dw |w){w| = 1.



provides useful insights into the target-state dependence
of the total, direct, and compound-formation cross sec-
tions. We have also found that it can be more accurate
than conventional solutions, if too few levels are included
in the full-scale calculations to guarantee convergence of
the results.

In the adiabatic approximation it is assumed that the
moment of inertia is so large that the nuclear rotational
motion can be considered frozen during the scattering,
and consequently all states within a band become degen-
erate (see Eq. (15)). Thus, for scattering of a projectile
incident on a target in a particular state |IMK), we re-
place the Lippman-Schwinger equation for the exact so-
lution,

|¢k1MK> kIMK) +G +)U|1/Jk1MK> (17)

by its limit as J — oo,

o) = KIME) + G Ulelh i), (18)

where |¢k1MK> is the adiabatic approximation to the

scattering state. The difference between G((J+) and szjl_,)o
is that in the latter the kinetic energy terms in the Hamil-
tonian corresponding to the target motion are absent,
since they are proportional to 1/J. We can also construct
solutions for scattering from a target at fixed orientation
w in the adiabatic limit,

6)) = [kw) + GUY, Ui, (19)

The desired solution, given by Eq. (18), can be ex-
pressed as a linear combination of the solutions to
Eq. (19). To see this, we multiply Eq. (19) by the trans-
formation coefficients (w|IMK) relating the angle and
angular-momentum representations, and integrate over
all values of w,

/dw SOV (W] TMK) = /dw [kw) (W] IMK)
+ [ awGl U el (20)

By using the completeness relation for the Euler-angle
eigenstates |w) in the first term on the right side of this
equation, and noting that in the second term the operator

szz,)o U may be taken outside the integral because it is
independent of w, we obtain
[l innre) = i)
+GU U / dw [pS) (W[ IM K. (21)

We compare this with Eq. (18) to find the key result

Wh) = [ dw o2 ITME) 22)

= [ 25 GV Do) (23)

We use this result to evaluate the compound formation
cross section of Eq. (16) in the adiabatic approximation.
Substituting Eq. (22) into the matrix element in Eq. (16)
yields

( kIMK|W|¢k1MK /dw’/dw (24)

< (IME) (IMEK) (60 W6l
Since the target orientation is fixed in |¢1((:)>, the oper-
ator W cannot change it; consequently W is local in w.
Moreover, the state vectors on either side of the matrix
element are orthogonal unless w’ = w. Thus the matrix
element simplifies to?

< kIMK|W|¢kIMK> (25)
/ dolIMK|w) (W IME) (650 W]6C0).

The sum over the target spin projections M is easily
carried out using the properties of the rotation matri-
ces [21],

> (IMK|w){w/ IMK) = (26)
M
2I +1
82

. _20+1
M

Combining Egs. (16), (25), and (26), the final result is

Q2u, 1
(Cempa)rs = =755 25 [ dw (0 Wleil). (27)

This result for the M-averaged compound cross section
in the adiabatic limit is simply the compound-formation
cross section for scattering from a target at fixed orienta-
tion, averaged over all possible values of the Euler angles
w. There is no dependence on either the target spin [
or the K-value of the band. This feature follows from
the assumed independence of the optical potential U to
these quantities, and of the averaging over the magnetic
substates M of the target.

The preceding derivation does not depend on specific
properties of W, and can be carried out for any valid op-
erator in the adiabatic approximation (i.e. any operator
that does not change the target orientation). Thus we
obtain the direct cross section %" by the substitution
(compare Egs. (11) and (13))

W — —n U §(E — Huao) U, (28)

2 Formally, we can represent W as |w)W (w){w| in the target sub-

(+)>

space, and we note that the state vector |¢ can be repre-

sented as a product |X(+)>\w) of a scattering state in the pro-
jectile subspace and a state at fixed orientation w in the target
subspace. These observations, together with the orthogonality
relation (w'|w) = §(w’ — w), yield the stated result.



where the target rotational kinetic energy terms are ab-
sent in H,q 0, the free Hamiltonian in the adiabatic limit.
As in the derivation for oempa, we use the adiabatic-
model condition that the above operator is diagonal in w.
Also as before, the adiabatic result for the M-averaged
direct cross section is the average over all orientations of
the cross section calculated for fixed w, and is indepen-
dent of I and K.

Since the total cross section oo is the sum of ocmpa
and 0%, its M-averaged value in the adiabatic limit will
share their properties. Specifically, all three cross sec-
tions are independent of I and K of the target state.
We note that this result does not require a partial wave
expansion of the coupled-channels problem, or a spec-
ification of the polarization state of the projectile. It
requires only an average over the magnetic substates of
the target, which is assumed to be unpolarized.

In Ref. [2], an approximation was investigated in which
the angular distributions for elastic and inelastic scatter-
ing to states of the same band in an odd-mass nucleus
were expressed as linear combinations of the angular dis-
tributions for scattering on an even-even (K = 0) nu-
cleus. Although not stated in [2], this relation also has
its origin in the adiabatic approximation, and can be de-
rived from the adiabatic-approximation scattering ampli-
tude in [7]. The accuracy of this result should be stud-
ied further using adequately converged coupled-channels
calculations, but this topic is beyond the scope of the
present article, which is concerned with angle-integrated
cross sections.

There are two approaches to implementing the adia-
batic approximation. In one of these, the coupled equa-
tions are solved in the body-fixed frame. This method is
significantly more efficient than the full (nonadiabatic)
technique, which is why it was implemented early in
the development of coupled channels calculations (e.g.
Refs. [7, 8]). Alternatively, a full coupled-channels cal-
culations can be made with all excitation energies set to
the same value, and with a sufficient number of levels
coupled to ensure convergence. This second approach
was employed in the adiabatic calculations shown in this
paper.

In the following section we will test the accuracy of the
adiabatic-approximation prediction that the cross sec-
tions oot Tempd, and o%" are independent I and K
when applied to calculations using the full (nonadiabatic)
coupled-channels technique.

IV. CROSS-SECTION DEPENDENCE ON [
AND K

In this section we further investigate the validity of
the adiabatic-approximation predictions in the actinide
region. We also show results for deformed rare-earth nu-
clei, which should be expected to be similar to those in
the actinides, but for smaller values of the moment of in-
ertia. We also show calculations for a statically deformed

nucleus in the s-d shell region, 2°Ne.

A. Actinide nuclei

To study the validity of the independence of certain
cross sections to the I and K quantum numbers, it is con-
venient to carry out calculations on a fictitious system we
refer to as “?3%U” that has level energies and quantum
numbers chosen to illustrate specific points, but other-
wise employs the optical potential and deformations for
the actual 233U described in Section II. We choose the
excitation energy spectrum for a band of given K to be
that of the ideal rotor of Eq. (15). It is well known that
the moments of inertia are band-dependent, and that the
K = 0 ground state bands of even-even nuclei have mo-
ments of inertia that are significantly smaller than those
for bands with K # 0. We choose the value of the iner-
tial parameter 7%2/2J to be 0.006 MeV, which is between
the physical values 0.0074 MeV for 238U (K = 0), and
0.0052 MeV for #°U (K = Z). Unless otherwise indi-
cated, this intermediate value of h?/2J is applied for all
K-values assumed for the fictitious “?38U”. Using this
common value of the inertial parameter allows us to study
the K-dependence of the adiabatic-approximation pre-
dictions without the additional complication introduced
by the actual band dependence of the moment of inertia.

Figure 6 shows the ratio of full coupled-channels (i.e.
nonadiabatic) calculations to adiabatic calculations for
Oempd, 0% and oy on the bandheads of assumed K = 0
and K = I bands in “*U”. These are the three cross
sections that are independent of I and K in the adia-
batic limit. The curves are for K = 0, and the points
are for K = % The adiabatic approximation is rather
good for all three cross sections, since in all cases it is
within approximately 2% of the true (nonadiabatic) re-
sult. The near equality of the results for K = 0 and
K= % shows that the K-independence prediction of the
adiabatic approximation is well reflected in the nonadia-

batic calculations.

The accuracy of the K-independence prediction is ex-
hibited in more detail in Fig. 7, which shows the ratio
of the compound cross sections for various K values (up
to K = 6) to that for K = 0. The deviations from
unity increase uniformly with increasing K, but do not
exceed 0.2%. Calculations carried out for half-integral K
fit smoothly between those for integral K, but for clarity
are not shown.

Finally, in Fig. 8 we show the dependence on the in-
ertial parameter h?/2J (labeled ¢ in the figure) of the
nonadiabatic/adiabatic ratio for calculations on a K =0
bandhead. The deviations from unity are roughly linear,
at least up to the value 0.006 MeV we have adopted as a
realistic average value of the inertial parameter.
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FIG. 6: Ratio of nonadiabatic to adiabatic calculations for
Oempds Jd", and o+ on a pseudo-nucleus resembling 2381y
except for the level structure (see text). The calculations
assume neutrons incident on a K = 0 bandhead (solid curves)
and a K = I bandhead (points). The moment of inertia is
the same for both cases, and in consequence the cross sections

are nearly independent of K.

B. Rare-earth nuclei

Like the actinides, the heavy rare-earth nuclei are un-
derstood to be rigidly deformed rotors, and thus it should
be expected that many of the results we have found for
the actinides should apply also to the deformed rare earth
nuclei. The principal difference is that the moment of
inertia is significantly smaller in the rare earths, as indi-
cated by the level spacings in the ground-state band of
even-even nuclei, which are roughly twice those in the ac-
tinides. We should therefore expect that the deviations
from the adiabatic model should be somewhat larger in
the rare earths than in the actinides, but should follow
the same patterns. We show a small sample of results
for calculations on three nuclei spanning the same range
of K as for the actinide nuclei, **Ho ("), 1%Tm (%Jr),
and °Yb (0%).

The optical potential used in these calculations is a
regional potential developed for data evaluations in the
rare earth region [25]. The parameterization of this po-
tential is described in Appendix B. As for the potential
used in the actinides, this potential was used in calcula-
tions with N=3 for even-even nuclei and N=5 otherwise;
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FIG. 7: Nonadiabatic calculations for the pseudo-nucleus
“Z381J”  showing the ratio of compound cross sections on the
bandhead for a given K value to that for K = 0. These results
show that the deviation from the adiabatic model prediction
of K-independence is very small; note the highly expanded
vertical scale. Calculations with half-integral K fit smoothly
between the values shown for integral K.
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FIG. 8: Nonadiabatic/adiabatic ratio of the compound for-
mation cross section for reactions on a K = 0 bandhead, for
several values of the inertial parameter ¢ = h?/2J. The values
of ¢ extend from 0, which is the adiabatic limit, up to 0.006,
which represents a rough average of physical values for ac-
tinide nuclei. Note that these ratios are approximately linear
in ¢, which determines the excitation energy scale.

this potential should therefore also be readjusted for cal-
culations with an extended level scheme.

The deformation lengths were taken from the deforma-
tions measured for 1%°Er by alpha scattering in Ref. [26].
This experiment, which studied a number of deformed
rare earth nuclei, showed that the hexadecupole defor-
mations in the region of interest to be very small, and



consequently we set d4 to zero. The quadrupole deforma-
tion lengths we adopt are given by d, = 1.8202(A/166)'/3
fm, which incorporates a scaling as A'/3, as was done in
the actinide calculations.

The calculations in the rare earth region were car-
ried out with experimentally-determined level schemes,
taken from ENSDF [3]. Since the ENSDF compilation
contains only 12 levels for the '9°Tm ground-state band
and we wish to carry out calculations with up to 14 cou-
pled levels, we have added two levels by extrapolation of
the known levels; these levels are at excitation energies
2.038 MeV (25/2)% and 2.163 MeV (27/2)7.

Using the above parameters, the calculations were
carried out exactly as for those in the actinides using
the ECIS06 code, expanding the potential to Legendre-
polynomial order 8. We do not show details of the con-
vergence as a function of the number of coupled states
N, but the results are similar to those in the actinides.
As before, we find that N = 8 for K = 0 bands and
N = 14 for K # 0 is sufficient to ensure convergence of
the excited- to ground-state ratios. Also, the pronounced
variations in the excited to ground state ratio for even wvs.
odd N observed for 23°Pu and shown in Fig. 3 were re-
peated for 6°Tm.
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FIG. 9: Ratio of compound formation cross sections on the
first excited state to those on the ground state for three de-

formed rare-earth nuclei, ***Ho (£ 7), "*Tm (%+), and '"Yb
(07).

The results for the compound formation cross sections
are shown in Fig. 9 for the first-excited to ground state
ratios, and Fig. 10 for the ratio of nonadiabatic to adia-
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FIG. 10: Same as for Fig. 9, but for the ratio of nonadiabatic
to adiabatic calculations for neutrons incident on the ground
state of each target.

batic calculations on the bandheads.

As seen in Fig. 9, the deviations of the excited- to
ground-state ratios from the adiabatic limit are small,
but not as small as for the actinides. The deviation is
of the order of 1% at low energies for 17°Yb, but for the
other two nuclei the deviations are significantly smaller
(approximately 0.1% or less). These results indicate that
the compound formation cross sections shown in Fig. 3 of
[1] for the ground and first excited states should be closer
together in a fully converged calculation. The values for
the nonadiabatic to adiabatic ratios of Fig. 10 show de-
viations of a few percent from the adiabatic limit, as in
the actinides. However, we note that this deviation is as
large as 6% for '%®Ho at low energies.

C. s-d shell nuclei

A more severe test of the adiabatic approximation
should be provided by the deformed light nuclei in the s-
d shell, such as ?°Ne. This isotope has a 2% state at 1.63
MeV, defining a good rotational band at least to the 8T
state at 15.8 MeV. These energies indicate a much smaller
moment of inertia than the actinide and rare-earth nuclei
discussed above, and so we might expect much larger de-
viations of the non-adiabatic calculations compared with
the results in the adiabatic limit. For our calculations,



the neutron-2°Ne optical potential used was the global
potential of Koning and Delaroche [27], in conjunction
with the deformation parameters of Ref. [28]. The po-
tential was evaluated at 5 MeV and used at all energies
up to 50 MeV with nonrelativistic kinematics; this treat-
ment should be sufficient to exhibit the state dependence
of the cross sections, but is not intended as a realistic
calculation of their absolute values.

Figure 11 shows first the results for coupled-channels
up to the 87 state, where curves show the ratio of cross
sections for the first excited state to those for the ground
state. We see that the compound nucleus cross sections
agree within 3%, and the direct reaction totals agree to
better than 1%. Convergence is in fact obtained once
the 61 state is included, but the final ratios are still sur-
prisingly close to unity. Fig. 11 directly compares the
non-adiabatic and adiabatic cross sections for the ground
state. As expected, the ratio of these is further from unity
than for the heavier nuclei, but still within 4% at almost
all the incident energies.
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FIG. 11: Ratio of the cross sections oc¢mpad, U‘m7 and oot ON
the first excited state to those on the ground state for the
deformed s-d shell nucleus 2°Ne.

V. DISCUSSION AND CONCLUSIONS

Using standard coupled-channels calculations, we have
investigated the behavior of the total, compound for-
mation, and direct (elastic plus summed inelastic) cross

11

108_ rorrTT rorrTT o rorrTTT

106 L Compound E
1.04 £

1.02

1.00 |

1.02 F Direct E

.00 fremeemmeemmenr e ]
20
0.98 F Ne

0.96 |

104b Total E

1.02 |

Cross section ratio (nonadiabatic / adiabatic)

1.00 f

0.98 | 3

096 L 1+ 11l
0.001 0.01 0.1 1 10

Neutron energy (MeV)

FIG. 12: Same as for Fig. 11, but for the ratio of nonadiabatic
to adiabatic calculations on a ground-state target for each of
the cross sections.

sections for neutrons incident on the ground and first-
excited states of statically deformed nuclei in the ac-
tinides, the rare-earth region, and s-d shell nuclei. In
all of these regions, the ratio of excited- to ground-state
cross sections is very close to unity. The deviations from
unity extend from about 2% in the s-d shell example
(*Ne) to less than 0.1% is the heaviest nuclei. It was es-
sential to include sufficient levels in the coupled-channels
calculations to achieve stable results; in the actinides and
rare earths, we require 8 levels for K = 0 bands and 14
for K #£ 0.

Our results are consistent with those of Sukhovitskii
et al. [9], who studied the convergence of neutron cross
sections on 23U as the number of coupled target states
was increased, and found that if too few states were in-
cluded significant errors could be incurred in important
cross sections, such as the compound formation cross sec-
tion (see Fig. 10 of Ref. [9]). In particular, the common
practice of calculating neutron cross sections with 3 cou-
pled levels in K = 0 bands was shown to be inadequate.
The present work shows that one can also obtain poor re-
sults in bands with K # 0 when only 5 levels are coupled,
which has also been common practice. Optical potentials
whose parameters were determined with a restricted set
of coupled states, including those used in the actinide and
rare-earth calculations here, will need to be readjusted
when an adequately large set of states is incorporated.



The nearly equal cross sections for ground and excited-
state targets has led us to reexamine the adiabatic ap-
proximation for scattering on deformed nuclei. We have
shown that in this model the total, compound, and di-
rect cross sections are independent of the spin of the tar-
get state, I, as well as of the K-value of the band of
which it is a member. We have tested the accuracy of
the adiabatic approximation by comparing it with full
coupled-channels calculations, and find that in all cases
it is within a few percent of the exact results. In many
cases this is comparable to or better than the accuracy
of experiments. In the actinides and rare earths, the
excited/ground ratio is in significantly better agreement
with the adiabatic approximation than the ground-state
cross sections.

Our conclusion that the adiabatic approximation is
rather accurate provides a connection between cross-
section calculations in the spherical and deformed regions
of the isotopic table. In both cases the optical potentials
normally employed are independent of the target spin.
This implies the assumption that the projectile interacts
with the nuclear density as a whole, and is essentially
independent of the specific structural properties of the
valence particle (or particles) that account for the spin
(or K for deformed systems). In a spherical calculation
one assumes the target spin is zero. However, in coupled-
channels calculations for deformed nuclei it is necessary
to include the K-value of the target band explicitly in the
wave function, even though it is not included in the po-
tential. In the adiabatic approximation the cross sections
of interest in this paper are independent of K; this pro-
vides the connection between the spherical and deformed
systems. This picture is supported by experimental ev-
idence from neutron total cross section measurements.
For nuclei usually treated as spherical, such measure-
ments show little evidence for dependence on the spin
of the target; see, for instance, the extensive measure-
ments from LANSCE/WNR [29, 30]. The same is true
for measurements in the actinides [31]. In both cases,
the total cross sections for odd-mass nuclei are close (i.e.
within experimental uncertainties) to those for neighbor-
ing even-even nuclei. Thus the target spin appears to
act as an inert spectator in both spherical and deformed
cases, and this is confirmed in the adiabatic approxima-
tion.

A frequently stated condition for the validity of the
adiabatic approximation is that the projectile energy be
large compared to the excitation energy of the most im-
portant target excitations. Clearly this requirement is
too stringent, since, as is evident in the present work, the
adiabatic approximation gives good results even down to
the lowest energies where the condition is certainly not
satisfied. A qualitative argument for the validity of the
approximation at low energies is that most of the interac-
tion of the projectile with the target, and in particular the
coupling to other target states, takes place after the pro-
jectile has been sufficiently accelerated by the attractive
nuclear potential for the approximation to be appropri-
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ate. A quantitative implementation of this idea has been
suggested by Bohr and Mottelson (Ref. [15], Sec. 5A-2),
in which an adiabatic treatment for the wave function is
carried out inside the nucleus and matched at the nuclear
boundary to wave functions in the external region which
are treated nonadiabatically (i.e. with physical values
for the target excitations). This approach has been used
for estimating s-wave strength functions in deformed nu-
clei [32].

We conclude with some comments on the implications
of the present work for practical calculations. The find-
ings in this paper apply to the transmission coefficients
used in Hauser-Feshbach calculations, since they are es-
sentially a decomposition of o¢y,pq into components with
fixed total angular momentum and parity. The same con-
clusions regarding approximate independence of o¢ppq to
I and K apply. We do not advocate using adiabatic cal-
culations routinely, as long as the full coupled-channels
calculations are carried out with a sufficient number of
states. However, calculations on states with K # 0 can
be time consuming, and the present work suggests that
the cross sections and transmission coefficients can be cal-
culated (at least in the deformed actinide and rare-earth
nuclei) with a fictitious even-even (i.e. K = 0) model
for the target, in which the moment of inertia is chosen
the same as for the actual target. This is the approxi-
mation that was studied by Lagrange et al. [2]. While in
some cases that work showed significant differences be-
tween the actual calculations and the fictitious even-even
model at low energies (/21 MeV), it appears that coupling
sufficient levels removes these discrepancies.
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Appendix A: Calculation of compound and direct
cross sections

In this appendix we derive the expressions for the
compound-nuclear formation and direct cross sections,
Egs. (10)-(13) of Section III, using the definitions intro-
duced in that section.

We begin by noting the relation between the total cross
section in the incident state ka and the forward scattering
amplitude given by the optical theorem,

47

Otot = 5 Im fka,ka-

; (A1)

This is a very general result that applies to any wave



scattering problem whose amplitude at sufficiently large
distances from the scatterer (apart from an overall nor-
malization) can be written as
) eikr
Ar) = kT ¢

fk’,k7 (A2)
where |k'| = |k| = k. Ref. [33] summarizes a remark-
ably simple argument of van de Hulst [34] that derives
the optical theorem from Eq. (A2) by considering the
depletion of the intensity |A(r)|? at forward angles due
to interference between the the incident and scattered
waves. The essential features of a specific problem are
contained in the calculation of the scattering amplitude.
In the present case these features are the complex inter-
action U and the presence of multiple channels coupled
by this interaction®.

The T-matrix for scattering from the state ka to the
state k’'a’ is

Tiva,ka = (K'd'[U[L), (A3)
which is related to the scattering amplitude fx/q’ ko by
Q) 2,ua/
‘a’, a:__—T’a/ as A4
Jearx 1z Dtk (Ad)

where p, is the reduced mass in channel a’. The scat-
tering amplitude has been defined so that the differential
cross section is

dak/a’, ka/dR/ = (’Ul/l}) |fk’a’7 ka|27 (AS)

where we denote the element of solid angle in the direc-
tion of k/ by dk’. The relative velocities of the interacting
particles in the initial and final states are denoted by v
and v’, respectively. Using the optical theorem, the total
cross section for incident channel ka can be related to
the T-matrix element by

Q2uq
k h?
The T-matrix element in the last equation can be recast

by eliminating |ka) in favor of [/L")) with the help of the
Lippman-Schwinger equation (Eq. (8)):

47
Otot = ? Im fka,ka =

Im (ka|U|e).  (A6)

(kalUly)) =
(e [Us) = (e UGG UGy
We take the imaginary part of this equation and insert
it in Eq. (A6), which yields the result

Q2u,
Otot = —Eﬁlm <¢1(<Z)|U|¢1(<Z)>

Q 2,
k h?

(A7)

(A8)

Im (DUt GHU ).

3 Note that since any open coupled channels are distinguishable
from the elastic channel, they will not contribute to the inter-
ference between incident and scattered waves that leads to the
optical theorem. Thus Eq. (A1) is valid even in the presence of
channel coupling.
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We will now show that the first term in this expression
is the compound-nuclear formation cross section, ocmpd,
ar;d the second is the direct interaction cross section,
oM.

We begin this demonstration by making an explicit
calculation of the direct cross section as the sum over all
final states coupled by the interaction U, including both
elastic and inelastic scattering. We use the Fermi golden
rule for the transition probability per unit time to a given
final state,

2
Wk'a!, ka = f |T’k’a’7 ka|25(Eka - Ek’a’)- (Ag)
The energies of the initial and final states are Fy, and
FEy o ; the delta function constrains these to a common
value, which we refer to below as E. We divide the
transition probability by the nonrelativistic incident flux,

(1/Q)(hk/ua), to yield the cross section to get from state
ka to K'a’,

Q 2
7T L h2
X <1/)1(<Z)|UT|k’a/> §(Fxa — Exrar) <k/a/|U|¢1(<:)>'

(A10)

Ok’a’ ka =

The states |k’a’) form a complete set in the space of states
coupled by the interaction U, and so we can sum over the
final states and use closure to remove explicit reference
to them. We thus obtain the direct cross section,

O'diT = Zak/a',ka (All)
k'a’
Q 2,
= m o (i (U1 6(E — Ho) Uluid),

which is the result shown in Eq. (13).

We now show that this expression is identical to the
second term in Eq. (A8), which is the same as in Eq. (12).
To do this we use the symbolic identity relating the
outgoing-wave and principal-value Green’s functions for
the noninteracting Hamiltonian,

+) >

(+) _ — -
GO = E—HO ’L7T6(E Ho),

(A12)

where P indicates that the principal value is to be taken
when calculating integrals containing this Green’s func-
tion. The operator P/(E — Hy) is Hermitian, and thus
its expectation value in any configuration is purely real.
Therefore, if we insert the above expression for Géﬂ
in the second term of Eq. (A8), the term containing
the principal-value Green’s function vanishes because its
matrix element has no imaginary part, and the surviv-
ing term that contains the delta function is identical to
Eq. (A11).

We can put the expression for 0% of Eq. (A11) in the
more familiar form of a sum over angle-integrated partial
cross sections. By reinserting the complete set of final
states |k’a’) and using the definitions of Eqs. (A3)-(A5),



we obtain

(A13)

Z/dk/ dgk’a/ ka
dk’

where the sum is over all open channels, both elastic
(0elas) and otherwise (0yner). In obtaining this result we
have also used the relation »_,, = ©/(27)% [ dk’ to pass
to the continuous variable k' from the discretized, box-
normalized form.

Since the second term of Eq. (A8) has been identified
with o%", the first term must be oempa (see Eq. (1)),
which is the expression shown in Eq. (10). If we write
U =V +iW and again use the fact that the Hermitian
part V does not contribute because the matrix element
is real, we get the second form, Eq. (11).

The expressions for absorption, Egs. (10) and (11), are
formally the same as for scattering in a single-channel
problem. For multiple channels, these expressions in-
clude absorption from all of the coupled channels, as well
as in the coupling between channels. To make this ex-
plicit, we define projection operators P, that project onto
a specific channel a such that > P, = 1, and introduce
the abbreviations

Plugt)y = o)) and (A14)
PWP, = Wy (A15)

for the projections of the state vector incident in channel
a and the absorptive interaction, respectively. Thus the
matrix element in Eq. (11) describing compound forma-
tion from incident channel a can be written as

W W) = 3 @ Wi,

cb

(A16)

There is no distinction between open and closed cou-
pled channels, and absorption may occur from both
classes. The diagonal terms b = c¢ give absorption
within a channel, while the off-diagonal terms correspond
to absorption during the transitions between channels.
The absorption cross section obtained from this expres-
sion, supplemented by the direct interaction contribu-
tion, is nearly equivalent to the result of Hussein et al.
in Eq. (A.11) of Ref. [20]. However, their expression
lacks the off-diagonal terms, since they assumed that the
channel-coupling part of the interaction was Hermitian.

The derivations of o¢mpq and o®" refer to specific pro-
jections of the projectile and target spins (which are con-
tained in the incident channel index a), and in an applica-
tion these cross sections must be appropriately summed
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and averaged over the projections. Charged particles
may be treated by the artifice of including a large shield-
ing radius R. In this case, the expressions for ocpmpq are
valid as R — oo, but those for ¢%" are not, since they
contain the divergent elastic scattering.

Appendix B: Rare-earth optical potential

In this appendix we describe the optical potential used
in the calculations for the deformed rare earth nuclei in
Sec. IVB. This potential was developed for an evalu-
ation of neutron and charged-particle cross sections in
the region of samarium, europium, and gadolinium nu-
clei, and was determined principally from fits to neutron
strength functions and total cross sections in that re-
gion [25]. The parameters are shown in Table I. The pa-
rameterization of the optical potential employed here is
defined in Ref. [27], Egs. (2)—(4). The range of applicabil-
ity of this potential is 0-30 MeV. Relativistic kinematics
were used in the present calculations.

TABLE I: Neutron optical model parameters for calculations
on rare-earth nuclei in Sec. IV B. The asymmetry parameter
nis (N — Z)/A, where N, Z, A are the neutron, proton, and
mass numbers of the target. Energies are in MeV, and lengths
in fm. F is the lab-system incident neutron energy.

Real Volume

\%% 50.125 — 0.2331E — (20.050 — 0.0933E)n

rv 1.25

ay 0.65

Imaginary Volume

Wy 0, E <8
—1.357 4 0.1696 E — (—0.543 + 0.0678FE)n, E > 8

rv 1.25

ay 0.65

Imaginary Surface
3.743 + 0.334F — (1.497 + 0.134E)n, E <38
6.974 — 0.0697E — (2.790 — 0.0279E)n, E > 8

D 1.25

ap 0.58
Real Spin Orbit

Vso 8.427

rso 1.25

aso 0.65
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