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We investigate the fusion barriers for reactions involving Ca isotopes 40Ca + 40Ca, 40Ca + 48Ca,
and 48Ca+ 48Ca using the microscopic time-dependent Hartree-Fock theory coupled with a density
constraint. In this formalism the fusion barriers are directly obtained from TDHF dynamics. We
also study the excitation of the pre-equilibrium GDR for the 40Ca+ 48Ca system and the associated
γ-ray emission spectrum. Fusion cross-sections are calculated using the incoming-wave boundary
condition approach. We examine the dependence of fusion barriers on collision energy as well as on
the different parametrizations of the Skyrme interaction.
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I. INTRODUCTION

The microscopic study of nuclear many-body problem
and the understanding of the nuclear interactions that
reproduce the observed structure and reaction proper-
ties are the underlying challenges of low energy nuclear
physics. In this context, detailed investigations of the
fusion process will lead to a better understanding of the
interplay among the strong, Coulomb, and weak interac-
tions as well as the enhanced correlations present in these
many-body systems.

Recently, particular experimental attention has been
given to fusion reactions involving Ca isotopes [1–4].
These new experiments supplemented the older fusion
data [5] and extended it to lower sub-barrier energies.
Comparison of the sub-barrier cross-sections with those
calculated using standard coupled-channel calculations
suggested a hindrance of the fusion cross-sections at deep
sub-barrier energies [1–3]. One of the underlying reasons
for the failure of standard coupled-channel approach is
the use of frozen densities in the calculation of double-
folding potentials, resulting in potentials that behave in
a completely unphysical manner for deep sub-barrier en-
ergies. While the outer part of the barrier is largely de-
termined by the early entrance channel properties of the
collision, the inner part of the potential barrier is strongly
sensitive to dynamical effects such as particle transfer
and neck formation. This has been remedied in part by
extensions of the coupled-channel approach to include a
repulsive core [6] or the incorporation of neck degrees of
freedom [7, 8]. More recent calculations [4, 9, 10] us-
ing the coupled-channel approach with a repulsive core
have provided much improved fits to the data. A detailed
microscopic study of the fusion process for Ca based re-
actions 40Ca+ 40Ca, 40Ca+ 48Ca, and 48Ca+ 48Ca could
provide further insight into the reaction dynamics as well
as a good testing ground for the theory since these iso-
topes are commonly used in fitting the parameters of the
effective nuclear interactions, such as the Skyrme force.

During the past several years, we have developed a mi-
croscopic approach for calculating heavy-ion interaction

potentials that incorporates all of the dynamical entrance
channel effects included in the time-dependent Hartree-
Fock (TDHF) description of the collision process [11, 12].
The method is based on the TDHF evolution of the nu-
clear system coupled with density-constrained Hartree-
Fock calculations (DC-TDHF) to obtain the ion-ion in-
teraction potential. The formalism was applied to study
fusion cross-sections for the systems 132Sn+64Ni [13],
64Ni+64Ni [14], 16O+208Pb [15], 132,124Sn+96Zr [16], as
well as to the study of the entrance channel dynamics
of hot and cold fusion reactions leading to superheavy
element Z = 112 [17], and dynamical excitation ener-
gies [18]. In all cases, we have found good agreement
between the measured fusion cross sections and the DC-
TDHF results. This is rather remarkable given the fact
that the only input in DC-TDHF is the Skyrme effective
N-N interaction, and there are no adjustable parameters.

In Section II we outline the main features of our micro-
scopic approach, the DC-TDHF method. In Section II
we also discuss the calculation of ion-ion separation dis-
tance, coordinate-dependent mass, calculation of fusion
cross-sections, and giant dipole resonance (GDR) formal-
ism. In Sec. III we present interesting aspects of the
reaction dynamics and compare our results with exper-
iment and other calculations. In Sec. V we summarize
our conclusions.

II. FORMALISM

A. DC-TDHF Method

In the DC-TDHF approach [11] the TDHF time-
evolution takes place with no restrictions. At certain
times during the evolution the instantaneous density
is used to perform a static Hartree-Fock minimization
while holding the neutron and proton densities con-
strained to be the corresponding instantaneous TDHF
densities [19, 20]. In essence, this provides us with
the TDHF dynamical path in relation to the multi-
dimensional static energy surface of the combined nu-
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clear system. The advantages of this method in com-
parison to other mean-field based microscopic methods
such as the constrained Hartree-Fock (CHF) method are
obvious. First, there is no need to introduce artificial
constraining operators which assume that the collective
motion is confined to the constrained phase space: sec-
ond, the static adiabatic approximation is replaced by
the dynamical analogue where the most energetically fa-
vorable state is obtained by including sudden rearrange-
ments and the dynamical system does not have to move
along the valley of the potential energy surface. In short
we have a self-organizing system which selects its evolu-
tionary path by itself following the microscopic dynam-
ics. All of the dynamical features included in TDHF are
naturally included in the DC-TDHF calculations. These
effects include neck formation, mass exchange, internal
excitations, deformation effects to all order, as well as
the effect of nuclear alignment for deformed systems. In
the DC-TDHF method the ion-ion interaction potential
is given by

V (R) = EDC(R)− EA1
− EA2

, (1)

where EDC is the density-constrained energy at the in-
stantaneous separation R(t), while EA1

and EA2
are the

binding energies of the two nuclei obtained with the same
effective interaction. In writing Eq. (1) we have intro-
duced the concept of an adiabatic reference state for a
given TDHF state. The difference between these two en-
ergies represents the internal energy. The adiabatic refer-
ence state is the one obtained via the density constraint
calculation, which is the Slater determinant with lowest
energy for the given density with vanishing current and
approximates the collective potential energy [19]. We
would like to emphasize again that this procedure does
not affect the TDHF time-evolution and contains no free
parameters or normalization.
In addition to the ion-ion potential it is also possible

to obtain coordinate dependent mass parameters. One
can compute the “effective mass” M(R) using the con-
servation of energy

M(R) =
2[Ec.m. − V (R)]

Ṙ2
, (2)

where the collective velocity Ṙ is directly obtained from
the TDHF evolution and the potential V (R) from the
density constraint calculations. In calculating fusion
cross-sections this coordinate-dependent mass is used to
obtain a transformed ion-ion potential as described be-
low.

B. Excitation Energy

The calculation of the excitation energy is achieved by
dividing the TDHF motion into a collective and intrin-
sic part. The major assumption in achieving this goal

is to assume that the collective part is primarily deter-
mined by the density ρ(r, t) and the current j(r, t). Con-
sequently, the excitation energy can be formally written
as [18]

E∗(t) = ETDHF − Ecoll (ρ(t), j(t)) , (3)

whereETDHF is the total energy of the dynamical system,
which is a conserved quantity, and Ecoll represents the
collective energy of the system. In the next step we break
up the collective energy into two parts

Ecoll (t) = Ekin (ρ(t), j(t)) + EDC (ρ(t)) , (4)

where Ekin represents the kinetic part and is given by

Ekin (ρ(t), j(t)) =
m

2

∫

d3r j2(t)/ρ(t) , (5)

which is asymptotically equivalent to the kinetic energy
of the relative motion, 1

2
µṘ2, where µ is the reduced

mass and R(t) is the ion-ion separation distance. The
dynamics of the ion-ion separation R(t) is provided by an
unrestricted TDHF run thus allowing us to deduce the
excitation energy as a function of the distance parameter,
E∗(R).

C. Calculation of R

In practice, TDHF runs are initialized with energies
above the Coulomb barrier at some large but finite sepa-
ration. The two ions are boosted with velocities obtained
by assuming that the two nuclei arrive at this initial sep-
aration on a Coulomb trajectory. Initially the nuclei are
placed such that the point x = 0 in the x − z plane
is the center of mass. During the TDHF dynamics the
ion-ion separation distance is obtained by constructing a
dividing plane between the two centers and calculating
the center of the densities on the left and right halves of
this dividing plane. The coordinate R is the difference
between the two centers. The dividing plane is deter-
mined by finding the point at which the tails of the two
densities intersect each other along the x-axis. Since the
actual mesh used in the TDHF calculations is relatively
coarse we use a cubic-spline interpolation to interpolate
the profile in the x-direction and search for a more pre-
cise intersection value. This procedure has been recently
described in Ref. [21] in great detail.
The standard procedure for calculating R as described

above starts to fail after a substantial overlap is reached
(for R values smaller than the ones studied in this
manuscript). We have observed that if one defines the

ion-ion separation as R = R0

√

|Q20|, where Q20 is the
mass quadrupole moment for the entire system, calcu-
lated by using the collision axis as the symmetry axis,
and R0 is a scale factor determined to give the correct
initial separation distance at the start of the calculations.
Calculating R this way yields almost identical results to
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the previous procedure until that procedure begins to fail
and continues smoothly after that point. Of course the
minimum value of R calculated this way is never zero but
is determined by the quadrupole moment of the compos-
ite system.

D. Fusion Cross-Section

We now outline the calculation of the total fusion cross
section using an arbitrary coordinate-dependent mass
M(R). Starting from the classical Lagrange function

L(R, Ṙ) =
1

2
M(R)Ṙ2 − V (R) , (6)

we obtain the corresponding Hamilton function

H(R,P ) =
P 2

2M(R)
+ V (R) , (7)

where the canonical momentum is given by P =M(R)Ṙ.
Following the standard quantization procedure for the
kinetic energy in curvilinear coordinates [22]

T =
−~

2

2

[

g−
1

2

∂

∂qµ
g

1

2 gµν
∂

∂qν

]

, (8)

where gµν(q) denotes the metric tensor and gµν(q) the
reciprocal tensor, one obtains the quantized Hamiltonian

H(R, P̂ ) =
1

2

[

M(R)−
1

2 P̂M(R)−
1

2 P̂
]

+ V (R) . (9)

with the momentum operator P̂ = −i~d/dR. The total
fusion cross cross-section

σf =
π

k2

∞
∑

L=0

(2L+ 1)TL , (10)

can be obtained by calculating the potential barrier pen-
etrabilities TL from the Schrödinger equation for the rela-
tive motion coordinate R using the Hamiltonian (9) with
an additional centrifugal potential

[

H(R, P̂ ) +
~
2L(L+ 1)

2M(R)R2
− Ec.m.

]

ψL(R) = 0 . (11)

Alternatively, instead of solving the Schrödinger equa-
tion with coordinate dependent mass parameter M(R)
for the heavy-ion potential V (R), we can instead use the
constant reduced mass µ and transfer the coordinate-
dependence of the mass to a scaled potential U(R̄) using
the well known coordinate scale transformation [23]

dR̄ =

(

M(R)

µ

)
1

2

dR . (12)

Integration of Eq. (12) yields

R̄ = f(R) ⇐⇒ R = f−1(R̄) . (13)

As a result of this point transformation, both the clas-
sical Hamilton function, Eq. (7), and the corresponding
quantum mechanical Hamiltonian, Eq. (9), now assume
the form

H(R̄, P̄ ) =
P̄ 2

2µ
+ U(R̄) , (14)

and the scaled heavy-ion potential is given by the expres-
sion

U(R̄) = V (R) = V (f−1(R̄)) . (15)

The fusion barrier penetrabilities TL(Ec.m.) are ob-
tained by numerical integration of the two-body
Schrödinger equation

[

−~
2

2µ

d2

dR̄2
+
L(L+ 1)~2

2µR̄2
+ U(R̄)− E

]

ψ = 0 , (16)

using the incoming wave boundary condition (IWBC)
method [24]. IWBC assumes that once the minimum
of the potential is reached fusion will occur. In prac-
tice, the Schrödinger equation is integrated from the po-
tential minimum, Rmin, where only an incoming wave
is assumed, to a large asymptotic distance, where it
is matched to incoming and outgoing Coulomb wave-
functions. The barrier penetration factor, TL(Ec.m.) is
the ratio of the incoming flux at Rmin to the incoming
Coulomb flux at large distance. Here, we implement the
IWBC method exactly as it is formulated for the coupled-
channel code CCFULL described in Ref. [25]. This gives
us a consistent way for calculating cross-sections at above
and below the barrier energies.

E. GDR Excitation

Let us now consider a central collision in x-direction
and introduce the quantity

D(t) =
NZ

A

[

1

Z

Z
∑

p=1

< xp(t) > −
1

N

N
∑

n=1

< xn(t) >

]

(17)
which represents the expectation value of the x-
component of the dipole operator dx/e taken with the
time-dependent TDHF Slater determinant |Φ(t) >. Fol-
lowing the bremsstrahlung approach developed by Baran
et al. [26, 27] we define the dipole acceleration

D′′(t) =
d2D(t)

dt2
(18)

and introduce its Fourier transform

D′′(ω) =

∫ tmax

tmin

D′′(t)eiωtdt . (19)

Alternatively, for nearly harmonic vibrations one can use

the expression |D′′(ω)|
2
= ω4 |D(ω)|

2
, with

D(ω) =

∫ tmax

tmin

D(t)eiωt sin4
(

π
t− tmin

tmax − tmin

)

dt . (20)
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The time filtering sin4 is used to smooth out peaks com-
ing from finite integration time. The “power spectrum”
of the electric dipole radiation is given by [26]

dP

dEγ
=

2α

3πEγ

∣

∣

∣

∣

1

c
D′′(ω)

∣

∣

∣

∣

2

, (21)

where α = e2/(~c) ≈ 1/137 denotes the fine structure
constant. Recently, pre-equilibrium GDR excitation has
also been studied in the context of TDHF [28].

III. RESULTS

Calculations were done in 3-D geometry and using
the full Skyrme interaction including all of the time-
odd terms in the mean-field Hamiltonian [29]. The pri-
mary Skyrme parametrization used was SLy4 [30] but we
have also tested the new UNEDF0 [31] and UNEDF1 [32]
parametrizations. For the reactions studied here, the lat-
tice spans 48 fm along the collision axis and 15 fm in the
other two directions. Derivative operators on the lattice
are represented by the Basis-Spline collocation method.
One of the major advantages of this method is that we
may use a relatively large grid spacing of 1.0 fm and nev-
ertheless achieve high numerical accuracy. The initial
separation of the two nuclei is 18 fm for central colli-
sions. The time-propagation is carried out using a Tay-
lor series expansion (up to orders 10− 12) of the unitary
mean-field propagator, with a time-step ∆t = 0.4 fm/c.
We have performed density constraint calculations every
10 − 20 time steps. The accuracy of the density con-
straint calculations is commensurate with the accuracy
of the static calculations.

A. 40Ca+40Ca System

In this subsection we will present our results for the
40Ca+40Ca system. Most of our general discussions will
be provided here as they would be the same for other
systems. Specific points about individual systems and
comparison of results for the three systems will be taken
up in the subsequent sections.
In Fig. 1 we show the microscopic ion-ion potential bar-

riers obtained using Eq. (1) calculated at three different
collision energies, ETDHF = 55 MeV (black solid curve),
ETDHF = 60 MeV (red solid curve), and ETDHF =
65 MeV (blue solid curve). We observe a relatively small
dependence on the collision energy. At lower energies
the system has more time available for rearrangements to
take place through the formation of a neck, whereas this
is less and less the case at higher energies and the poten-
tial barrier approaches the frozen-density limit [21]. This
produces the observed trend in Fig. 1, where the lowest
barrier peak corresponds to the lowest energy and the
barrier height increases with increasing collision energy.
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FIG. 1. (Color online) Potential barriers, V (R), for the
40Ca+40Ca system obtained from density constrained TDHF
calculations using Eq. (1) at three different energies, ETDHF =
55 MeV (black solid curve), ETDHF = 60 MeV (red solid
curve), and ETDHF = 65 MeV (blue solid curve). The three
dashed curves correspond to the transformed potential in
Eq. (15) using the coordinate dependent masses. Also shown
is the point Coulomb potential.

The barrier heights are 53.02, 53.43, and 53.57 MeV, re-
spectively. Similar energy dependence was also observed
in the DD-TDHF calculations of Ref. [21] and becomes
more prevalent for heavier systems. Similarly, the po-
sition of the barrier peak moves toward smaller R val-
ues, albeit very slowly in this case, with increasing en-
ergy. Corresponding R values for the barrier maximum
are 10.41, 10.32, and 10.23 fm. What is also shown on
Fig. 1 is the Coulomb potential assuming the two nuclei
to be point particles with Z = 20. During the approach
phase the microscopically calculated DC-TDHF poten-
tial traces the point Coulomb potential, differing by less
than 150 keV, which provides a test for the numerical
accuracy.

The energy dependence of potential barriers can also
be understood if we examine the coordinate dependent
mass of Eq. (2) shown in Fig. 2 for three different en-
ergies, ETDHF = 55 MeV (black solid curve), ETDHF =
60 MeV (red solid curve), and ETDHF = 65 MeV (blue
solid curve). The R-dependence of this mass at lower
energies is very similar to the one found in CHF calcula-
tions [23]. On the other hand, at higher energies the co-
ordinate dependent mass essentially becomes flat, which
is again a sign that most dynamical effects are contained
at lower energies. The peak at small R values is due to
the fact that the center-of-mass energy is above the bar-
rier and the denominator of Eq. (2) becomes small due to
the slowdown of the ions. We have used the coordinate
dependent masses shown in Fig. 2 to obtain the scaled
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FIG. 2. (Color online) Coordinate dependent mass M(R)
scaled by the constant reduced mass µ, obtained from Eq. (2),
at three different TDHF energies.

potentials U(R̄) of Eq. (15). These potentials are shown
as the dashed curves in Fig. 1. As we see the coordinate
dependent mass only changes the inner parts of the bar-
riers for all energies. Furthermore, the effect is largest for
the lowest energy collision and diminishes as we increase
the collision energy.
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FIG. 3. (Color online) Total fusion cross section as a function
of Ec.m.. Three separate theoretical cross section calculations
are shown, based on the energy-dependent DC-TDHF heavy-
ion potentials V (R) at energies ETDHF = 55, 60, 65 MeV.
The experimental data (filled circles) are taken from Ref. [4].

We have obtained the fusion cross sections by numer-
ical integration of Eq. (16). The resulting cross-sections

are shown in Fig. 3. We observe that all of the scaled
barriers give a very good description of the experimental
fusion cross-sections. The high energy part of the fu-
sion cross-sections are primarily determined by the bar-
rier properties in the vicinity of the barrier peak. On
the other hand sub-barrier cross-sections are influenced
by what happens in the inner part of the barrier and
here the dynamics and consequently the coordinate de-
pendent mass becomes very important. As we observe in
Fig. 3 we get a very good agreement with experiment for
the barriers obtained at the lowest two collision energies,
whereas the Ec.m. = 65 MeV curve slightly underesti-
mates the cross-section at lower energies. Although not
shown in Fig. 3 the cross-sections obtained using the the
unscaled potentials V (R) and a constant reduced mass
µ also agree well with the data at higher energies but
either significantly over-estimate or under-estimate the
cross-section at lower energies due to the absence of the
coordinate dependent mass. In summary, the calculated
fusion cross-sections for the 40Ca+40Ca system reproduce
the experimental cross-sections reasonably well, which is
a testament that TDHF with Skyrme force provides a
good description for this collision.
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FIG. 4. (Color online) Potential barriers, V (R), for the
48Ca+48Ca system obtained from density constrained TDHF
calculations using Eq. (1) at three different energies, ETDHF =
55 MeV (black solid curve), ETDHF = 65 MeV (red solid
curve), and ETDHF = 70 MeV (blue solid curve). The dashed
curves correspond to the transformed potential in Eq. (15)
using the coordinate dependent masses. Also shown is the
point Coulomb potential.

B. 48Ca+48Ca System

In Fig. 4 we show the microscopic ion-ion potential
barriers for the stable neutron-rich 48Ca+48Ca system
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calculated at three different collision energies, ETDHF =
55 MeV (black solid curve), ETDHF = 65 MeV (red solid
curve), and ETDHF = 70 MeV (blue solid curve). The
barrier heights, for increasing collision energy, are 50.98,
51.37, and 51.52MeV, respectively, with correspondingR
values of 10.80, 10.63, and 10.52 fm. The comparison of
these barriers with those of the 40Ca+40Ca system shows
that the barrier heights are reduced by about 2 MeV and
the location of the barrier maximum is at a slightly larger
R value. This is due to the fact that two two 48Ca nuclei
are larger than the corresponding 40Ca nuclei and thus
their outer skins come into contact at a larger R value.
After this point the nuclear interaction sets in causing
the trajectory to deviate from the point Coulomb one
and producing a peak at a lower energy value.
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FIG. 5. (Color online) Fusion cross sections for the
48Ca+48Ca system as a function of Ec.m.. Three separate
theoretical cross section calculations are shown, based on the
energy-dependent DC-TDHF heavy-ion potentials V (R) at
energies ETDHF = 55, 65, and 70 MeV. The experimental
data (filled circles) are taken from Ref. [4].

Figure 5 shows the fusion cross-sections for the
48Ca+48Ca system calculated using the barriers of Fig. 4.
While the overall quality of the agreement with the ex-
perimental fusion cross-sections is good, specially for the
last two collision energies, the curve corresponding to
the lowest collision energy of 55 MeV overestimates the
experiment for lower Ec.m. values. This illustrates the
sensitivity of the results to the height of the potential
barrier, the difference in this case between the two bar-
riers being around 0.4 MeV.
While the quality of the DC-TDHF results for the

48Ca+48Ca system is very good for a parameter free
microscopic approach, we have decided to investigate
this further. One of the problems is that the Skyrme
fits do badly in reproducing the single-particle proper-
ties [33], particularly the neutron single-particle states.
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FIG. 6. (Color online) Total fusion cross section as a func-
tion of Ec.m. for two different parametrizations of the Skyrme
force, SLy4 and UNEDF1, at the collision energy of ETDHF =
55. The experimental data (filled circles) are taken from
Ref. [4].

For example, with SLy4 parametrization the neutron lev-
els 1d5/2, 2s1/2, and 1d3/2 in 48Ca nucleus are about
7 − 3 MeV lower in energy than the corresponding ex-
perimental values [31]. In one of the parametrizations of
the nuclear density functional, UNEDF0, these single-
particle energies are raised to values closer to experi-
mental ones. However, in this case the magic gap at
N = 28 vanishes [31]. Recently, a new parametrization,
UNEDF1, was introduced with a better incorporation of
large deformations among other improvements [32]. An-
other possible advantage of the UNEDF1 parametriza-
tion for TDHF calculations is that no center-of-mass cor-
rection term was used in the functional, which is also
the case in TDHF. We have tried this parametrization
in our DC-TDHF calculation for the 48Ca+48Ca system
at Ec.m. = 55 MeV. In practice, we had to reduce our
time-step from ∆t = 0.4 fm/c to ∆t = 0.1 fm/c, and our
density-constraint convergence parameters by a factor of
ten or more. This is probably due to the larger power
of the density in the t3 term of the Skyrme interaction.
The peak of the fusion barrier is slightly broader and
higher in energy by 187 keV for UNEDF1. The use of
UNEDF1 results in an improvement of the fusion cross-
sections as shown in Fig. 6. We have also tried using the
parametrization SLy5 but this resulted in no appreciable
difference from the SLy4 case.

C. 40Ca+48Ca System

In this section we will examine the fusion of the asym-
metric 40Ca+48Ca system. For highlighting the differ-
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FIG. 7. (Color online) Experimental fusion cross sections as
a function of Ec.m. for the three systems studied. The exper-
imental data are taken from Ref. [4].

ences among all three systems we have plotted only the
experimental fusion cross-sections in Fig. 7. Relative to
the 40Ca+40Ca and 48Ca+48Ca systems the 40Ca+48Ca
fusion cross-sections show a different systematic behav-
ior. At higher bombarding energies the 40Ca+48Ca cross-
sections fall below the 40Ca+40Ca data points, whereas
at sub-barrier energies they rise above the 48Ca+48Ca
data. Historically, the theoretical description of the fu-
sion cross-sections for the 40Ca+48Ca system have been
complicated by the couplings to various transfer channels
with positive Q values [34, 35]. A strong enhancement of
fusion cross-sections at lower energies seen in Fig. 7 was
attributed to this effect [9].
In Fig. 8 we show the microscopic ion-ion potential

barriers for the 40Ca+48Ca system calculated at three
different collision energies, ETDHF = 55 MeV (black
solid curve), ETDHF = 60 MeV (red solid curve), and
ETDHF = 70 MeV (blue solid curve). The barrier
heights, for increasing collision energy, are 51.11, 51.45,
and 51.81 MeV, respectively, with corresponding R val-
ues of 10.75, 10.65, and 10.51 fm. We have used the
coordinate dependent masses to obtain the scaled poten-
tials U(R̄) of Eq. (15). These potentials are also shown
as the dashed curves in Fig. 8. As before the coordi-
nate dependent mass only changes the inner parts of the
barriers for all energies and the effect diminishes as we
increase the collision energy.
Figure 9 shows the fusion cross-sections for the

40Ca+48Ca system calculated using the barriers of Fig. 8.
The observed trend for sub-barrier energies is typical for
DC-TDHF calculations when the underlying microscopic
interaction gives a good representation of the participat-
ing nuclei. Namely, the potential barrier corresponding
to the lowest collision energy gives the best fit to the
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FIG. 8. (Color online) Potential barriers for the 40Ca+48Ca
system obtained from density constrained TDHF calculations
at three different energies, ETDHF = 55 MeV (black solid
curve), ETDHF = 60 MeV (red solid curve), and ETDHF =
70 MeV (blue solid curve). The three dashed curves corre-
spond to the transformed potential in Eq. (15) using the co-
ordinate dependent masses. Also shown is the point Coulomb
potential.

45 50 55 60 65
E

c.m.
 (MeV)

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

σ fu
si

on
 (

m
b)

40
Ca +

48
Ca

E
TDHF

= 55 MeV
E

TDHF
= 60 MeV

E
TDHF

= 70 MeV

FIG. 9. (Color online) Fusion cross sections for the
40Ca+48Ca system as a function of Ec.m.. Three separate
theoretical cross section calculations are shown, based on the
energy-dependent DC-TDHF heavy-ion potentials V (R) at
energies ETDHF = 55, 60, and 70 MeV. The experimental
data (filled circles) are taken from Ref. [4].

sub-barrier cross-sections since this is the one that al-
lows for more rearrangements to take place and grows the
inner part of the barrier. Considering the fact that his-
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torically the low-energy sub-barrier cross-sections of the
40Ca+48Ca system have been the ones not reproduced
well by the standard models, the DC-TDHF results are
quite satisfactory, indicating that the dynamical evolu-
tion of the nuclear density in TDHF gives a good overall
description of the collision process. The shift of the cross-
section curve with increasing collision energy is typical.
In principle one could perform a DC-TDHF calculation at
each energy above the barrier and use that cross-section
for that energy. However, this would make the compu-
tations extremely time consuming and may not provide
much more insight.
The trend at higher energies is atypical. The cal-

culated cross-sections are larger than the experimental
ones by about a factor of two. Such lowering of fusion
cross-sections with increasing collision energy is com-
monly seen in lighter systems where various inelastic
channels, clustering, and molecular formations are be-
lieved to be the contributing factors [36]. In the recent
coupled-channel approach this is solved by the addition
of a small imaginary potential near the minimum of the
repulsive core [37]. Such an imaginary part was found
not to be necessary for the 40Ca+40Ca and 48Ca+48Ca
systems [9, 10]. At this time we do not have access to
coupled-channel results for the 40Ca+48Ca system. We
have repeated our DC-TDHF calculations using the UN-
EDF1 interaction which resulted in a small improvement,
reducing the difference with the experimental values to
a factor of about 1.5. This issue will be discussed fur-
ther in the next Section where we examine the excitation
properties obtained from TDHF calculations.

IV. EXCITATIONS

Excitations are believed to have a significant impact
on the outcome of the fusion reactions. The excitations
can range from the entrance channel quantal excitations
of the projectile and target, as in the coupled-channel
approach, to collective excitations of pre-equilibrium sys-
tem, to compound nucleus excitations. These can be fur-
ther influenced by particle transfer, pre-equilibrium emis-
sions, and evaporation, among others. Theoretically such
effects are commonly introduced by hand into various re-
action models. However, the influence of excitations on
nuclear reaction dynamics remains to be a difficult and
an open problem as it combines both nuclear structure
and dynamics under nonequilibrium conditions.
In Sec. II B we have outlined the calculation of the

dynamical excitation energy within the DC-TDHF for-
malism. This approach was used to calculate excitation
energies for various systems, including the excitation en-
ergy of the heavy systems leading to superheavy forma-
tions [17]. Here, we have shown that what is also impor-
tant is the excitation of the system at the point of cap-
ture, which is a deciding factor for forming a composite
system or fusion-fission. This is different than excitation
of the compound nucleus, which determines the survival
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FIG. 10. (Color online) Neutron and proton transfer as a
function of ion-ion separation distance R for the 40Ca+48Ca
system. Solid lines denote the particles originally belonging
to the 48Ca nucleus and dashed lines to the 40Ca nucleus. The
dotted vertical line shows the location of the potential barrier
peak, RB.

of the system from quasi-fission. The dynamical excita-
tion energies calculated from DC-TDHF are relative to
an unequilibrated composite system rather than a true
compound nucleus.
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FIG. 11. (Color online) Excitation energy, E∗(R), as a func-
tion of the ion-ion separation distance, R, for the three sys-
tems studied here.

The systems studied in this manuscript present inter-
esting target-projectile combinations for studying excita-
tions. For example, the non-symmetric 40Ca+48Ca sys-
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tem will have a pre-equilibrium GDR excitation in com-
parison to the other two symmetric systems, as well as
particle transfer. Naturally, some of these effects are in-
cluded in the fusion barriers obtained via the DC-TDHF
method, as they influence the change in the TDHF den-
sity used in the density constraint calculation. The quan-
tity E∗(R(t)) calculated from via TDHF and DC-TDHF
represents the average of dynamical excitations present
in the mean-field theory, with the exception of excita-
tions not determined by the nuclear density and current
(such as the spin currents). Another point to consider
is the pairing interaction. It has been a general consen-
sus that during a heavy-ion collision the effects of pairing
are washed away due to the high excitations. In this par-
ticular case paring effects are minimal for the initial Ca
nuclei studied. However, even if the pairing can be ig-
nored during the collision process, in many cases it plays
an important role for obtaining good initial HF states
as well as obtaining realistic density constraint solutions
when a single composite is formed. Fortunately, the lat-
ter case corresponds to the region of barrier minimum
and not the region around the barrier peak where most
fusion cross-sections are measured. This may in some
way explain the success of the DC-TDHF barriers for
fusion.
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FIG. 12. (Color online) Time evolution of isoscalar deforma-
tion parameter β2 for the head-on collision of all three systems
at a collision energy of ETDHF = 55 MeV (top panel), and the
time evolution of the isovector dipole amplitude D(t) for the
40Ca+48Ca system (bottom panel).

In Fig. 10 we plot the average number of neutrons and
protons transferred during the early stages of the TDHF
collision of the 40Ca+48Ca system at ETDHF = 60 MeV.
The solid lines denote the neutrons and protons asymp-
totically belonging to the 48Ca nucleus and dashed lines
to the 40Ca nucleus. A number of interesting things can
be observed from the plot; first is the fact that most of

the transfer seems to start after we pass the potential bar-
rier peak. This indicates that particle transfer primarily
modifies the inner part of the barrier and not so much
the barrier height. The other observation is that on av-
erage about three neutrons are transferred from 48Ca to
40Ca but there is also a small amount of proton transfer
in the opposite direction.
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FIG. 13. (Color online) Power spectrum of the isovector
dipole amplitude D(t) for the 40Ca+48Ca system is shown
for various time-intervals

Figure 11 shows the excitation energy, E∗(R), for the
three systems studies here. The excitation energy was
calculated for the same value of ε = Ec.m./µ = 2.75 MeV
for all systems, which corresponds to collision energies
of 55, 60, and 66 MeV, respectively. All curves initially
behave in a similar manner, at large distances the exci-
tation is zero, as the nuclei approach the barrier peak
the excitations start and monotonically rise for larger
overlaps. The interesting observation is that the excita-
tions for the intermediary 40Ca+48Ca system start at a
slightly earlier time and rise above the other two systems.
This may be largely due to the fact that an asymmetric
system has some additional modes of excitation in com-
parison to the other two symmetric systems. It may be
plausible to consider the direct influence of the excitation
energy, E∗(R), on the fusion barriers by making an anal-
ogy with the coupled-channel approach and construct a
new potential V ∗(R) = V (R) + E∗(R), which has all
the excitations added to the ion-ion potential V (R) that
should be calculated at higher energies to minimize the
nuclear rearrangements (frozen-density limit). The re-
sulting potentials somewhat resemble the repulsive-core
coupled-channel potentials of Ref. [9]. This approach
does lead to improvements in cases where most of the
excitation energy is in the form of collective excitations
rather than irreversible stochastic dissipation (true espe-
cially for lighter systems). For the cases studied here we
do see a small improvement for the fusion cross-sections
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of the 40Ca+48Ca system. The viability of this approach
requires further examination and will be studied in the
future.

One of the excitation modes for the 40Ca+48Ca sys-
tem, namely the particle transfer, was already discussed
above. The others are various isovector modes such as the
pre-equilibrium GDR excitation. In Fig. 12 we show the
time development of the isoscalar deformation parame-
ter β2 = 4π

5
〈r2Y20〉/Arrms (top panel) and the isovec-

tor dipole amplitude D(t) of Eq. (17) (bottom panel).
The isovector amplitudes for the two symmetric systems
would appear as a zero-line on this plot. We have left
out the initial approach phase of the collision (about
260 fm/c) from these plots. The time-evolution of the
deformation β2 is very similar for all three systems ex-
cept at larger times the 40Ca+48Ca system moves toward
smaller deformation in comparison to the other two sys-
tems. This is again most likely due to increased exci-
tations that drive the system toward a more compact
shape. The evolution of the dipole operator D(t) shows
little damping over a long time interval. The power spec-
trum associated with this time time-evolution is shown
in Fig. 13. We have evaluated the spectrum for differ-
ent time-intervals. The broadest curve corresponds to a
very early stage of the collision, 260−1000 fm/c, but has
the lowest amplitude (multiplied by 10 in Fig. 13). In
the second interval, 260− 3000 fm/c, we see the develop-
ment of various peaks and an increase in amplitude. The
spectrum for the entire time interval, 260 − 7200 fm/c,
is dominated by a sharp peak around 11 MeV, which is
primarily originating from the later stages of the collision
which is evident if one compares it to the spectrum from

the interval 3000− 7200 fm/c.

V. SUMMARY

In this manuscript we have provided a microscopic
study of Ca+Ca fusion using the DC-TDHF approach.
These reactions have recently been of considerable inter-
est for the fusion community with a flurry of phenomeno-
logical analyses of the fusion data. Here, we have pro-
vided a microscopic alternative to this analysis. We have
shown that microscopically obtained ion-ion potentials
do give a reasonably good description of the fusion cross-
sections.
The fully microscopic TDHF theory has shown it-

self to be rich in nuclear phenomena and continues to
stimulate our understanding of nuclear dynamics. The
time-dependent mean-field studies seem to show that the
dynamic evolution builds up correlations that are not
present in the static theory. While modern Skyrme forces
provide a much better description of static nuclear prop-
erties in comparison to the earlier parametrizations there
is a need to obtain even better parametrizations that in-
corporate deformation and reaction data into the fit pro-
cess.
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