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The proton pygmy dipole resonances (PDRs) in the proton rich nuclei 17,18Ne are investigated
in the framework of the interacting shell model. The shell model with the self-consistent Skyrme-
Hartree-Fock wave functions well reproduces the experimental data of the ground state properties.
The proton PDRs in the neighboring 17,18Ne are predicted. However, the detailed study involving
the transition densities and collectivity shows that the PDR in 17Ne is highly collective and due to
the oscillation of the valence protons against the interior core, while in 18Ne the dipole resonance in
the PDR region is noncollective and more likely to be the configuration splitting of the giant dipole
resonances.
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The exotic behavior of nuclei approaching the drip
lines is one of the top subjects in nuclear physics stud-
ies. The loosely bound nucleons can oscillate against
the isospin saturated core. Large enhancement of elec-
tric dipole (E1) response is expected in the low-energy
region, namely the pygmy dipole resonance (PDR). Al-
though PDR exhausts only a few percent of total energy
weighted sum rule, nucleon capture rates could be largely
enhanced in the r-process nucleosynthesis [1]. The neu-
tron PDRs have been intensely studied in the heavy
and medium-heavy nuclei [2–9]. Due to the existence
of Coulomb barrier, the proton skin or halo can only ap-
pear in the light nuclei and is less profound than the neu-
tron skin or halo. And the proton PDRs are much rarer
than the neutron PDRs [10, 11]. However, the nature of
PDRs is still controversial since not only the PDRs can
be developed by this soft mode, but also the single parti-
cle excitation near the threshold can enhance the dipole
excitations [3, 12, 13]. The controversy can be further
shown by the fact that the mean field theories predicted
the increasing integrated strength of neutron PDRs with
the increasing of the neutron excess or the neutron skin
thickness [2], while the experimental studies show a non-
trivial dependence of the total E1 strength as a function
of the neutron number, such as in 40,44,48Ca [14, 15]. In
some light and heavy nuclei, the relativistic and nonrela-
tivistic theories also predicted the low-lying strengths to
be noncollective nature [16–18].

Most of the studies on the pygmy and giant dipole res-
onances are based on the mean-field theory with random-
phase-approximation (RPA) or quasiparticle RPA. How-
ever the mean-field theories can not give the mixing of dif-
ferent configurations, which is critical for loosely bound
nuclei. The collectivity of the giant dipole resonances
(GDRs) in the light nuclei is less profound than in the
medium-heavy and heavy nuclei. Therefore the response
function could distribute over several configuration de-
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pendent peaks. For electric dipole resonances, most of
the contributions come from the cross shell (∆N = 1)
particle-hole excitations near the Fermi surface. Al-
though conventional configuration mixing shell model is
confined in a restricted valence space, it was shown that
the GDRs were well reproduced with this model in the
light nuclei [19, 20]. Another advantage of the shell model
is that the pairing effect is well treated which is very
important in the open-shell nuclei especially in the Bor-
romean nuclei, such as 11Li and 17Ne. With the pygmy
dipole resonances lying in the lower energy region, the
fully microscopic shell model calculations could provide
more insightful prediction in the light nuclei. In Refs.
[21, 22] the shell model studies on the neutron PDRs in
light or medium nuclei were reported, with rare exam-
ples of the proton PDRs [23]. The PDRs in neutron-rich
oxygen isotopes predicted by the shell model [19] were
confirmed experimentally [24]. However only transition
strength was given in the previous shell model studies.
The detailed transition densities and collectivity are very
important to reveal the dynamics of the proton PDRs.

17Ne and 18Ne exhibit proton halo or skin in spite of
Coulomb barrier [25]. The Borromean 17Ne is a promi-
nent candidate for a two-proton halo, which can be re-
garded as an 15O core in its ground state plus two protons
in the d2 or halo like s2 configurations. The non-resonant
soft dipole mode in 17Ne was predicted by a three-body
model [26]. In the present paper, the pygmy dipole reso-
nances in 17Ne and 18Ne are predicted in the interacting
shell model. The differences of PDRs in these two nuclei
are discussed when the transition densities and informa-
tion on collectivity are available.

The one-body transition density (OBTD) is the stan-
dard output of the shell model code such as Oxbash and
NuShell@MSU [27]. The OBTDs are unrelated to the
radial wave function but related to the angular momen-
tum part between the initial and final states. Thus the
transition matrix element can be given by the transition
operator and the transition density can be given by the
density operator using the same OBTDs. The detailed
formulas will be given as follows.
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In the second-quantized representation, the λ-rank
one-body operator reads

Ôλ
µ =

∑

αβ

〈α|Oλ
µ|β〉a+αaβ , (1)

where α stands for the single particle quantum number
set (nαlαjαmα). In the shell model M -scheme, this op-
erator can be written in the tensor coupled form [28],

Ôλ
µ =

∑

kαkβ

〈kα||Oλ||kβ〉
[

a+kα
⊗ ãkβ

]λ

µ√
2λ+ 1

, (2)

where kα stands for (nαlαjα). The reduced transition
matrix element between the final state |Jf 〉 and initial
state |Ji〉 can be expressed by the OBTDs and reduced
single-particle matrix elements of the valence orbitals,

〈Jf ||Ôλ||Ji〉 =
∑

kαkβ

OBTD(fikαkβλ)〈kα||Ôλ||kβ〉, (3)

where Ji and Jf include all the quantum numbers needed
to distinguish the states, and OBTD is given by

OBTD(fikαkβλ) =
〈Jf ||

[

a+kα
⊗ ãkβ

]λ ||Ji〉√
2λ+ 1

. (4)

The OBTD can also be defined including the isospin free-
dom [28].
The transition density between the final state |Jf 〉 and

initial state |Ji〉 is defined as

δρ(~r) = 〈Jf |
∑

i

δ(~r − ~ri)|Ji〉, (5)

and the radial transition density δρλ(r) is given by

δρ(~r) ≡
∑

λ,µ

δρλ(r)Yλµ(r̂). (6)

Using the orthonormal relation of spherical harmonics,
we have

δρλ(r) =

∫

〈Jf |
∑

i

δ(~r − ~ri)|Ji〉Y ∗

λµ(r̂)dΩ. (7)

As δ(~r − ~ri) = 1
4πr2 δ(r − ri)δ(r̂, r̂i), integrate out the

angular part,

δρλ(r) ∼
〈Jf ||

∑

i
1
r2 δ(r − ri)Yλ||Ji〉√
2Ji + 1

. (8)

In order to normalize the radial transition density to the
transition strength, we leave out the coefficient in front
of Eq.(8) and redefine it as

δρλ(r) ≡
〈Jf ||

∑

i
1
r2 δ(r − ri)Yλ||Ji〉√
2Ji + 1

=
1√

2Ji + 1

∑

kα,kβ

OBTD(fikαkβλ)

× 〈kα||
1

r2
δ(r − r′)Yλ||kβ〉, (9)

where

〈kα||
1

r2
δ(r − r′)Yλ||kβ〉 = ψkα

(r)ψkβ
(r)〈kα||Yλ||kβ〉,

(10)

ψkα
(r) is the radial wave function of the valence orbital

kα. For a λ-rank one-body transition operator,

Ôλ
µ(~r) = rλYλµ(r̂), (11)

using Eq.(3) and Eq.(9), the electric reduced transition
probability B(Eλ) is readily expressed with the proton
radial transition densities,

B(Eλ, i → f) =

∣

∣

∣
〈Jf ||Ôλ||Ji〉

∣

∣

∣

2

2Ji + 1

=

[
∫

eδρpλ(r)r
λ+2dr

]2

. (12)

However, since the effective charges are frequently used
in the calculation of B(Eλ), Eq.(12) should be modi-
fied accordingly using both proton and neutron transition
densities,

B(Eλ, i → f) =

[
∫

[

eeffp δρpλ + eeffn δρnλ
]

rλ+2dr

]2

, (13)

where eeffp and eeffn are the effective charges of protons
and neutrons respectively.
In the present shell model calculations, the

NUSHELL@MSU code [27] with the WBP10 effec-
tive interaction [29] in the spsdpf model space, is used.
The Warburton-Brown interaction WBP was originally
constructed by fitting the energy levels in the 0 − 1~ω
space. In the WBP10 interaction, the coupling between
the following multi-~ω configurations is cut off, i.e. the
two-body matrix elements for the 1p−1h 2~ω excitations
are all set equal to 0 due to the Hartree-Fock condition.
The cross shell 2~ω two-body matrix elements between
0s2 and 0p2 are also set equal to 0. The WBP10
interaction is enclosed in the NUSHELL@MSU package.
The standard Lawson method is used to remove the
center-of-mass spurious components in the wave func-
tion by adding a fictitious Hamiltonian which acts only
on the center-of-mass excitation [30]. In the present
calculation, the 0 − 1~ω configuration space is adopted.
Our calculation shows that the whole picture of the
calculated E1 response function is similar if the 2− 3~ω
configurations are included, also see the discussion in
Ref. [22].
The s2 occupation probability of the ground state

in 17Ne is very controversial in theoretical predictions
[25, 26]. Three-body cluster theory predicted a large s2

component and therefore a halo-like structure. However
the analysis based on the Coulomb displacement ener-
gies [31, 32] or the magnetic moment [33] suggested a
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TABLE I: The mass and charge radii in 17,18Ne. SM(HO) and SM(HF) denote the shell model results using the harmonic
oscillator and Hartree-Fock single particle wave functions.

proton s2 probability δpn$ (fm) mass radii (fm) charge radii (fm)
A Jπ

FMD SM FMD SM(HO) SM(HF) Exp. FMD SM(HO) SM(HF) Exp. FMD SM(HO) SM(HF)

17 1/2−g.s. 42% 23.6% 0.45 0.17 0.43 2.75(7) 2.75 2.78 2.86 3.042(21) 3.04 2.85 3.02

18 0+g.s. 15% 15.0% 0.15 0.25 2.81(14) 2.70 2.78 2.82 2.971(20) 2.93 2.85 2.93

$δpn =
√

〈r2〉p −
√

〈r2〉n
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FIG. 1: (color online) The nucleon and matter density dis-
tributions of the ground states in 17,18Ne. The experimental
errors are indicated by the gray area.

smaller s2 component. In table I the ground state prop-
erties in 17,18Ne calculated by the shell model are com-
pared with the experimental data and Fermion Molec-
ular Dynamic (FMD) model results. Obviously for the
nuclei near the drip lines, it is not appropriate to use the
harmonic wave functions but Wood-Saxon or mean-field
wave functions [19, 34] when calculating physical prop-
erties involving single-particle radial wave functions. In
our calculations, the self-consistent Skyrme-Hartree-Fock
(SHF) wave functions with the SKM* interaction [35] are
used in the evaluation of nuclear radii and electric tran-
sition matrix elements. The wave functions of positive
energy states are obtained by the box approximation.
When the harmonic oscillator wave functions is used, the
parameter b = 1.8 fm is adopted which is slightly larger
than the value b =

√

41.4/~ω where ~ω is the global fit

~ω ≈ 45A−1/3 − 25A−2/3 [36]. Clearly from table I, the

shell model with the SHF wave functions well reproduces
the mass radii and charge radii both in 17,18Ne. In Fig. 1
the calculated nucleon and matter density distributions
are compared with the available experimental data. It
is worth noting that the halo nucleon can appear in the
classically forbidden region for the halo nuclei [37]. In the
present calculations, the probabilities of finding one pro-
ton at r > 5 fm is 41% and 28% in 17,18Ne respectively.
In 17Ne, this probability is close to the FMD prediction
of 40%. Thus by employing the more realistic radial wave
functions, the halo-like structure in 17Ne is reproduced
in the shell model without changing the composition of
configurations.
To further remove the additional spurious components

due to the usage of the Skyrme-Hartree-Fock wave func-
tions, the center-of-mass removed dipole operator is used
[38] in the calculation of the dipole transition strength,

Q̃λ=1
µ = e

N

A

Z
∑

i

riY1µ(r̂i)− e
Z

A

N
∑

i

riY1µ(r̂i). (14)

where Z, N and A are proton, neutron and mass num-
ber, respectively. The effectiveness of this method was
demonstrated in Ref. [19]. In order to smooth out the
discrete strengths, the transition strengths are averaged
by a Lorentz type factor ρ(ω)

dB̄(E1;ω)

dω
=

∫

∑

n

B(E1;ωn)ρ(ω − ωn)dω, (15)

where ω is the phonon energy and

ρ(ω − ωn) =
1

π

Γ/2

(ω − ωn)2 + Γ2/4
. (16)

The arbitrary total width Γ = 1 MeV is chosen. In this
way, the response function is like the superposition of
many isolated Breit-Wigner resonances.
The electric dipole response functions and the B(E1)

values of discrete transitions in 17,18Ne are shown in
Fig. 2. We have included the contribution from T = Tz
and T = Tz+1 states, in order to give the energy-weighed
sum rule (EWSR) which is comparable with the Thomas-
Reiche-Kuhn (TRK) sum rule. As an odd-A nucleus,
the level density in 17Ne is much higher than in even-A
18Ne, so the isovector dipole transition strengths in 17Ne
more spread out than in 18Ne. The shell model predicts
two levels in 17Ne and one level in 18Ne with strong E1
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FIG. 2: (color online) Electric dipole response functions from
the excited states to the ground state in 17,18Ne with the
Skyrme-Hartree-Fock single particle wave functions. The
thin lines are the B(E1) values of discrete transitions in the
shell model calculations, with the cyan lines representing the
Jπ = 1/2+ ( Jπ = 1−) states in 17Ne (18Ne), the purple lines
representing the Jπ = 3/2+ states in 17Ne.

transitions around 10 MeV, which will give appreciable
pygmy resonances. In 17Ne, the shell model also pre-
dicts a very low Jπ = 1/2+ state at E = 1.87 MeV
which is 0.39 MeV above the proton emission thresh-
old. A B(E1) value 0.00277 fm2 could indicate some
importance for the astrophysical 2p capture of 15O in
the hot CNO cycle. In 18Ne, the recent study using the
approach of Hartree-Fock-Bogoliubov + quasi-particle
random-phase-approximation (HFB+QRPA) with the
Gogny force did not predict a PDR around 10 MeV
[39]. Although the pairing was included, their calcu-
lations gave the lowest resonance at 14.2 MeV whose
transition densities behave more close to the giant dipole
resonance. For 18O, the mirror nucleus of 18Ne, several
peaks around 10 MeV were already observed [40, 41].
Only with phonon coupling to the resonance included,
the QRPA plus phonon coupling model can give some
strength around 10 MeV in 18O [16].
The sum rule is a useful measure of the collectivity of

the giant resonances. For the isovector GDR, the classical
energy weighted sum rule is given by

S(TRK) =

∫

∑

n

~ωn | 〈n|Ôλ=1
µ |gs〉 |2= ~

2

2m

9

4π

NZ

A

= 14.9
NZ

A
e2 (MeV · fm2) (17)

neglecting the contributions of exchange terms. This
is known as the Thomas-Reiche-Kuhn (TRK) sum rule.
There is another sum rule, named the energy-weighted
cluster sum rule which can be viewed as a measure of

TABLE II: Ground state spins, nonenergy weighted sum rule
(NESR) and energy weighted sum rule (EWSR) values of E1
transitions in 17,18Ne. The values are obtained by summing
up to Ex = 40 MeV. The cluster sum rules are obtained
assuming that the valence cluster has Z = 2, A = 2.

EWSR S(TRK)
Nuclides Jπ

g.s. T
(MeVe2fm2) (MeVe2fm2)

EWSR
S(TRK) (%)

17Ne 1/2− 3/2 36.7

5/2 30.2

Tot 66.9 61.4 109
18Ne 0+ 1 35.8

2 47.0

Tot 82.8 66.2 125

EWSR(pygmy) SclusterNuclides Jπ
g.s. T

(MeVe2fm2) (MeVe2fm2)

EWSR(pygmy)
Scluster

(%)

17Ne 1/2− 3/2 3.25 5.73 56.7
18Ne 0+ 1 2.59 6.62 39.1

the adiabaticity between the giant and pygmy resonances
[22, 42]. Assuming that the nucleus (A,Z) can be decom-
posed into two clusters with (A1, Z1) and (A2, Z2), the
cluster sum rule is given by

S(cluster) =
~
2

2m

9

4π

(Z1A2 − Z2A1)
2

AA1A2
. (18)

Table II gives the sum rules of PDRs and GDRs in
17,18Ne. Since the high-lying T = Tz + 1 states do not
contribute to the response functions in the pygmy region,
only the T = Tz states are included in the lower table.
Using E = 12 MeV as a cut energy, the pygmy reso-
nances exhaust 4.9% and 3.1% of the total sum rules in
17,18Ne, respectively. In the FMD calculations, 17,18Ne
can be interpreted essentially as the 15O or 16O cores
plus two protons found mainly in the s2 or d2 configu-
rations [25]. If assuming the two protons as the valence
nucleons and other nucleons as the core, the pygmy reso-
nances will exhaust 56.7% and 39.1% of the cluster sum
rules in 17,18Ne, respectively.
Although the transition strengths in 17,18Ne seem to

be similar, however, only the detailed information, i.e.
transition densities, can give the possible difference be-
tween them. In the previous shell model studies, the
transition densities of the pygmy resonances and GDRs
have not been included [19, 21–23]. Using the formulas
discussed above, the calculated transition densities of the
typical resonance states in 17,18Ne are shown in Fig. 3.
Fig. 3(a) and (b) are for the dominant states of 17Ne in
the usually pygmy region. We can see that the proton
and neutron move in phase in the nuclear interior, while
only protons move in the exterior. This scenario is the
typical pygmy resonances of the halo protons oscillating
against the inner core. The state in Fig. 3(c) is located
in the GDR region. The given transition densities have
shown a typical oscillation in the opposite phase between
the bulk protons and neutrons. There is no contribution
either from protons or neutrons in the exterior region.
For comparison, the transition densities of two states in
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FIG. 3: (color online) Shell model transition densities of discrete dipole transitions in 17,18Ne.

the PDR region of 18Ne are displayed in Fig. 3(d)(e). Al-
though the behavior in Fig. 3(d) is somewhat similar to
Fig. 3(a)(b), the peaks of proton and neutron transition
densities is out of phase about 0.9 MeV. And the B(E1)
value of this state is too small comparing with the state
at E = 9.413 MeV, not to mention the dominant GDR
states. The proton and neutron transition densities in
Fig. 3(e) do not show clear-cut in-phase behavior. The
interval of the proton and neutron peaks is 1.26 MeV.
This state is clearly not the soft mode but more similar
to the giant resonances like in Fig. 3(f) where the state
is a typical GDR.
Unlike the GDR region, the level density is sparse in

the PDR region. Further detailed information on the
collectivity of the discrete PDR states can be obtained
by viewing the contributions to the total transition ma-
trix element from the valence orbital transitions. These
contributions to the isovector operator (14) for the im-
portant PDR states discussed in the last paragraph are
given in Fig. 4, where the horizontal axis is the single
particle excitation energies of valence orbitals. This fig-
ure shows that the dominant PDR states in 17Ne have
several components including the transitions 1p ↔ 2s1d
and 2s1d ↔ 1f2p, which have prominent contributions
to the total matrix elements. Together with the discus-
sions on the transition densities, the 17Ne has shown us
an excellent example of collective proton PDR due to
the soft mode between the valence protons and the core.
However in 18Ne, the PDR states are much less collec-
tive that only a few transitions contribute, most of which
comes from the 1p ↔ 2s1d transitions. Together with
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FIG. 4: (color online) Contribution to the total matrix el-
ements of valence orbitals for the deexcitations from PDR
states in 17,18Ne. The magenta, red and blue bars indi-
cate the transitions between the valence orbitals of 1s ↔ 1p,
1p ↔ 2s1d, and 2s1d ↔ 1f2p, respectively.

the discussions on the transition density, the nature of
the E = 9.413 MeV state in 18Ne is more likely to be
the configuration splitting of the GDRs, but in the usu-
ally PDR energy region. The different nature of pygmy
dipole resonances may also give a possible explanation for
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the nontrivial dependence of PDRs as a function of the
neutron number in the Ca isotopes. Further theoretical
investigations on this trend is highly needed.
In summary, we have used the shell model to study

the ground state properties and the proton pygmy dipole
resonances in 17,18Ne. The shell model with the self-
consistent Skyrme-Hartree-Fock wave functions well re-
produces the experimental mass radii and charge radii.
The mass density distributions of the ground state in
17Ne also can be well given. The transition densities of
the dipole resonances are calculated from the shell model
output. The pygmy resonances around 10 MeV both in
17,18Ne are predicted. However, detailed study involving

transition densities and collectivity shows that the PDRs
in 17Ne are highly collective and due to the oscillation be-
tween the valence protons and the core, while in 18Ne the
dipole resonance in the PDR region is noncollective and
more likely to be the configuration splitting of the GDRs.
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