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The similarity renormalization group (SRG), based on the simple one-body free harmonic os-
cillator Hamiltonian, is applied to various nucleon-nucleon realistic interactions to investigate the
unitarity of the SRG transformations. Two-body and three-body contributions to the SRG-evolved
Hamiltonian are studied in the framework of spectral distribution theory for reasonable SRG cutoffs
and in multi-particle systems, with up through 28 particles considered. The outcome points to
the first evidence for the overall importance of 3-body SRG-induced interactions and especially, of
its 2-body effective content in multi-nucleon systems, without the need for large-scale shell model
calculations for many light to heavier nuclei.

I. INTRODUCTION

The similarity renormalization group (SRG) approach
[1, 2] to internucleon interactions aims to achieve a softer
(renormalized) interaction [3, 4] that enables the use of
manageable model spaces within the framework of mod-
ern ab initio shell model studies (e.g., [5–8]). These mod-
els, in turn, can be invoked to provide accurate descrip-
tions of light, and ultimately even heavier nuclei. The
Heff renormalized interaction is obtained via continuous
unitary transformations of the original realistic Hamilto-
nian and is thus equivalent to the original one, provided
that the Heff includes all the nonnegligible many-body
SRG-generated terms. Clearly, if the latter are only of
low particle rank, say up to three-body, then a three-
particle (a = 3) model space can be employed for the
SRG evolution (SRGa), and model-independent unitar-
ity of the result is assured. Furthermore, such an SRGa-
evolved interaction can be used for ab initio descriptions
for nuclei of mass numbers A ≥ a. This places a pre-
mium on the study of and estimates for the significance
of many-body terms generated throughout an SRG evo-
lution, both in few-body systems (a <∼ 3) as well as in
many-nucleon systems, such as a ∼ 12 − 16 that are of
interest to current ab initio shell model studies.

In this paper, we present results for SRG evolutions
in multi-particle systems, 2 ≤ a ≤ 28. We focus on
the most dominant SRG-induced many-body contribu-
tion. We have shown [9] that it is generated at the very
beginning of the SRG flow, namely, by the double com-
mutator H ′0 = [[C,H0], H0]. For a 1-body SRG operator
C and a 2-body initial Hamiltonian H0 = HNN , H ′0 in-
cludes up to 3-body terms. We have also shown in [9]
that for flows not infinitely evolved (as for decoupling
parameters λd used in practical applications), the over-
all contribution of other SRG-induced terms practically
results in only varying the strength of H ′0. This could
be also understood by the fact that SRG-induced terms,
which rapidly decrease in strength with the flow, project
almost entirely onto H ′0 during the initial stage of the
flow when the low-lying eigenvalues of H0 are affected
most. Therefore, by studying the many-body content of
the first SRG-induced term in an a-particle system, we
examine the nonnegligible many-body induced contribu-

tions to the SRGa-evolved Hamiltonian. In this analysis
we take a from 2 up to 28 particles, which is more than
sufficient to demonstrate the effect of the evolution with
increasing number of particles.

The present analysis are carried forward within the
framework of spectral distribution theory (SDT) [10–12]
(see [13], for a review on SDT), where, e.g., a three-body
interaction can be straightforwardly cast into a sum of
‘density-dependent’ monopole (centroid), one-body (in-
duced single-particle energies), and two-body parts to-
gether with its residual, irreducible three-body part. It is
interesting to note that SDT provides an easy-to-follow
prescription – readily extensible to 4-body interactions
and beyond – on how to extract these parts and fur-
thermore, on how they propagate with the number of
nucleons (as shown in Appendix A). This information
is of special interest when three-body (or higher rank)
interactions are invoked (e.g., [14–16]).

The outcome of the present study offers the first evi-
dence for the overall importance of 3-body SRG-induced
interactions (when a 1-body C is employed) for a range of
nuclei that reaches beyond the lightest few-nucleon sys-
tems. The effect of neglecting these interactions is also
studied. This is achieved without the need for carrying
out large-scale shell model calculations for many light to
heavier nuclei. It also goes beyond the information a few
low-lying energy states could provide by treating the full
Hamiltonian and its many-body terms in their entirety
at an operator level. This ensures the extensibility of the
results as it relates to the influence of the induced many-
body interaction on a broad variety of spectral observ-
ables, as well as on Hamiltonian eigenstates, and points
toward a means for studying the effect of the renormal-
ization on related observables (e.g., transition rates). We
note that for the purpose of this study, namely to explore
the overall significance of the many-body contributions to
the SRG-induced interactions, only low-order energy mo-
ments are sufficient (e.g., the second-order moment of an
interaction that yields its strength). Nonetheless, if one
were to include higher-order energy moments that are
typically much less important to the low-energy nuclear
dynamics, one would obtain more detailed results that, in
principle, should enable a reproduction of all observables
associated with conventional microscopic analyses.
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II. SRG-INDUCED MANY-BODY
INTERACTIONS

The SRG has been designed as a nonperturbative
method that performs a continuous sequence of unitary
transformations of a H Hamiltonian, Hs = U(s)HU†(s),
yielding the following class of equations [1, 2],

d

ds
Hs = [ηs, Hs] = [[C,Hs], Hs], (1)

where C can be any hermitian operator, which in turn
defines the antihermitian ηs = [C,Hs] generator and the

U(s) transformation (ηs = dU(s)
ds U(s)†). If C is chosen

to be diagonal in the representation of the initial H, Hs

is driven toward a (block-)diagonal form in this repre-
sentation with decreasing “decoupling” energy parameter
λd = 1/

√
s.

The present study and the analysis of its outcome re-
fer to a one-body C and a two-body H0 initial Hamil-

tonian. Let a
(†)
i denote the fermion annihilation (cre-

ation) operator, which destroys (creates) a fermion in
a state labeled by a set of quantum numbers i. Then,

for a diagonal 1-body C, C =
∑
i Cia

†
iai, and a 2-body

H0 = 1
(2!)2

∑
ijkl Vijkla

†
ia
†
jalak, the initial transformation

yields a change in H0 given by Eq. (1),

d

ds
Hs

∣∣∣∣
s=0

= [η0, H0] = [[C,H0], H0] =
1

16

∑
ijrs

a†ia
†
j

×

(
2
∑
kl

(Ci + Cj + Cr + Cs − 2Ck − 2Cl)VijklVklrs

+ 4
∑
lkq

(Ci + Cj + Cr + Cs − Ck − Cq − 2Cl)VijklVlqrsa
†
qak

 asar

=
1

4

∑
ijrs

Wijrsa
†
ia
†
jasar +

1

4

∑
ijkrsq

WNA
ijqrska

†
ia
†
ja
†
qakasar

= H2b
I +H3b

I . (2)

The first term, H2b
I , realizes the two-body contribution

to the SRG-induced interaction with matrix elements,

Wijrs = 1
2

∑
kl(Ci+Cj +Cr +Cs−2Ck−2Cl)VijklVklrs,

(3)
while the second term, H3b

I , introduces a three-body in-
teraction given by non-antisymmetrized matrix elements,

WNA
ijqrsk = −

∑
l

(Ci+Cj+Cr+Cs−Ck−Cq−2Cl)VijklVqlrs,

(4)
with the corresponding antisymmetrized ones written as,

Wijqrsk = WNA
ijqrsk −WNA

ijqrks −WNA
ijqksr

− WNA
iqjrsk +WNA

iqjrks +WNA
iqjksr

− WNA
qjirsk +WNA

qjirks +WNA
qjiksr. (5)

For finite flows evolved to reasonable λd, the [η0, H0]
initial SRG-induced interaction of Eq. (2) constitutes
the predominant contribution to the total SRG-induced
interaction [9]. Indeed, while higher-order SRG-induced
terms may be important, each of these terms can be ex-
pressed as a sum of an interaction of the [η0, H0] kind
and higher-particle rank interactions. The latter can be
controlled to be negligible [9]. It is thus clear that the

higher-order SRG-induced terms, if found significant, can
only affect the overall [η0, H0] strength, that is, the mag-
nitude of the total induced interaction, without intro-
ducing appreciable mixing of interactions of other kinds
or of higher particle ranks. Therefore, for a 1-body C
and a 2-body H0, it is sufficient to study the 2-body

(H
(2b)
I ) and 3-body (H

(3b)
I ) content of the [η0, H0] SRG-

induced term (2), as well as its role in many-particle
systems. This, in turn, provides information about the
dominant many-body contributions within a many-body
SRG-evolved Hamiltonian.

If Eq. (1) is applied to operators in a matrix represen-
tation associated with the many-body basis space of a
particles (SRGa), then for a = 2, the H2b

I interaction is
the only term that contributes to the total SRG-induced
interaction. However, when the SRG evolution is per-
formed within a general a-particle basis (a ≥ 3), the
H3b
I interaction is needed and together with H2b

I (and
negligible SRG-induced interactions of a higher particle
rank) assures the unitarity of the SRG transformations.
The contribution of the H3b

I to the total SRGa-induced
interaction can be evaluated based on the H3b

I proper-
ties between all possible triples formed by the a parti-
cles. Such a study, which encompasses SRG evolutions
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for systems with a large number of particles – in the case
of this paper, up through a = 28, is made possible in the
framework of spectral distribution theory.

III. SPECTRAL DISTRIBUTION THEORY AND
DERIVATION OF ‘DENSITY-DEPENDENT’

TERMS

Spectral distribution theory (SDT) [10–12, 17] origi-
nated as an alternative microscopic approach to the con-
ventional shell model technique. The efficacy of the the-
ory stems from the fact that typically low-order energy
moments dominate the many-particle spectroscopy as a
result of leading surviving features of the underlying mi-
croscopic interaction. Convergence to the shell-model re-
sults improves as higher-order energy moments are taken
into account or toward the limit of many particles occu-
pying a much larger available single-particle space. The
theory also provides the means to calculate important
average contributions, nuclear level densities, degree of
symmetry violation, as well as various measures. The
SDT approach has been successfully applied to studies
of energy spectra and reactions for p-, sd, and fp-shell
nuclei [18–23], as well as for understanding dominant
features and differences among sd-shell realistic effec-
tive interactions [24, 25]. Recent applications include
explorations on quantum chaos, nuclear structure, and
parity/time-reversal violation (for example, see [13, 26–
30]). In the present study, we do not utilize the SDT
microscopic approach but rather make use of tools devel-
oped in SDT. Specifically, we employ second-order energy
moments widely used as measures of the overall strength
of an interaction and its similarity to other interactions.

In SDT, for an arbitrary basis of dimension Nd the
traceless (many-body) Hamiltonian matrix representa-
tion can be mapped onto a vector in a multi-dimensional
linear vector space. The σH vector “length” (specify-
ing the interaction “strength”) is related to the Hilbert-
Schmidt norm,

σ2
H = 〈(H − 〈H〉)†(H − 〈H〉)〉 (6)

with 〈. . .〉 ≡ 1
Nd

Tr(. . .), while the spatial orientation of

two operators, H and H ′, is given by their correlation
coefficient (specifying the similarity between the two in-
teractions),

ζH,H′ =
〈(H − 〈H〉)†(H ′ − 〈H ′〉)〉

σHσ′H
= cos θ (7)

with θ being the angle between H and H ′. Hence, σH
is a natural measure of the H operator size and realizes
the spread of the H eigenvalue distribution. As is well-
known, the smaller the σH (the weaker the interaction),
the more compressed the energy spectrum of H and the
smaller its effect on the (H + H ′) spectrum for a much
stronger H ′ [11].

Furthermore, SDT provides a tool to express an inter-
action of a particle rank k – e.g., k = 3 for the H3b

I in

Eq. (2) – in terms of H(k)(ν) interactions of a definite
particle rank ν for an A-particle system,

H(k) =

k∑
ν=0

(
A− ν
k − ν

)
H(k)(ν). (8)

The H(k)(ν) are also called “pure” ν-body interactions.
For example, for a scalar distribution over a single-
particle basis space of dimension N , the H(k)(ν) is an
U(N ) irreducible tensor of rank ν = 0, 1, . . . , k, for a k-
body interaction. From a physical point of view, this
expansion realizes contributions to the H(k) interaction
from ‘density-dependent’ ν-body terms with, e.g., ν = 0
and ν = 1 giving the vacuum expectation value and the
‘density-dependent’ mean field, respectively.

In what follows, we will use a scalar distribution, which
invokes averages over all single-particle basis states.

A. Two-body interactions

For a two-body interaction as given in [12], the
monopole moment (centroid), which is the average ex-
pectation value, is defined in the scalar case as,

W (2)
c =

1(N
2

) ∑
r<s

Wrsrs =

∑
rsWrsrs

N (N − 1)
, (9)

where N is the dimensionality of the single-particle
model space and

(N
2

)
=
∑
r<s 1. For a spherical har-

monic oscillator (HO) basis (m-scheme) of like particles,
N =

∑
η(η + 1)(η + 2), where η is the oscillator shell

quantum number.
Contraction of the two-body interaction into an effec-

tive one-body operator under the particular group struc-
ture yields the effective mean field contribution, some-
times referred as induced single-particle energies,

λ
(2)
rt =

1

N − 2

∑
s

Wrsts (10)

with their traceless counterparts given as,

λ̃
(2)
rt = λ

(2)
rt −δrt

1

N
∑
s

λ(2)
ss = λ

(2)
rt −δrt

N − 1

N − 2
W (2)
c . (11)

Hence, the traceless pure two-body matrix elements are
defined as,

ṽ
(2)
rstu = Wrstu − (λ̃

(2)
rt δsu + λ̃(2)

su δrt − λ̃(2)
ru δst − λ̃

(2)
st δru)

− W (2)
c (δrtδsu − δruδst). (12)

For A particles, which interact through a two-body in-
teraction H(2), the strength of the interaction reflects its
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propagation in the many-particle systems and is given as,

σ2
H(2)(A) = P(1, A)

∑
ir

(A− 1)2λ̃
(2)
ir λ̃

(2)
ir

+ P(2, A)
∑

i<j,k<l

ṽ
(2)
ijklṽ

(2)
ijkl (13)

with N -dependent propagation functions,

P(ν,A) =

(
A
ν

)(N
ν

) (N−Aν )(N−ν
ν

) . (14)

Note that σH(2)(A) (13) depends only on sums calculated
for the two-body system and is exactly equal to σH(A)

that can be calculated by constructing the corresponding
many-body H(A) Hamiltonian and using Eq. (6) with
H(A).

B. Three-body interactions

We use the SDT method outlined in [12] and apply it
to a 3-body interaction to derive its pure interactions of
a particle rank 1, 2, and 3 under the space partitioning in
consideration, namely, the scalar distribution (Appendix
A). The monopole moment (centroid) is thus defined as,

W (3)
c =

1(N
3

) ∑
i<j<q

Wijqijq =

∑
ijqWijqijq

N (N − 1)(N − 2)
,(15)

where
(N

3

)
=
∑
i<j<q 1. The effective one-body interac-

tion is given in terms of,

λ
(3)
ir =

1(N−2
2

) ∑
j<q

Wijqrjq =
1

(N − 2)(N − 3)

∑
jq

Wijqrjq

(16)
with the corresponding interaction of a particle rank one
(traceless mean-field contribution) defined by means of,

λ̃
(3)
rt = λ

(3)
rt −δrt

1

N
∑
s

λ(3)
ss = λ

(3)
rt −δrt

N − 1

N − 3
W (3)
c . (17)

The two-body matrix elements, constructed by contrac-
tion of the 3-body interaction,

v
(3)
ijrs =

1

N − 4

∑
q

Wijqrsq (18)

yield, in turn, the matrix elements of the pure 2-body
H(3)(2),

ṽ
(3)
rstu = v

(3)
rstu −

N − 3

N − 4
(λ̃

(3)
rt δsu + λ̃(3)

su δrt − λ̃(3)
ru δst − λ̃

(3)
st δru)

− N − 2

N − 4
W (3)
c (δrtδsu − δruδst). (19)

For A particles, the strength of an interaction that is up to three-body is given as,

σ2
H(1+2+3)(A) = P(1, A)

∑
ir

(
λ̃

(1)
ir + (A− 1)λ̃

(2)
ir +

(
A− 1

2

)
λ̃

(3)
ir

)2

+ P(2, A)
∑

i<j,k<l

(
ṽ

(2)
ijkl + (A− 2)ṽ

(3)
ijkl

)2

+ P(3, A)
∑

i<j<q,r<s<k

w̃
(3)
ijqrskw̃

(3)
ijqrsk, (20)

where the N -dependent P propagation functions are

given in Eq. (14), as well as λ̃
(1)
ii = λ

(1)
ii − 1

N
∑
s λ

(1)
ss

are related to λ
(1)
ii single-particle energies (if used in

the model at hand). The explicit construction of

the pure three-body matrix elements w
(3)
ijqrsk is not re-

quired to evaluate the w
(3)
ijqrsk-dependent sum in the

last term of Eq. (20). This sum can be calculated
using Eq. (20) for A = 3 and that σ2

H(3)(3) =(N
3

)−1∑
i<j<q,r<s<kWijqrskWijqrsk is known. Clearly,

σ2
H(3)(A) follows from Eq. (20) with λ̃

(1)
ir , λ̃

(2)
ir , and ṽ

(2)
ijkl

set to zero.

In the present study, the ‘density-dependent’ one-body

and two-body parts of the H
(3b)
I 3-body interaction are

calculated using Eq. (17) and Eq. (19), respectively.

If the pure 3-body contribution to the H
(3b)
I is found to

be insignificant for the description of certain spectral fea-
tures, these equations offer a straightforward approach to

extract from the H
(3b)
I its one- and two-body parts and

thus, simplifying the problem to one utilizing a 2-body
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TABLE I: SRG-induced interactions and the corresponding notations used in the paper. The interactions H
(2b)
I and H

(3b)
I are

derived using Eqs. (3-5). The H
(3b)
I,2b includes pure one- and two-body interactions with matrix elements calculated using Eq.

(17) and Eq. (19), respectively, for the 3-body H
(3b)
I .

2-body induced, H
(2b)
I

}
total 2-body induced, Htot

I,2b

total induced, Htot
I

3-body induced, H
(3b)
I

{
2-body of 3-body induced, H

(3b)
I,2b

pure 3-body of 3-body induced, H
(3b)
I,3b

SRG-evolved interaction. The various SRG-induced in-
teractions and their notations used throughout the paper
are given in Table I.
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FIG. 1: (Color online) Contributions of the Htot
I,2b total 2-

body SRG-induced interaction (red lower bars) and of the

H
(3b)
I,3b pure 3-body SRG-induced interaction (blue upper bars)

to the total SRG-induced interaction as a function of the a
number of particles in the many-body basis space for N3LO
interaction and 10 j-levels. Similar results are obtained for
JISP16.

IV. APPLICATION OF SRG RENORMALIZED
INTERACTIONS TO HEAVIER NUCLEI

A. Model description

While the SRG renormalization of NN or NNN in-
teractions is typically restricted to a 2- or 3-particle
model space [31, 32] and furthermore, most many-body
SRG-induced interactions are impossible to handle, the
SDT framework presented above provides a straightfor-
ward approach to investigate the overall role of the SRG-
generated interactions for evolutions in model spaces of
larger particle numbers, e.g., out to a = 28 in the cur-
rent study. We apply the SRG procedure (Eq. 1) using
the free HO Hamiltonian C = HHO (one-body) to var-
ious realistic NN interactions H0, namely, N3LO (HO

parameter ~ω = 11 MeV) [33] and JISP16 (15 MeV)
[34], as well as, for illustration, CD-Bonn (15 MeV) [35]
and AV18 (18 MeV) [36], in an m-scheme basis for six
to ten j-levels (0s1/2, 0p1/2, 0p3/2, 1s1/2, 0d3/2, 0d5/2,
1p1/2, 1p3/2, 0f5/2, and 0f7/2) and for like particles. As
shown below, these model spaces already reveal a con-
vergence trend for the quantities studied here. This, to-
gether with the similar patterns observed when random
interactions are employed, brings forward results that are
not significantly restricted by the choice of interactions
or model spaces. In addition, while studies of the im-
portant T = 0 part of the interactions are needed and
underway, the present investigation focuses on the T = 1
part, which yields three-body interactions that are com-
paratively simpler to handle. Such a restriction is ex-
pected not to alter the present conclusions, because –
even though there are strong detailed differences – the
overall features relevant to this study for both T = 0 and
T = 1 parts are very similar. For example, for ten j-
levels up through the pf shell, the strength of the T = 0
(T = 1) N3LO NN interaction is 2.84 MeV (1.65 MeV)
with a strength of its pure one-body part being 0.33 MeV
(0.19 MeV) and of its monopole part being −0.82 MeV
(−0.44 MeV). This together with a correlation of the in-
teraction to the C = HHO SRG operator of 0.103 for
T = 0 and 0.093 for T = 1 shows that no large discrep-
ancies are expected for the T = 0 and T = 1 results.

As previously mentioned, it is sufficient, without ne-
glecting any significant SRG-induced terms, to study the

2-body (H
(2b)
I ) and 3-body (H

(3b)
I ) SRG-induced terms

defined in (2). The effect these interactions have for
SRG evolutions performed for a ≥ 3, is calculated using
Eqs. (13) and (20), which reflect the overall properties
of the many-body Hamiltonian for a particles that in-
teract through 2-body and 3-body interactions. In par-
ticular, first, we show the role of the pure 3-body in-

teractions (H
(3b)
I,3b) for SRG evolutions in a model space

of 3 ≤ a ≤ 28 particles. We also study the 2-body

part H
(3b)
I,2b that emerges from the H

(3b)
I term. Finally,

we compare full SRGa calculations (excluding negligible
higher-order SRG-induced terms) to the case of omitting

the H
(3b)
I term (equally, employing an SRGa=2 flow) and

show the effect it has on the SRG-evolved interaction.
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FIG. 2: (Color online) Contribution of the H
(3b)
I,3b pure 3-

b SRG-induced interaction to the total SRG-induced inter-
action for N3LO as a function of the number of j-levels
considered. The maximum contribution among systems of
3 ≤ a ≤ 38 particles is shown (red squares) together with the
contribution within a 3-particle system (blue diamonds).

B. Results and discussions

The analysis of the results reveals that for an SRG
evolution performed in a three-particle (a = 3) system,
2-body interactions (Htot

I,2b) – those that realize the com-

bined contribution of the 2-body induced H
(2b)
I and the

H
(3b)
I,2b 2-b part of the 3-b induced term – account for

∼ 60% of the total SRG-induced interaction (Fig. 1, red
lower bars, a = 3). For example, for N3LO, this portion
is 57.4% for four HO shells (10 j-levels) and 58.9% for
three HO shells (similarly, 55.9% for JISP16). Equally,

only ∼ 40% is realized by the pure 3-b interactions, H
(3b)
I,3b

(Fig. 1, blue upper bars, a = 3). As shown in Fig. 1, this
3-body contribution first increases with increasing num-
ber of particles to ∼ 2/3 of the total induced interaction,
and beyond this, steadily decreases as more particles fill
up the model space. These features, we find, have already
exhibited a tendency toward convergence for the 10-level
model space considered (Fig. 2). The induced Htot

I,2b and
the initial HNN 2-body interactions thus comprise the
dominant contribution to the SRG-evolved Hamiltonian.
This remarkable result points to the fact that the renor-
malized interaction is essentially two-body driven for any
a-particle system.

Note that the dominating 2-body portion shown in Fig.

1 includes a 2-body contribution, H
(3b)
I,2b , from the 3-b

SRG-induced term of Eq. (2), which is not accounted for
in an SRGa=2 flow. However, our findings reveal that the
role this contribution plays in an SRG-evolved interaction
is considerable and even dominant for heavier systems
(Fig. 3, magenta dotted vectors). This is in agreement
with additional evidence for the need of an SRGa=3 flow
based on observations of low-lying state energies in a few
light nuclei [16, 31, 32], but the systematic importance of
the 2-body content of the 3-body induced terms has not
been detected heretofore. Fig. 3 displays a vector repre-

sentation of the SRG-induced interactions under consid-
eration (Table I) for an SRG evolution performed for rep-
resentative model spaces. Namely, we show model spaces
of a = 3, a = 6 (around the maximum contribution of
the pure 3-body interaction to the total induced one) and
a = 12 particles. The total 2-body SRG-induced inter-
action, which is shown in Fig. 1 as red (lower) bars, is
represented in Fig. 3 by a red (dashed) vector, which is

made up of the 2-body induced H
(2b)
I (a purple vector in

the horizontal plane) and the H
(3b)
I,2b . The latter together

with the pure 3-body interaction (blue vector along the

vertical axis) make up the H
(3b)
I 3-b SRG-induced term,

which, in turn, adds up to H
(2b)
I to yield – according to

Eq. (2) – the total SRG-induced interaction (black vec-
tor in Fig. 3). Higher-order SRG-induced terms, if found
nonnegligible, have an overall significant effect only on
the axis scale (different vector lengths). As manifested

in Fig. 3, while H
(3b)
I,2b plays a negligible role for a = 3

particles, its contribution is essential and, for larger a, is

comparable to or even larger than the H
(2b)
I . This points

to the fact that the three-body induced interactions, and
especially their ‘density-dependent’ 2-body content, that
are not accounted for in an a = 2 SRG evolution of a
HNN play an essential role in describing heavier systems
using such SRG-renormalized interactions.

It is important to further exploreH
(2b)
I andHtot

I . H
(2b)
I

is the total SRGa=2-induced interaction that yields an
SRG-renormalized interaction no longer unitarily equiv-
alent to the original one for A > 3 nuclei. Htot

I is the
total induced interaction, which retains the unitarity. As
shown in Figure 3, even though both interactions typi-
cally have a comparable strength, they are actually ex-
pected to render quite different spectral features. This
is manifested by the large angle observed between the
two corresponding vectors (given by means of their cor-
relation ζ

H
(2b)
I ,Htot

I

). In fact, the heavier the nucleus to

be considered, the larger the deviation. E.g., for a six-
nucleon (A = 6) system, the Htot

I vector gives the to-

tal induced interaction for the SRGa=6, and H
(2b)
I vec-

tor gives the total SRGa=2-induced interaction propa-
gated to A = 6. Clearly, both vectors possess a com-
paratively small similarity with a correlation coefficient,
ζ
H

(2b)
I ,Htot

I

= .45 (or 63-degree angle between the cor-

responding vectors) for both N3LO and JISP16. The
square of the correlation coefficient, ζ2

H
(2b)
I ,Htot

I

, indicates

the portion of the Htot
I that behaves as the H

(2b)
I in-

teraction (Fig. 4). That is, this portion of Htot
I yields

the same energy spectrum for an A-particle system as

the one produced by the H
(2b)
I for the same number of

particles. Likewise, 1− ζ2

H
(2b)
I ,Htot

I

demonstrates the con-

tribution of interactions in Htot
I not accounted for by

H
(2b)
I but needed to retain the SRG unitarity in a gen-

eral many-body system. Indeed, the results indicate that
these interactions make up a considerable fraction of the
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FIG. 3: (Color online) Vector representation of the SRG-induced interactions (Table I) relative to the NN interaction strength.

In the horizontal plane: H
(2b)
I (purple, solid), H

(3b)
I,2b (magenta, dotted), and total Htot

I,2b (red, dashed); in the vertical plane: pure

3-body H
(3b)
I,3b (blue, along the vertical axis) and total Htot

I (black); and H
(3b)
I (light blue, long dashed). Induced interactions are

shown for (a) N3LO, (b) JISP16, (c) CD-Bonn, and (d) AV18 NN interactions and for 6-level a = 3 (smallest set of vectors),
6, and 12 (largest set of vectors) model spaces. For each a, the vector corresponding to the Htot

I,2b is fixed along the y-axis.

total induced interaction. E.g., as shown in Fig. 4, while

the H
(2b)
I -like portion of Htot

I is comparatively large for
A = 3 (50− 90%), it rapidly decreases for heavier nuclei
and becomes almost negligible in heavier systems. The
outcome holds for both 6-level and 10-level model spaces,
as seen in Fig. 4. This, in turn, has a direct consequence
on the applicability of an SRGa=2 renormalized inter-
action to light nuclei. Namely, without the important

H
(3b)
I,2b , the unitarity for SRGa=2-evolved interactions no

longer holds for A > 3 nuclei and hence, when employed
in nuclear structure and reaction calculations, may de-
scribe only certain spectral features.

While it is clear that SRG evolving HNN with a 1-
body C yields a renormalized interaction that appears
to be 2-body driven, the SRG, if restricted to an a = 2
system, neglects a large 3-body contribution and hence
is not suitable for A ≥ 3 nuclear structure applications.
An SRGa=3 neglects, in addition to an even smaller con-
tribution of higher particle rank interactions, induced 4-
body interactions. For reasonable λd, the only significant
contribution of the latter emerges through their up-to-3-
body part, in particular, through their projection along

the [η0, H0] interaction. This, as mentioned above, only
affects the overall strength of the total induced interac-
tion. Note that the most dominant induced contribution
is 5-body if evolving HNN+3N , which requires at least
SRGa=5 calculations. This term is 4-body for evolving
HNN with the 2-body Csu3

2 , the second-order Casimir
invariant of SU(3), or the 2-body Trel relative kinetic en-
ergy. Fortunately, in the SU(3) case, the use of symmetry
renders 4-body terms manageable.

Finally, it is interesting to point out that the overall
behavior of both N3LO and JISP16 is essentially simi-
lar in the model spaces considered. Indeed, while other
interactions manifest various differences, the properties
studied here for both N3LO and JISP16 interactions re-
veal a considerable similarity (see, Fig. 1, Fig. 3 (a)
and (b), as well as Fig. 4, red filled diamonds and green
squares).
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FIG. 4: (Color online) Portion of the total SRG-induced in-
teraction Htot

I that yields the same energy spectrum for an
A-particle system as the one produced by the 2-body SRG-

induced H
(2b)
I interaction in the same A-particle system for

various NN realistic interactions, N3LO (for 10 and 6 levels),
as well as JISP16, CD-Bonn, and AV18 (6 levels).

V. CONCLUSIONS

In the SDT framework, we applied the SRG renor-
malization approach to various NN realistic interactions
and, for the first time, investigated the overall contri-
bution of the SRG-induced many-body interactions and
their effective 2-body part for many-nucleon systems, up
through A = 28 particles. This was done by allowing the
nucleons to interact through the most dominant SRG-
induced interaction of the [η0, H0] kind, which in the
present case is up-to-3-body (leaving out only negligi-
ble contributions of higher-order interactions). The size
of various contributions was estimated by their second-
order energy moment (strength σ). For A particles, these
strengths were evaluated with the help of SDT using only
the 3-particle information. We note that the procedure
yields exactly the same strengths as if one were to con-
struct the corresponding many-body Hamiltonians for
A particles and then calculate their norm. Results are
shown for SRG flows not infinitely evolved and using the
free HO Hamiltonian C = HHO (one-body) for N3LO and
JISP16, as well as, for illustration, CD-Bonn and AV18
realistic NN interactions in m-scheme basis for six to ten
j-levels up through the pf -shell and for like particles.

Among the many-body SRG-induced interactions, nec-
essary to ensure the unitarity of SRG transformations,
only those that emerge at the very beginning of the SRG
transformations play a key role and above all, have a low

particle rank. What we find here is that, for a 1-body C
and a 2-body initial Hamiltonian, 3-body interactions are
crucial. Nonetheless, their major contribution is found to
be 2-body rendering a simpler final SRG-evolved Hamil-
tonian. This remarkable result reveals that the SRG-
renormalized interaction is essentially two-body driven.
While it is clear that 3-body interactions need to be taken
into account, for certain problems, retaining only the 2-
body part of the SRG-evolved many-body Hamiltonian
may be sufficient. Above all, the extraction of this 2-body
part is readily available in the SDT framework. This re-
duces the nuclear eigenvalue problem to one that employs
manageable basis spaces with simple one-body and two-
body inter-nucleon interactions.

The significance of the 3-body induced interaction,
in turn, has a direct consequence on the applicability
of an SRGa=2 renormalized interaction to light nuclei.
Namely, without the important two-body part of the 3-
body term, SRGa=2-evolved interactions are no longer
unitarily equivalent to the original NN interaction for
A > 3 nuclei and hence, when employed in nuclear struc-
ture and reaction calculations, may describe only certain
spectral features. If a realistic NN + 3N interaction is
employed, the initial dominating SRG-induced term is
up to 5-body and requires SDT propagation formulae
for interactions of a particle rank ≤ 5. The SDT-based
method used in the present study can also be applied to
other choices for the SRG-generating operator (C) and
NN interactions, as well as to 3N interactions.

In short, we carried forward first studies of the overall
many-body contributions to an SRG-evolved interaction
in a many-particle system at an operator level (based
on properties of the Hamiltonian) without restricting to
energy spectra observations, and found that 3-body in-
teractions and their 2-body part play a significant role.
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Appendix A: Derivation of pure ν-body interactions

We follow [12] to derive the pure 0-, 1-, 2-, and 3-body

interactions of a 3-body interaction like H
(3b)
I of Eq. (2).

For a scalar partitioning of the HO basis space of dimen-
sion N , the definite particle rank (pure ν-body) interac-
tions, H(k)(ν), for a given k-body Hamiltonian H(k) and
A particles are given as,
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H(k)(ν) =
1

(k − ν)!
(N−2ν
k−ν

) k∑
t=k−ν

(−)t−k+ν

(t− k + ν)!

(
N − ν − k + t+ 1

t− k + ν

)−1(
A− k + t

t− k + ν

)
DtH(k). (A1)

In (A1), the DtH(k) unitary-scalar contractions of an
operator H are defined as,

DtH(k) =
∑
i

{
a†i , [ai, D

t−1H(k)]
}
, (A2)

and D0H(k) ≡ H(k). Here, {A,B} and [A,B] denote
anti-commutator and commutator, respectively. Hence,
a 3-body interaction (k = 3),

H(3) =
1

(3!)2

∑
ijqrsk

Wijqrska
†
ia
†
ja
†
qakasar, (A3)

can be expanded into interactions of a definite particle
rank using (8),

H(3) =

(
A

3

)
H(3)(0) +

(
A− 1

2

)
H(3)(1)

+ (A− 2)H(3)(2) +H(3)(3), (A4)

where, according to (A1) with k = 3,

H(3)(0) =
1

3!

1(N
3

)D3H(3) ≡W (3)
c ,

H(3)(1) =
1

2!

1(N−2
2

) (D2H(3)− A

N
D3H(3)

)
,

H(3)(2) =
1

N − 4

(
DH(3)− A− 1

N − 2
D2H(3)

+
1

2

(
A
2

)(N−1
2

)D3H(3)

)
,

H(3)(3) = H(3)− A− 2

N − 4
DH(3) +

1

2

(
A−1

2

)(N−3
2

)D2H(3)

− 1

3!

(
A
3

)(N−2
3

)D3H(3). (A5)

The D-interactions are derived with the help of (A2),

D3H(3) =

∑
ijq

Wijqijq

 ,

D2H(3) =
∑
ir

∑
jq

Wijqrjq

 a†iar,

DH(3) =
1

4

∑
ijrs

(∑
q

Wijqrsq

)
a†ia
†
jasar. (A6)

Hence, the first term in each H(3)(ν) of Eqs. (A5) gives
Eqs. 15, 16, and 18. The traceless counterparts are ob-
tained by considering the remaining terms in (A5), which
yields Eqs. 17 and 19.
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092501 (2007).

[9] K.D. Launey, T. Dytrych, J. P. Draayer, and G. Popa, J.
Phys. A: Math. Theor. 45, 015208 (2012).

[10] J. B. French, Phys. Lett. 23, 248 (1966).
[11] J. B. French and K. F. Ratcliff, Phys. Rev. C 3, 94 (1971).
[12] F. S. Chang, J. B. French, and T. H. Thio, Ann. Phys.

(N.Y.) 66, 137 (1971).

[13] V. K. B. Kota and R. U. Haq, “Spectral Distributions in
Nuclei and Statistical Spectroscopy,” (World Scientific
Publishing Co., 2010).

[14] A. F. Lisetskiy, M. K. G. Kruse, B. R. Barrett, P.
Navratil, I. Stetcu, and J. P. Vary, Phys. Rev. C 80,
024315 (2009).

[15] G. Hagen et al., Phys. Rev. C 76, 034302 (2007).
[16] K. Tsukiyama, S. K. Bogner, and A. Schwenk, Phys. Rev.

Lett. 106, 222502 (2011).
[17] K. T. Hecht and J. P. Draayer, Nucl. Phys. A 223, 285

(1974).
[18] K. F. Ratcliff, Phys. Rev. C 3, 117 (1971).
[19] J. N. Ginnochio, Phys. Rev. Lett. 31, 1260 1973
[20] J. P. Draayer, J. B. French, M. Prasad, V. Potbhare, and

S. S. M. Wong, Phys. Lett. 57B, 130 (1975).
[21] J. B. French and V. K. B. Kota, Phys. Rev. Lett. 51,

2183 (1983).
[22] B. Strohmaier, S. M. Grimes and H. Satyanarayana,

Phys. Rev. C 36, 1604 (1987).
[23] A. Abzouzi, E. Caurier, and A. P. Zuker, Phys. Rev. Lett.



10

66, 1134 (1991).
[24] T. R. Halemane, K. Kar, and J. P. Draayer, Nucl. Phys.

A 311, 301 (1978).
[25] B. J. Dalton, W. J. Baldridge, and J. P. Vary, Phys. Rev.

C 20, 1908 (1979).
[26] L. Benet, T. Rupp, and H. A. Weidenmiiller, Phys. Rev.

Lett. 87, 010601 (2001).
[27] S. Tomsovic, M. B. Johnson, A. Hayes, and J. D. Bow-

man, Phys. Rev. C 62, 054607 (2000).
[28] M. Horoi, M. Ghita, and V. Zelevinsky, Phys. Rev. C 69,

041307(R) (2004).
[29] Y. M. Zhao, A. Arima, N. Yoshida, K. Ogawa, N. Yoshi-

naga, and V. K. B. Kota, Phys. Rev. C 72, 064314 (2005).

[30] K. D. Sviratcheva, J. P. Draayer, and J. P. Vary, Nucl.
Phys. A 786, 31 (2007).
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