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Dynamics of spontaneous symmetry breaking and fluctuations in the Lipkin-Meshkov-Glick model
are investigated in a stochastic mean-field approach. Different from the standard mean-field, in the
stochastic approach, initial state fluctuations, are incorporated. In weak coupling, the approach per-
fectly reproduces the exact quantal dynamics. On the other hand, for increasing coupling strength,
above the symmetry breaking threshold, the approach provides description of gross properties (i.e.
time averaged behavior) of the exact quantal evolution.
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The mean-field description of a many-body system, i.e.
the Hartree-Fock (HF) and/or time-dependent Hartree-
Fock theory (TDHF), provides a simple tool for descrip-
tions of certain aspects of complex quantum systems [1].
For example, in the constrained Hartee-Fock method, by
explicitly breaking certain symmetries of the underly-
ing Hamiltonian in static calculation, it is possible to
describe topology of a quantum phase transitions [2].
However, it is well-known that the mean-field approxi-
mation is suitable for the description of mean values of
one-body observables, while quantum fluctuations of col-
lective variables are severely underestimated [3]. Numer-
ous approaches have been proposed either deterministic
or stochastic to extended mean-field and describe fluc-
tuations in collective space [4, 5]. Most often, these
approaches are too complex to be applied in realistic
situations with actual computational power. A second
limitation of mean-field dynamics is that it can not de-
scribe spontaneous symmetry breaking during dynami-
cal evolution. If certain symmetries are present in the
initial state, these symmetries are preserved during the
evolution [1, 2]. Accordingly, mean-field cannot describe
physical effects related to spontaneous symmetry break-
ing including molecule dissociation, spontaneous magne-
tization, and spontaneous fission in nuclei.

Both dynamical symmetry breaking and lack of fluctu-
ations are related to the absence of quantal effects in col-
lective space and consequently collective motion appears
nearly classical in the mean-field dynamics. To overcome
this difficulty, the mean-field approximation should be
improved by considering a more general wave function by
coherent superposition of Slater determinants, such as in
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the time-dependent generator coordinate method [6, 7].
However, at present, applications of this method can be
made only in a very restricted collective space and mostly
along the adiabatic potential energy surface. Here, we
employ a stochastic approach, which is much simpler
than the generator coordinate method, and is based on
the fact that initial state fluctuations (quantal and ther-
mal) dominate the fluctuation dynamics at low energies
[8, 9]. This idea has been proposed nearly 30 years ago
by Esbensen et al. in a macroscopic model of nuclear
reactions [10, 11], and more recently tested in heavy-ion
fusion reactions [12]. Following a similar idea, recently,
a stochastic mean-field approach (SMF) has been pro-
posed [13] to treat fluctuations beyond mean-field de-
scription. In the standard mean-field dynamics, ignor-
ing quantal and thermal fluctuations, the initial state is
specified in a deterministic manner: a given initial state
leads to a well defined final outcome. In the SMF, on the
other hand, initial state fluctuations are incorporated in
a stochastic approximation. Consequently, an ensemble
of events are generated starting from a specified distri-
bution of initial states. It is shown in ref. [13], in small
amplitude limit, that this approach gives rise to the same
expression for dispersions of one-body observables as the
one obtained in the variational description of Balian and
Vénéroni (BV) [14, 15]. In other applications, the average
version of SMF theory was recently employed [16–18] to
successfully reconcile onset of dissipation in TDHF and
to calculate transport coefficients for relative momentum
and nucleon-exchange in deep-inelastic heavy-ion colli-
sions [19].

Recently, the variational approach of BV has been
applied to nuclear reactions [20, 21]. Similarly to the
standard mean-field description, the approach cannot de-
scribe spontaneous symmetry breaking mechanism, un-
less a symmetry-breaking density is used in the varia-
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tional principle. Therefore, the variational approach can
only provide a poor approximation for dynamical evolu-
tion in the case of spontaneous symmetry breaking (SSB)
(see Figure 6 of ref. [22]). Currently, a realistic descrip-
tion of spontaneous symmetry breaking in the mean-field
framework remains an open problem. For this reason it is
worthwhile to test whether the SMF approach overcomes
this difficulty. In the SMF approach the initial state is
not the standard HF state, but specified by a suitable
distribution. Even if the HF state respects a symmetry,
in the SMF, this symmetry may be broken initially event
by event. Consequently one might anticipate that, con-
trary to the original TDHF and/or BV methods, in the
SMF approach it may be possible to treat the onset of
the SSB. We illustrate here that this is indeed the case.
As a test case, the Lipkin-Meshkov-Glick (LMG)

Model [2, 23–25] is considered here. This model con-
sists of N particles distributed in two N-fold degenerated
single-particle states separated by an energy ε. The as-
sociated Hamiltonian is given by (taking ~ = 1),

H = εJz − V (J2
x − J2

y ), (1)

where V denotes the interaction strength while Ji (i = x,
y, z), are the quasi-spin operators defined as

Jz =
1

2

N
∑

p=1

(

c†+,pc+,p − c†−,pc−,p

)

,

Jx =
1

2
(J+ + J−), Jy =

1

2i
(J+ − J−) (2)

with J+ =
∑N

p=1
c†+,pc−,p, J− = J†

+ and where c†+,p and

c†−,p are creation operators associated with the upper and
lower single-particle levels. In the following, energies and
times are given in ε and ~/ε units respectively.
This model has the advantage to be exactly solvable

both in the static [2] and dynamical case [26, 27]. The
LMG model is known to present a spontaneous symme-
try breaking in mean-field theory as the interaction V
increases (see Figure 1 below). Therefore, this model is
perfectly suitable to investigate if the SMF approach is
able to treat the SSB.
The Hartree-Fock (or Mean-Field) solution is obtained

by introducing the Slater Determinant trial states written

as |Φ〉 = ΠN
p=1a

†
0,p|−〉, where the HF single-particle states

are given by

a†0,p = cos(α)c†−,p + sin(α)eiϕc†+,p. (3)

The HF solution is obtained by minimizing the mean-
field energy with respect to variables α and ϕ,

EHF[α, ϕ] = −
εN

2

{

cos(2α) +
χ

2
sin2(2α) cos(2ϕ)

}

,(4)

where χ = V (N − 1)/ε. In Fig. 1, EHF[α, 0] is shown for
different χ parameters. When the strength parameter is
larger than a critical value (χ > 1), the parity symmetry
is broken in α direction.
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FIG. 1: (color online). Evolution of the Hartree-Fock energy
EHF as a function of α for χ = 0.5 (dashed line), χ = 1.8
(doted line) and χ = 5 (solid line) for N = 40 particles.
The arrow indicates the initial condition used in the SMF
dynamics.

The mean-field evolution can be formulated either in
the Schrödinger [27] or Heisenberg picture. Here, we em-
ploy the second option. We consider the expectation val-
ues of the quasi-spin operators ji ≡ 〈Ji〉/N (for i = x,
y and z). In the mean-field approximation, it is possible
to derive a set of coupled equations for the expectation
values of the quasi-spin operators as,

d

dt





jx
jy
jz



 = ε





0 −1 + χjz χjy
1 + χjz 0 χjx
−2χjy −2χjx 0









jx
jy
jz



 . (5)

Initially, we prepare the system in the state |j,−j〉, i.e.
α = 0, which means that all particles are placed in
the lower single-particle states. This case is indicated
by an arrow in Figure 1. In this state, initial expecta-
tion values of quasi-spin components are jz(t0) = −1/2,
jx(t0) = jy(t0) = 0. This initial condition is a station-
ary solution of Eq. (5). When the strength parameter is
larger that critical value χ > 1, the initial state is at the
saddle point. Since mean-field cannot break the symme-
try, the system will remain at the saddle point. There-
fore, it is not possible to describe onset of SSB in the
standard mean-field framework. This situation is simi-
lar to the classical object positioned at α = 0. In exact
quantal description, since the initial state is not an eigen-
state of the Hamiltonian H , different spin components
and their correlations change in time. The difference
between the exact and the mean-field evolution is that
quantum fluctuations are properly taken into account in
the exact evolution.
In the SMF approach, the expectation values of the

quasi-spin operators obey the same set of equations given
by Eq. (5), except that the initial conditions are differ-
ent. In order to simulate quantum fluctuations in an ap-
proximate manner, in the SMF approach [13], an initial
ensemble of single-particle density matrices is prepared
around the same state |j,−j〉 used in the exact evolu-
tion. According to the stochastic properties of the initial



3

state, it is possible to determine the initial distributions
of expectation values of quasi-spin operators. We find
that that the z quasi-spin component is not a fluctuating
quantity with a mean value jz(t0) = − 1

2
. On the other

hand, the x and y quasi-spin components are uncorre-
lated Gaussian random numbers with zero mean values,

jλx (t0) = jλy (t0) = 0, (6)

and second moments determined by,

jλx (t0)j
λ
x (t0) = jλy (t0)j

λ
y (t0) =

1

4N
. (7)

We note that even if all trajectories start from the top
of the energy landscape (the arrow in Fig. 1) and the
system has good parity in average, in the SMF evolution
this symmetry is broken event by event due to non-zero
values of the spin components along the x and y axis.
In the SMF, mean values and fluctuations of observ-

ables are obtained by performing average of expectation
values over the generated ensemble. The mean values
of the quasi-spin components and associated dispersions,
denoted respectively by Ji and ∆2

i , are given by

Ji(t) = Njλi (t), ∆2
i (t) = N2

(

(jλi )
2
− (jλi )

2
)

. (8)
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FIG. 2: (color online) Exact evolution of the z quasi-spin
component obtained when the initial state is |j,−j〉 for three
different values of χ: χ = 0.5 (solid line), χ = 1.8 (dotted
line) and χ = 5.0 (dashed line) for N = 40 particles. The
corresponding results obtained with the SMF simulations are
shown with circles, squares and triangles respectively.

In Fig. 2, the exact and SMF evolutions of the z quasi-
spin component obtained when the initial state is |j,−j〉
for three different values of χ: χ = 0.5, χ = 1.8 and
χ = 5.0 are shown. In TDHF, for 40 particles, this com-
ponent remains constant and equal to -20. In both the
exact results and the SMF simulations, mean values of x
and y components are zero. In this and following figure,
the SMF simulation are carried out using a set of 105 tra-
jectories. Simulations are performed using Runge-Kutta
or order 2 algorithm with a time step of 0.01.
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FIG. 3: (color online) Exact evolution of dispersions of quasi-
spin operators obtained when the initial state is |j,−j〉 for
three different values of χ, from top to bottom χ = 0.5
(a), χ = 1.8 (b) and χ = 5.0 (c) are shown. In each case,
solid, dashed and dotted lines correspond to ∆2

x(t), ∆
2

y(t) and
∆2

z(t), respectively. In each case, results of the SMF simula-
tions are shown with triangles (∆2

x), squares (∆
2

y) and circles
(∆2

z).

The evolutions of dispersions of quasi-spin components
obtained in the SMF simulations are shown in Fig. 3, and
compared with the exact results, ∆2

i (t) = 〈J2
i 〉 − 〈Ji〉

2,
obtained starting from the state |j,−j〉. We note that,
in the standard TDHF dynamics, since the state |j,−j〉,
does not evolve in time, dispersions of the quasi-spin vari-
ables remain constant and equal to their initial values,
∆2

x = ∆2
y = N

4
and ∆2

z = 0. Below the critical value of
the strength parameter (χ = 0.5), where energy can be
regarded as nearly harmonic around α = 0 (see Figure
1), results obtained in the SMF simulations can hardly be
distinguished from the exact solution. Only a small dif-
ference is noticeable in the z component. A similar result
is obtained in ref. [22] with the BV description. The fact
that both approaches produce very similar results in the
harmonic limit is not surprising, since it was shown that
they both lead to the same fluctuation evolution in this
limit [13]. Above the critical strength (χ = 1.8 and 5)
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(middle and bottom panel of Figure 3), the BV descrip-
tion has been shown to lead to very bad results [22], when
calculations start from the same initial condition. Here,
we see that the SMF approach provides a fairly good re-
production of gross properties of the exact dynamics. In
particular, during the early times, the SMF simulations
can not be distinguished from the exact evolution. Dur-
ing the long time evolution, the SMF simulations describe
time-averaged behavior of the exact dynamics very well.
Note that, the SMF dynamics is more damped than the
exact solution and resembles a quasi-spin operator sys-
tem coupled with a heat bath [28]. As seen from Fig. 2,
a similar agreement is obtained for the mean value of the
z component of quasi-spin for all values of the strength
parameter χ. The present example, clearly demonstrates
the ability of the SMF approach to describe gross prop-
erties of mean values and fluctuations for any strength of
the interaction.
It is well known that the standard mean-field theory

provides a poor description for fluctuations of collective
motion, and it essentially treats the collective motion in
a classical approximation. The SMF approach makes
an attempt to correct this shortcoming by incorporat-
ing quantal and thermal fluctuations in the initial state.
In this work, we test the approach in the LMG model.
As seen in Fig. 2 and Fig. 3, the SMF simulations pro-
vide nearly perfect description for non-trivial oscillations

during early evolution of mean values and dispersions of
quasi-spin operators. Over the long time interval, simula-
tions also provide a satisfactory description for the gross
properties, i.e., time averaged behavior of the mean val-
ues and dispersions of quasi-spin operators. We should
note that we do not expect that such a simple SMF ap-
proach provides a detailed quantum mechanical feature
of the evolution. In particular, possible interferences be-
tween different trajectories are neglected. Nevertheless,
the stochastic method presented here provides a suitable
framework beyond mean-field for describing dynamics of
fluctuations and for understanding spontaneous symme-
try breaking in complex quantum systems from a quasi-
classical perspective.
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