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We recently proposed a nonlocal form for the 3-body induced interaction that is consistent with
the Fock space representation of interaction operators but leads to a fractional power dependence
on the density. Here we examine the implications of the nonlocality for the excitation spectrum.
In the two-component weakly interacting Fermi gas, we find that it gives an effective mass that
is comparable to the one in many-body perturbation theory. Applying the interaction to nuclear
matter, it predicts a huge enhancement to the effective mass. Since the saturation of nuclear matter
is partly due to the induced 3-body interaction, fitted functionals should treat the effective mass as
a free parameter, unless the two- and three-body contributions are determined from basic theory.

PACS numbers:

Zero- and finite-range nuclear energy-density functionals have a long history and a successful track record, allowing
the description of heavy nuclei without region-specific parametrizations.[1] The most popular functionals use interac-
tions that depend on fractional powers of density, which causes serious problems when one tries to extend the theory
to include correlations [2-4]. Ideally, to avoid these problems the effective theory should be based on a Fock-space
Hamiltonian operator. As a partial solution, one can consider energy functionals of integral powers of the density;
there have been a number of attempts to construct functionals of this kind [5, 6].

With this in mind, we recently proposed a nonlocal effective three-body interaction that achieves a fractional
dependence on density using only integral powers of the density matrix [7]. This was derived using the many-body
perturbation theory of the dilute, weakly interacting Fermi gas. By construction, the interaction gives the correct
Lee-Yang contribution [8] to the Fermi-gas energy to order p?/3. The interaction was validated for finite systems in a
harmonic trap by comparing with numerically accurate calculations performed by the Green’s Function Monte Carlo
method. At very weak coupling, the new operator led to results that are identical with the Lee-Yang dependence,
while for stronger coupling the contribution of the new 3-body operator turned out to be more repulsive than in
Lee-Yang (though with the same power-law behavior), thus providing a more accurate description of the microscopic
simulation.

Using the new interaction, the internal energy of the dilute Fermi gas can be expressed in terms of the one-body
density matrix as:

h2 vr . vr
E= d’r: (%p(rl’rz)hl_rz +4WP¢(T17F1)PT(F1,I‘1)>
(1)
+ C/d3’l”1d37"2 pT(r17 r2)p¢(r17 r2)p(r17 1‘2) .
r1 — 12

The subscript 7 on p; denotes the spin state, p without a subscript is the total density. Also, if a is the scattering
length associated with the two-body interaction, C' is a constant proportional to a?. The value of C' was derived in
Ref. [7] by demanding that the formula reproduce the Lee-Yang energy in the uniform Fermi gas. The energy E or
energy density £ is given by
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It is convenient for later use to rederive from Eq. (1) the formula for C, which was originally derived from the
perturbation theory in a momentum space representation. We insert in Eq. (1) the free Fermi gas density matrix
and drop one of the integrals to get the energy density. The Fermi gas density matrix only depends on the relative
coordinate r = rq — ro and can be written
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where F(z) = 3j1(x)/x. When calculating the contribution of the three-body term in Eq. (1), the integral to be
evaluated may be expressed
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FIG. 1: Single-particle energy in the dilute Fermi gas, normalized to h?a?p3;(0)/mk%. The solid line shows result using the
effective 3-body interaction, Eq. (8). The dashed line shows the contribution to the quasiparticle energy obtained by Galitskii.
The dotted line is the slope of the Galitskii expression.

The integration can be performed analytically; the final result for the strength parameter C' is
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We now calculate the single-particle energy with functional Eq. (1) and the value of C fixed by Eq. (5). The
density matrix with a particle added to the Fermi sea is

pi(r) = poi(r) + prie’™™ (6)
The second term represents a particle of momentum £ in spin state ¢; the coefficient pr; has dimensions of density.
With this definition the single-particle energy may be computed as
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Carrying out the differentiation on the energy expression Eq. (1), the first term gives the usual kinetic energy and
the second term is independent of k. The third term is rather complicated. Assuming equal populations of spin up
and spin down in pg, the derivative is given by the integral:
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The factor of 3 is a direct consequence of the spin structure of the numerator in the third term of Eq. (1). The
integral can also be expressed analytically:
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where y = k/kp. The 3-body contribution to the single-particle energy e3 is plotted in Fig. 1, with the dimensionful
factors divided out. Galitskii’s expression for the real part of the quasiparticle energy [9, Eq. (34)] is plotted with
the same normalization on the graph. The perfect agreement of the two at the Fermi momentum is not accidental:
the single-particle energy at the Fermi surface is identical to the chemical potential y, which can be extracted from
the interaction energy by the formula p = 9€/0p. Since we fit the total 3-body interaction energy to the dilute Fermi
gas, the chemical potential must agree as well.



TABLE I: Contributions to the energy of 2°Pb in density functional theory. The numbers for the Skyrme Ska and Gogny D1S
functionals were obtained with the ev8 code [11] and the HFBaxial code [12], respectively.

Ska D1S
Kinetic 3863 3920
Coulomb direct/exchange|831/-31 832/-31
Spin-orbit -97 -105
Central 2B -12480 -12783
ts 6274 6530
Total -1640  -1637

The momentum-dependence of the single-particle energy gives rise to an effective mass m* for the quasiparticle

spectrum,
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The derivative in this expression is negative, implying that the effective mass will be larger than m. Fig. 1 also shows
the derivative for Galitskii’s quasiparticle energy, as the straight line (see also Ref. [10]). We note that the slope for
the 3-body single-particle energy is smaller, implying less of an effective-mass enhancement. Even so, the two results
are close enough in magnitude to motivate the application of the new operator to a nuclear energy functional.

As stated in the introduction, our main interest is to find an improved effective Hamiltonian for nuclear structure
theory. There is no reliable low-density expansion in the nuclear many-body problem, and in fact one must impose
some length scale in the interactions to avoid collapse. Nevertheless, in some formulations there will be a contribution
to saturation coming from the Pauli effects that we are concerned with here. To assess the importance of the
nonlocality, we take C' as an adjustable parameter to be fitted in the functional, similar to the parameter ¢3 of the
Skyrme interaction. The counting of the contributing graphs is different in the four-component Fermi system than in
the two-component case treated by Galitskii, but the scaling between the total energy and the single-particle energy
remains the same under plausible assumptions about the spin-isospin character of the interaction. Thus we may
use the same formulas, only remembering that in the nuclear context pg; is the density associated with a specific
spin-isospin projection, e.g. neutrons with spin up.

While we cannot calculate C', we can at least put a bound on its value using the magnitude of the 3-body interaction
energy that is obtained from phenomenological energy functionals. With our form for the interaction, the relation
between the 3-body energy and the effective mass is
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where d = —1.32 (the calculation is performed in the supplementary material [13]), and the two-body contribution
has been omitted.

To see what the scale of the effect would be, we show in Table 1 the various contributions to the energy of 2°®Pb
found using the Ska Skyrme functional and the D1S Gogny functional. Both these functionals have the same p'/3
density-dependent interaction as in the Lee-Yang expansion. One sees that the decomposition into the two-body and
three-body contributions is quite similar, although the two-body interactions have a very different construction. Eq.
(11) gives a negative effective mass for both functionals, which is of course unphysical. The two-body nonlocality gives
a contribution of the opposite sign, but not enough to produce an effective mass in the physical range (m*/m ~ 1).
As mentioned earlier, there must be other 3-body contributions containing intrinsic length scales in order to achieve
nuclear saturation. However, unless the nonlocalities can be calculated in detail, it does not seem feasible to derive
a theoretical effective mass to be used with an effective Hamiltonian. The extreme sensitivity to the induced 3-body
interaction suggests that the effective mass may need to be an unconstrained free parameter when constructing an
effective Hamiltonian for mean-field theory and its extensions.

In summary, we have applied our newly proposed non-local effective 3-body operator to the study of the single-
particle excitation spectrum, both at weak coupling and at strong coupling. At weak coupling we see that the new
operator has similar behavior to that found by Galitskii. We also applied the new operator to the nuclear case. The
effects pointed to are very large, implying that the effective mass cannot be simply taken to be reduced from the bare



mass based on mean-field theory: as long as no dependable ab initio results are available, the effective mass should
also be treated like an undetermined parameter.
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