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In this paper a model-independent relation which holds for the long distance part of the Fourier
transform of the electromagnetic form factors of the nucleon in the large Nc and chiral limits is
demonstrated. This relation was previously conjectured based on the fact that it emerged in all

semiclassical chiral models independent of the details of the model. Here we show that the result
is, in fact, model independent by deriving it directly in large Nc chiral perturbation theory which
is known to capture the long distance behavior of the form factors. The relation is valid when the
large Nc limit is formally taken before the chiral limit. A new relation is derived for the case where
the chiral limit is taken prior to the large Nc limit.

PACS numbers: 11.15.Pg, 12.39.Fe, 12.38.Aw

I. INTRODUCTION

Low-energy phenomena related to strong interaction
are ultimately traceable directly from Quantum Chro-
modynamics (QCD), the fundamental theory of strong
interactions. It is often difficult to do this since the the-
ory is strongly coupled and the conventional perturbative
expansion in powers of a coupling constant, i.e., around a
non-interacting theory, is not applicable. In order to gain
insight into the phenomena it is often useful to use alter-
native expansion schemes such as the chiral expansion
about the massless quark limit, and the 1/Nc expansion
about the the large Nc limit.
The number of colors Nc is a hidden parameter of

QCD, which is built upon the gauge SU(Nc) symmetry
with Nc = 3. It was shown [1, 2] that many aspects of
QCD simplify substantially in the limiting case of infinite
number of colors Nc → ∞. Thus it makes sense to study
the theory in this limit and to establish an expansion in
the powers of 1/Nc around this ’simpler’ theory. The chi-
ral expansion is based on the fact that the mass of the
pion is much lower than all other scales [3]. Moreover,
in the chiral limit, mπ → 0, QCD possesses a new sym-
metry, the chiral symmetry, which, again, simplifies the
problem substantially. Consequently, it is a promising
approach to develop models of QCD in these two limits.
Even though these limits do not completely describe the
real world, they are believed to capture many of its main
(at least qualitative) features. Moreover, one can develop
a systematic procedure how to include the corrections in
the powers of either 1/Nc or mπ. It is important to note
that the double limit is not uniform for certain observ-
ables and that the leading behavior may depend on the
ordering of the two limits [4–6].
It was pointed out by Witten [2] that in the large

Nc limit, QCD becomes a weakly interacting theory of
mesons with baryons emerging as soliton-like configura-
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tions of meson fields. A class of baryon models based
on this observation plus approximate chiral symmetry
has been developed, namely chiral soliton models treated
semi-classically. The large Nc limit of QCD is encoded
in the very core of these models and its semiclassical
treatment; their degrees of freedom are weakly interact-
ing mesons forming soliton-like solutions identified with
baryons. The issue of chiral limit, and following chiral
symmetry, is somewhat more subtle; it is imposed at
a later stage as a constraint on the dynamics of meson
fields. Such observations can be formulated more rigor-
ously: chiral soliton models when treated semiclassically
are models based on large Nc and chiral limits of QCD
with Nc → ∞ taken first. An example of such a model is
the famous Skyrme model [7, 8]. Here, baryons are iden-
tified with the quantum states of collective motions of
Skyrmions, the hedgehog configurations of meson fields.

In principle, one could develop an infinite number of
models based on large Nc and chiral limits of QCD. Of
course, there is more to modeling QCD than simply get-
ting the large Nc and chiral behavior correct and thus
the class of models can differ substantially in dynamical
detail. Still, it is important to develop a method how
to check whether the large Nc and chiral physics are en-
coded correctly in these models. The obvious tools are
various model-independent relations. There is a large
class of model-independent constraints based on consis-
tency relations for largeNc limit [9–14]. Such consistency
relations can greatly constrain the chiral behavior asso-
ciated with the longest distance behavior of the system
[4–6] provided that it is understood that these relations
hold when the large Nc limit is taken prior to the chiral
limit. Any viable model based on the large Nc and chi-
ral limits needs to reproduce these relations. It is worth
noting that semiclassical chiral soliton models reproduce
all known model-independent relations of this type, in-
dependently of all the detailed dynamics of the model.
Indeed, many of these relations were first discovered in
the context of the Skyrme model when it was noted by
Adkins and Nappi [15] that certain relations held regard-
less of the parameters of the model.
Recently, there has been a wide interest in using
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gauge/gravity duality in the construction of holographic
baryon models [16–23]. These models also implicitly con-
tain large Nc limit in the very core of their construction.
The details of these models look quite different from the
traditional 4D soliton-based models—if for no other rea-
son the models are in five dimensions. The boundary val-
ues of some of the bulk fields act as sources for operators
with meson quantum numbers in the field theory, and
baryons are modeled as quantum states of topologically
nontrivial configurations of these bulk fields. Because
these models are so different from conventional soliton
models and are rather nontrivial to implement, it is par-
ticularly important to test whether they have, in fact,
correctly encoded the chiral and large Nc scaling behav-
ior. To do this a new class of model-independent relation
needs to be formulated. The reason for this is that the
chiral behavior associated with long distance behavior in
the typical model-independent relation simply fixed the
coefficient of how certain quantities such as charge radii
diverge as mπ → 0. However, to date many of the treat-
ments of these models have only been done for mπ = 0
and hence one cannot use the behavior of how these quan-
tities diverge with mπ. Instead of using the mπ depen-
dence to probe the long distance behavior, one can use
the long distance behavior of the Fourier transform of
the electromagnetic form factors as a model-independent
probe [24].
This new type of model-independent relation has al-

ready proven to be of great value in studying holographic
soliton models. While a “bottom up” phenomenolog-
ical model [16–18] could be shown to satisfy the new
model-independent relation, indicating that it had cor-
rectly captured the large Nc and chiral behavior, the
treatment of solitons as instantons [19–23] in the “top
down” model of Sakai and Sugimoto [19] failed to sat-
isfy the relation indicating that something was seriously
wrong with the approach despite the claimed phenomeno-
logical successes of the approach. It was recently shown
by Cherman and Ishii [25] that the underlying reason
for this appears to be due to a failure of the flat-space
instanton approximation. This may have important phe-
nomenological consequences since it was this approxima-
tion which led to a vector-meson dominance picture [20]
and the one-meson exchange picture on nucleon-nucleon
forces [23].
A particularly useful relation of this type is for a ratio

of the product of the isovector and isoscalar position-
space electric form factors to the product of the magnetic
nucleon form factors in the long distance limit:

lim
r→∞

r2 G̃I=0
E G̃I=1

E

G̃I=0
M G̃I=1

M

= 18, (1)

where the position-space isoscalar and isovector electric

and magnetic form factors G̃E,M are Fourier transformed
momentum-space form factors electric and magnetic form
factors GE,M [26].
The remarkable thing about this particular ratio (1) is

that all low-energy constants, normalization of currents,

and various sign or Fourier transform conventions cancel.
Thus, the final result depends only on a given power of
radius r (easily deduced from dimensional analysis) mul-
tiplied by a constant. This constant, 18, is a universal
model-independent quantity that must be satisfied in all
large Nc chiral models.

The relation in Eq. (1) does depend on the order of
limits and is valid if the large Nc limit is taken prior to
the chiral and large r limits. Equation (1) was originally
[24] derived in a similar spirit to Adkins and Nappi [15],
namely using the Skyrme model to find a truly model-
independent relation. It turns out that Eq. (1) is true
in any Skyrme model, independent of the details of the
Lagrangian or the number of degrees of freedom in the
problem provided that the model has a well-defined chiral
limit in which the pions emerge as Goldstone bosons and
provided that the model is treated semi-classically. This
seems to be compelling evidence that the result is truly
model independent since in all known cases where a chiral
result is derived from the Skyrme model, and turns out
to be completely independent of model details, have also
turned out to be the result of largeNc chiral perturbation
theory which is known to correctly describe the longest
distance quantities in QCD. However, it is important to
verify Eq. (1) in a truly model-independent way directly
from large Nc chiral perturbation theory. Doing so is
the principal purpose of this paper. We will also explore
what happens to the longest distance behavior of the
form factors when the ordering of limits is changed so
that the chiral limit is taken prior to the large Nc

The long distance hadronic physics in QCD is domi-
nated by the pion cloud, since a pion is the lightest par-
ticle available. Moreover, in the baryon sector, unlike
in the meson one, the pion loops contribute at leading
order in 1/Nc expansion [27], so the dominant diagrams
to consider to describe the longest distance behavior will
consist of currents connected to the pion in loops con-
taining the fewest possible number of pions. Additional
simplification comes from the fact that baryon mass is of
order Nc and thus parametrically large compared to the
pion mass. It allows us to neglect the recoil of the baryons
and treat them non-relativistically. In other words, we
will work in the heavy baryon χPT .

Note that we work in the combined large Nc and chi-
ral limit. In this case, a subtlety arises for observables
sensitive to the dynamics of the pion. These two limits
generally do not commute and therefore the ordering of
limits matter [4, 6]. In our paper we start by considering
the following ordering: Nc → ∞ limit first, mπ → 0 limit
second. It is exactly the ordering that both soliton mod-
els of baryons (both four dimensional and holographic
models) use implicitly.

The role of the largeNc limit in χPT is two-fold. First,
it eliminates diagrams that are suppressed by factors
1/Nc. Second, it forces one to include ∆-isobar in the
calculation. The large Nc consistency relations require
nucleon and ∆ to be degenerate (in general the whole
tower of I = J isobars) at large Nc. More specifically,
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the mass difference ∆ = m∆ −mN is of order 1/Nc and
serves as a new low-energy constant. Thus, at lowest or-
der in largeNc, χPT depends on the constants gA, fπ,mπ

and ∆. The need to include the ∆ increases the number
of Feynman diagrams contributing and has far-reaching
consequences.

It was shown [4, 6] that for isoscalar-scalar (G̃I=0
E ) and

isovector-vector (G̃I=1
M ) channels, ∆ in the intermediate

state only leads to a multiplicative factor. However, in

the isoscalar-vector (G̃I=0
M ) and isovector-scalar (G̃I=1

E )
channels, the amplitudes corresponding to individual di-
agrams subtract exactly in the leading order in 1/Nc

(where ∆ = 0), and one must take into account the N -∆

mass splitting. Consequently G̃I=0
M and G̃I=1

E are pro-
portional to ∆ (and are of order 1/Nc). Note that in
the relation (1) one of these quantities is in the numer-
ator and one of them in the denominator, so that the
dependence on ∆ cancels.

II. POSITION-SPACE FORM FACTORS

The calculation of form factors is performed in the lan-
guage of quantum field theory. Thus, we need the Feyn-
man rules for the following vertices: photon and two pi-
ons, photon and three pions, pion with baryons in all
four possible combinations of incoming and outgoing nu-
cleon and ∆, as well as propagators of intermediate pions,
nucleons, and ∆s. Details of the calculation are in the
appendix, so only basic assumptions, building blocks and
results are presented here.
The Feynman rules can be obtained from the standard

χPT Lagrangian [28]. The interaction of photon with two
pions is crucial for the isovector coupling of photon to
nucleon (see the ǫa3b). The Feynman rule for the vertex
reads:

ǫa3b Aµ (p
µ
a + pµb ), (2)

The coupling of photon with three pions relates to
QCD anomaly [29]. It is crucial for the isoscalar piece
of the baryon current (see the ǫabc). The Feynman rule
for the corresponding vertex is:

1

12π2f3
π

ǫabc ǫ
µνκλAµ paν pbκ pcλ. (3)

The interaction of a pion with a baryon is of the vector-
isovector form and is derivatively coupled. The Feyn-
man rule for incoming baryon B and outgoing baryon B′

reads:

gA
2fπ

√
2J (B′) + 1

2J (B) + 1
τ (BB′)
a σ

(BB′)
i pi, (4)

In (4), τBB′

and σBB′

are operators acting in the isospin
and in the spin space, respectively. They are a gener-
alization of Pauli matrices, which appear in the pion-
nucleon-nucleon vertex in standard χPT [28]. The form

of the couplings is determined by the consistency re-
lations of large Nc QCD [11, 12]. Simply, the inter-
action is of the same form as standard pion-nucleon-
nucleon (vector-isovector) where ordinary 2×2 Pauli ma-
trices (τ and σ) are replaced by the properly normalized

(2J ′ +1)× (2J + 1) matrices (τBB′

and σBB′

) whose el-
ements are given by the Clebsch-Gordan coefficients (see
appendix for more details).
The other two low-energy constants (mπ and ∆) enter

the calculation in propagators of intermediate state par-
ticles. Since we intend to set mπ → 0 in the end (chiral
limit) we must use the full relativistic pion propagator (k
being propagating 4-momentum):

∆π(k) =
i

k2 −m2
π + iǫ

. (5)

The heavy baryon approximation, which is justified by
the fact that we work in the large Nc limit, allows us to
treat baryons non-relativistically:

∆N (k) =
i

k0 + iǫ
, ∆∆(k) =

i

k0 −∆+ iǫ
(6)

We see that the difference between nucleon and ∆ propa-
gators lies in the factor ∆ (of order 1/Nc) in the denom-

inator. It is exactly the difference that makes G̃I=0
M and

G̃I=1
E nonzero and of order 1/Nc.
Having all necessary ingredients (2)-(6) one can pro-

ceed to the calculation of photon-nucleon interaction am-
plitudes Mfi, and, from here, extract the appropriate
form factors. Note that the Fourier transformed (i.e.
position-space) form factors are finite even in the chi-
ral limit mπ → 0. Moreover, sending mπ → 0 allows us
to perform both the loop momentum integration and the
Fourier transform analytically and thus obtain the form
factors in a closed form.
The Feynman diagrams contributing to the isoscalar

current are summarized in Fig.1 and described in the ap-
pendix. Evaluating these diagrams, Fourier transform-
ing, setting the pion mass to zeros and then extracting
the longest distance part of isoscalar electric and mag-
netic form factors yields:

lim
r→∞

G̃I=0
E =

33

29π5

1

f3
π

(
gA
fπ

)3
1

r9
, (7)

lim
r→∞

G̃I=0
M =

3

29π5

1

f3
π

(
gA
fπ

)3
∆

r7
. (8)

Feynman diagrams contributing to the isovector cur-
rent are summarized in Fig.2 and also described in the
appendix. Evaluating these diagrams, Fourier transform-
ing, setting the pion mass to zeros and then extracting
the longest distance part of isoscalar electric and mag-
netic form factors yields:

lim
r→∞

G̃I=1
E =

1

24π2

(
gA
fπ

)2
∆

r4
, (9)

lim
r→∞

G̃I=1
M =

1

25π2

(
gA
fπ

)2
1

r4
. (10)
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FIG. 1. Feynman diagrams contributing to the long distance
part of the isoscalar form factors (double lines in the interme-
diate states represent the ∆-isobar).

Note that Eqs. (7)-(10) are identical to those from the
Skyrme model [24]. We have shown, however, that these
are truly model-independent relations and so do not de-
pend in any way on the Skyrme model. Of course, in
verifying these results for a given model, one must use
the values of gA, fπ, and ∆ from the same model. We
note again that in deriving these relations we explicitly
took the large Nc limit prior to any others.
As noted in Ref. [24] one can trivially use the results

of (7)-(10) to show that the relation (1) is satisfied in the
large Nc χPT.

lim
r→∞

r2 G̃I=0
E G̃I=1

E

G̃I=0
M G̃I=1

M

= 18. (11)

FIG. 2. Feynman diagrams contributing to the long distance
part of the isovector form factors (double line represents the
∆-isobar).

As advertised, all low energy constants canceled in the
ratio of form factors and only universal number, 18 re-
mains. The cancellation of ∆ was pointed out earlier in
this letter. However, it is trivial to see that gA and fπ
also cancel. This a particularly useful model-independent
result.

III. THE ROLE OF THE LIMITS

The calculation reported above was done by taking the
chiral limit—albeit after the large Nc limit is taken. It
is useful to consider what happens when mπ remains fi-
nite. Note that the amplitude for finding a pion far away
from the baryon is Yuakawa-like and modifies the simple
power law behavior by exp(−mπr). Since the longest-
range isovector part of the electromagnetic current is
dominated by the two-pion contribution, one expects
the longest range part of both the electric and magnetic
isovector form factors to be proportional to exp(−2mπr).
Similarly, both the electric and magnetic isoscalar form
factors are expected to be proportional to exp(−3mπr),
since the isoscalar physics is dominated by the three-pion
contribution. Thus, it appears that all terms propor-
tional to exponentials cancel in the ratio of Eq. (1) and
its value remains 18 even away from the chiral limit.
The ratio computed in Eq. (11) in previous paragraphs

was calculated by taking Nc → ∞ limit at the outset.
Note that the problem has three control parameters—
Nc, mπ and r which is used to select out the the long
distance limit r → ∞ (which is essential in our study of
the ratio of form factors). As stressed earlier, the limits
considered in our paper do not commute in general and
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therefore the ordering of limits must be specified. The
issue we wish to discuss here is what happens if one takes
the large Nc limit at the end of the problem rather than
at the outset.
The key issue to address is the presence of ∆-isobar in

the intermediate state since this is the origin of the differ-
ence. The key point is that if the largeNc limit is taken at
the outset, the ∆ is degenerate with the nucleon, and in-
termediate states containing ∆s contribute to the longest
distance parts of the form factors. On the other hand, if
Nc is finite then the ∆ is not degenerate with the nucleon
and this energy difference means that diagrams with in-
termediate ∆s contribute a shorter range than analogous
diagrams with nucleons. Consider, for concreteness, the
isovector diagrams in Fig.2. The presence of the ∆ in the
second diagram leads to a suppression factor of the form
e−∆r in the amplitude coming from the ∆ propagator.
Moreover, both amplitudes contain a factor of the form
e−mπr coming from pion propagators. We see that taking
∆ → 0 first eliminates the difference between two ampli-
tudes. This observation lies in the core of the argument,
why both diagrams must be included if Nc → ∞ is taken
first. On the other hand, in the reversed order of limits
(mπ → 0 first, r → ∞, Nc → ∞ last), the contribution
of the diagram with ∆ remains suppressed. Thus, only
the diagram with the intermediate nucleon contributes.
For isoscalar electric and isovector magnetic form fac-

tors, diagrams add up in the leading order, thus the dif-
ference is only in the multiplicative factor:

lim
Nc→∞

lim
r→∞

G̃I=0
E =

2

9
· lim
r→∞

lim
Nc→∞

G̃I=0
E , (12)

lim
Nc→∞

lim
r→∞

G̃I=1
M =

2

3
· lim
r→∞

lim
Nc→∞

G̃I=1
M . (13)

For isoscalar magnetic and isovector electric form factors,
the diagrams originally subtracted in the leading order,
and form factors were proportional to ∆. Thus, the form
factors in reverse ordering of limits differ not only by a
multiplicative factor but also by a dimensionless quantity
1/(∆r).

lim
Nc→∞

lim
r→∞

G̃I=0
M =

1

∆r

2

3π
· lim
r→∞

lim
Nc→∞

G̃I=0
M , (14)

lim
Nc→∞

lim
r→∞

G̃I=1
E =

1

∆r

1

π
· lim
r→∞

lim
Nc→∞

G̃I=1
E . (15)

Combining the results of Eqs. (12)-(15) we see that the
ratio (1) differs by half if the order of large Nc and chiral
limits is reversed:

lim
Nc→∞

lim
r→∞

r2 G̃I=0
E G̃I=1

E

G̃I=0
M G̃I=1

M

= 9. (16)

IV. CONCLUSIONS

We proved that the relation (1) holds in the large Nc

χPT, provided that the Nc → ∞ limit is taken at the

outset of the problem. Consequently, it may serve as an
honest model-independent constraint on baryon models
based on large Nc and chiral physics.
Acknowledgments We want to thank A. Cherman for
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APPENDIX

The details of the calculations of position-space form
factors are outlined in the appendix. The electric and
magnetic form factors can be extracted from the inter-
action of nucleon with photon (electromagnetic field is
coupled to the vector current). We use the following
convection for indexes: Latin indexes a, b, . . . indicate
isospin, Latin indexes i, j, . . . represent components of
3-vectors, Greek indexes µ, ν, . . . label components of
Lorentz 4-vectors.
The general form of baryon current reads:

〈~p′|Jµ(q2)|~p〉 = ū(~p′)

(
γµF1(q

2) +
i

2M
σµνq

νF2(q
2)

)
u(~p),

where ~p′ = ~p+~q and the particles are on-shell. F1 and F2

are Dirac and Pauli form factors. This expression sim-
plifies substantially in the non-relativistic limit, which is
justified by the large Nc limit. The time (0th) component
of the vector current can be expressed solely in term of
an electric form factor GE , as well as spatial (ith) com-
ponents can be expressed solely in terms of a magnetic
form factor.

〈~p′|J0(q2)|~p〉 = U † GE(q
2) U,

〈~p′| ~Ji(q2)|~p〉 = U † −i

2M
ǫijk ~qj σk GM (q2) U ; (17)

the electric and magnetic form factors G are related to
the original Dirac and Pauli form factors F via

GE(q
2) = F1(q

2) + F2(q
2)

q2

4M2
,

GM (q2) = F1(q
2) + F2(q

2).

In order to extract the position-space form factors from
the momentum-space amplitudes Mfi = eAµJ

µ the con-
vection used in Ref. [24] was adopted:

G̃E(r) =

∫
dΩx

4π

∫
d3q

(2π)3
ei~q·~x 〈~p′| J0 |~p〉,

G̃M (r) =

∫
dΩx

4π

∫
d3q

(2π)3
ei~q·~x

1

2
ǫij3 ~xj 〈~p′| ~Ji |~p〉.(18)

The expansion of current matrix elements (17) allows us
to distinguish and define the isoscalar and the isovector
current. Recall that the wave function U is not only
the two-component spinor in the spin space, but also a
two-component spinor in the isospin space. The most
general diagonal matrix in the isospin space (incoming
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and outgoing particles are the same) can be written as
a combination of the identity matrix Iτ and the third
Pauli matrix τ3. We define the term proportional to the
identity matrix U †

Iτ U to be the isoscalar current (pro-
ton plus neutron) and the term proportional to the Pauli
matrix U † τ3 U to be the isovector current (proton minus
neutron). This definition coincides with the definitions
of [8, 24].

A. Feynman rules

The Feynman rule for the interaction of photon with
two pions reads [28]:

ǫa3b Aµ (p
µ
a + pµb ), (19)

where pa and pb are the incoming and outgoing pion 4-
momenta, respectively.

The coupling of photon with three pions is derived from
the anomalous baryon current in QCD [29]. The Feyn-
man rule for the corresponding vertex reads:

1

12π2f3
π

ǫabc ǫ
µνκλAµ paν pbκ pcλ, (20)

where all momenta are outgoing.

The interaction of pion with baryons is of the vector-
isovector form and is derivatively coupled. The Feynman
rule for incoming baryonB and outgoing baryon B′ reads

gA
2fπ

√
2J (B′) + 1

2J (B) + 1
τ (BB′)
a σ

(BB′)
i ~pi, (21)

where ~pi is the outgoing 3-momentum of a pion with
isospin a. In (21), τBB′

and σBB′

are operators acting in
the isospin and in the spin space, respectively. The form
of the coupling is derived from the consistency relations
of large Nc QCD [11, 12]; they require not only the de-
generacy of the whole tower of states with I = J (nucleon
with I = J = 1/2, ∆ with I = J = 3/2, . . . ), but also
specify the pion-baryon-baryon′ vertex. For example, the
matrix elements for incoming nucleon and outgoing delta
reads:

(
τ (N∆)
a

)

αα′

=
√
3

(
1

2
α , 1 a | 3

2
α′
)
.

All the matrices we need read:

τ1, σ
(NN)
1 = τ1, σ1 =

(
0 1
1 0

)
,

τ2, σ
(NN)
2 = τ2, σ2 = i

(
0 −1
1 0

)
,

τ3, σ
(NN)
3 = τ3, σ3 =

(
1 0
0 −1

)
,

τ1, σ
(N∆)
1 =




−
√

3
2 0

0 −
√

1
2√

1
2 0

0
√

3
2




,

τ2, σ
(N∆)
2 = i




√
3
2 0

0
√

1
2√

1
2 0

0
√

3
2




,

τ3, σ
(N∆)
3 =




0 0√
2 0

0
√
2

0 0


 ,

τ1, σ
(∆N)
1 =

( √
3
2 0 − 1

2 0

0 1
2 0 −

√
3
2

)
,

τ2, σ
(∆N)
2 = i

( √
3
2 0 1

2 0

0 1
2 0

√
3
2

)
,

τ3, σ
(∆N)
3 =

(
0 −1 0 0
0 0 −1 0

)
,

τ1, σ
(∆∆)
1 =




0
√

3
5 0 0√

3
5 0 2√

5
0

0 2√
5

0
√

3
5

0 0
√

3
5 0




,

τ2, σ
(∆∆)
2 = i




0 −
√

3
5 0 0√

3
5 0 − 2√

5
0

0 2√
5

0 −
√

3
5

0 0
√

3
5 0




,

τ3, σ
(∆∆)
3 =




3√
5

0 0 0

0 1√
5

0 0

0 0 − 1√
5

0

0 0 0 − 3√
5


 .

Note that the matrices for the nucleon-nucleon vertex are
ordinary Pauli matrices. Thus, the general form (21) of
the pion-baryon-baryon′ reproduces the standard χPT
[28] in the pion-nucleon-nucleon case.
The other three building blocks are the propagators of

particles in the intermediate states. Since we intend to
set mπ → 0 in the end (chiral limit) we must use the
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full relativistic pion propagator (k being propagating 4-
momentum):

∆π(k) =
i

k2 −m2
π + iǫ

. (22)

The heavy baryon approximation, which is justified by
the fact that we work in the large Nc limit, allows us to
treat baryons non-relativistically:

∆N (k) =
i

k0 + iǫ
, ∆∆(k) =

i

k0 −∆+ iǫ
. (23)

We see that the difference between nucleon and ∆ propa-
gators lies in the factor ∆ (of order 1/Nc) in the denom-

inator. It is exactly the difference that makes G̃I=0
M and

G̃I=1
E nonzero and of order 1/Nc.

B. Isovector form factors

First, we present the calculation of isovector form fac-
tors. They result from Feynman diagrams containing one
loop. Therefore, their calculation is simpler and easier to
follow than the calculation of isoscalar ones.

From the building blocks (19), (21), (22), (23), one can
straightforwardly construct the amplitudes correspond-
ing to the diagrams in Fig. 2. They can be split into
two parts: one that is the same for both diagrams, and
one that is different. The difference lies in the matrices
involved in pion-baryon-baryon′ vertex and in the prop-
agators of intermediate baryons.

The total isovector amplitude including the combina-
toric factor 2! is:

Mfi = eAµJ
µ
I=1 = eAµ 4i

(
gA
2fπ

)2

ǫab3

∫
d4k

(2π)4
kµ
(
~q

2
+ ~k

)

l

(
~q

2
− ~k

)

n

∆π
(
k +

q

2

)
∆π
(
k − q

2

)

U †
(
τ
(NN)
b τ (NN)

a σ(NN)
n σ

(NN)
l ∆N (k) + τ

(∆N)
b τ (N∆)

a σ(∆N)
n σ

(N∆)
l ∆∆(k)

)
U. (24)

The product of two matrices (24) can be decomposed
into two parts: first being proportional to identity ma-
trix, and second proportional to the Pauli matrix. The
products of two isospin matrices read:

τ (NN)
a τ

(NN)
b = δab Iτ + i ǫabc τc,

τ (∆N)
a τ

(N∆)
b = −

√
2 δab Iτ +

i√
2
ǫabc τc, (25)

with analogous relations for spin matrices σ.
In the isospin space, only the part proportional to τ3

contributes due to the factor ǫab3, which originates in
the photon-2 pion vertex. It leads to an overall fac-
tor iǫab3ǫbacτc = −2iτ3. Recall that the matrix element
where the isospin part of the nucleon wave functions are
coupled via τ3 matrix represents the isovector current.
In the spin space, we must take into account both

scalar (proportional to Iσ) and vector (proportional to
σi) matrix elements. The terms proportional to Iσ can-
cel completely if nucleon and ∆ propagators are equal,
∆ → 0. Thus, one must include the N -∆ mass splitting
and the isovector-scalar baryon matrix element is pro-
portional to ∆ ∼ 1/Nc. On the other hand, the terms
proportional to σi add together and the N -∆ mass split-
ting can be ignored. Then, (24) can be rewritten as

U † 2 τ3

(
Iσ δnl

−∆

(k0 + iǫ)2
+ σ3 ǫnl3

3i

2(k0 + iǫ)

)
U.

The definition of the position-space form factors (18)
guarantees that only the scalar part (proportional to Iσ)

contributes to the electric form factor G̃E and only the

vector part (proportional to σi) contributes to the mag-

netic form factor G̃M . This is because only the scalar
part survives the overall angular integration.

The electric form factor is the Fourier transform of the
zeroth component of the current:

G̃I=1
E = 8i∆

(
gA
2fπ

)2

U †τ3IσU

∫
d3q

(2π)3
ei~q·~x

∫
d4k

(2π)4

(
~q

2
+ ~k

)
·
(
~q

2
− ~k

)
k0

(k0 + iǫ)2

∆π
(
k +

q

2

)
∆π
(
k − q

2

)

=
mπ→0
r→∞

1

24π2

(
gA
fπ

)2
∆

r4
, (26)

with the normalization U †U = 1 used.

Analogously, the magnetic form factor comes from the
Fourier transform of the spatial component of currents:

G̃I=1
M = 6

(
gA
2fπ

)2

U †τ3σ3U

∫
dΩx

4π

∫
d3q

(2π)3
ei~q·~x

∫
d4k

(2π)4
ǫij3~xj

~ki ǫnl3

(
~q

2
+ ~k

)

l

(
~q

2
− ~k

)

n

1

k0 + iǫ
∆π
(
k +

q

2

)
∆π
(
k − q

2

)

=
mπ→0
r→∞

1

25π2

(
gA
fπ

)2
1

r4
. (27)
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C. Isoscalar form factors

The isoscalar form factors are derived from Feynman
diagrams including two loops, see Fig. 1. Even though

the presence of two loop momenta, k and l, makes the in-
tegrals more complicated from the mathematical point of
view, the basic ideas remain the same as earlier. The to-
tal isoscalar amplitude including the combinatoric factor
3! reads:

Mfi = eAµJ
µ
I=0 = eAµ

i

2π2f3
π

(
gA
2fπ

)3

ǫabc

∫
d4k

(2π)4

∫
d4l

(2π)l
∆π
(
k +

q

2

)
∆π (k + l) ∆π

(
l +

q

2

)

ǫµαβγ
(
k +

q

2

)

α
(−k − l)β

(
l +

q

2

)

γ

(
~k +

~q

2

)

r

(
−~k −~l

)

s

(
~l +

~q

2

)

t

U †
(
τ (NN)
c τ

(NN)
b τ (NN)

a σ
(NN)
t σ(NN)

s σ(NN)
r ∆N (k)∆N (−l) +

τ (∆N)
c τ

(N∆)
b τ (NN)

a σ
(∆N)
t σ(N∆)

s σ(NN)
r ∆N (k)∆∆(−l) + . . .

)
U, (28)

where the ellipsis stands for terms corresponding to the remaining diagram with one ∆ in the intermediate state
and to the diagram with two ∆s in the intermediate state. The product of three matrices simplifies in a spirit similar
to Eqs. (25) to a piece proportional to identity matrix and to a piece proportional to Pauli matrix (only isospin
matrices τ are shown, since both spin σ are isospin τ matrices are the same):

τ (NN)
a τ

(NN)
b τ (NN)

c = iǫabc Iτ + δabτc − δacτb + δbcτa,

τ (∆N)
a τ

(N∆)
b τ (NN)

c =
i√
2
ǫabc Iτ −

√
2δabτc −

1√
2
δacτb +

1√
2
δbcτa,

τ (NN)
a τ

(∆N)
b τ (N∆)

c =
i√
2
ǫabc Iτ +

1√
2
δabτc −

1√
2
δacτb −

√
2δbcτa,

τ (∆N)
a τ

(∆∆)
b τ (N∆)

c = −i

√
5

2
ǫabc Iτ +

1√
10

δabτc − 2

√
2

5
δacτb +

1√
10

δbcτa. (29)

Unlike to the isovector amplitude, only the part pro-
portional to the identity matrix in the isospin space con-
tributes (recall ǫabc from photon-3 pions vertex) to the
isoscalar amplitude. The overall factor iǫabcǫcbaIτ =
−6iIτ emerges.

In the spin space, the scalar parts (contributing to GE)
add together and yield an overall multiplicative factor
9
2Iσ. On the other hand, vector parts cancel exactly if
N -∆ mass splitting is neglected. Thus, one must include
∆ in the calculations. Recall that the same thing hap-
pened to the electric isovector form factor. It is in agree-
ment with the work of Broniowski and Cohen [4, 6], who
showed that vector-isoscalar and scalar-isovector nucleon
matrix elements are zero in the leading order of 1/Nc

expansion.

The electric form factor is the Fourier transform of the
zeroth component of the current:

G̃I=0
E =

−27

2π2f3
π

(
gA
2fπ

)3

U †
Iτ IσU

∫
d3q

(2π)3
d4k

(2π)4
d4l

(2π)4

ei~q·~x
(
ǫrst ~kr~ls~qt

)2
∆N (k)∆N (−l)

∆π
(
k +

q

2

)
∆π (k + l) ∆π

(
l +

q

2

)

=
mπ→0
r→∞

33

29π5

1

f3
π

(
gA
fπ

)3
1

r9
. (30)

The calculation of isoscalar magnetic form factor is of
the same spirit. However, it is much longer and more
tedious than previous ones, so only a brief sketch of the
procedure is shown. Note, that the magnetic form fac-
tor is derived from the spatial components of the baryon
current Jµ=i. There are three similar terms coming from
the four-dimensional Levi-Civita tensor ǫiαβγ , where ei-
ther α or β or γ can be of value 0. Moreover, from the
decomposition of products of three matrices (29), there
emerge three options how the products of momenta are
arranged (how the indices of variables k, l, and q are
matched). Thus there are nine individual contributions
to the isoscalar magnetic form factor. Combining these
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yields:

G̃M =
mπ→0
r→∞

3

29π5

1

f3
π

(
gA
fπ

)3
∆

r7
. (31)
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