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Abstract

Ground-state, radially-excited and exotic scalar-, vector- and flavoured-pseudoscalar-mesons are

studied in rainbow-ladder truncation using an interaction kernel that is consonant with modern

DSE- and lattice-QCD results. The inability of this truncation to provide realistic predictions for

the masses of excited- and exotic-states is confirmed and explained. On the other hand, its appli-

cation does provide information that is potentially useful when working beyond this leading-order

truncation, e.g.: assisting with development of projection techniques that ease the computation of

excited state properties; placing qualitative constraints on the long-range behaviour of the inter-

action kernel; and highlighting and illustrating some features of hadron observables that do not

depend on details of the dynamics.

PACS numbers: 12.38.Aw, 14.40.Be, 14.40.Rt, 24.85.+p
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I. INTRODUCTION

Meson spectroscopy is a keystone of extant and forthcoming programmes at numerous

facilities worldwide, e.g.: the Beijing Spectrometer; the COMPASS detector at CERN; Hall-

D at Jefferson Laboratory; the Japan proton accelerator research complex (J-PARC); and

the PANDA detector at GSI. Each identifies an essentially identical primary motivation;

namely, seeking answers to two fundamental questions within the Standard Model: What

matter is possible; and How is it constituted? The subtext is quantum chromodynamics

(QCD), the strongly-interacting part of the Standard Model, and the unique nature of the

forces it seems to produce. With QCD, Nature has prepared the sole known example of a

strongly-interacting quantum field theory that is defined by degrees-of-freedom which cannot

directly be detected; i.e., they are confined. One of the greatest challenges in modern physics

is to comprehend and explain the phenomenon of confinement.

Following Ref. [1], confinement in mesons has typically been associated with a linearly

rising potential between the quark-antiquark pair [2]. There are sound reasons for using such

potential model phenomenology in the study of heavy quarkonia [3]. However, that is not

true for light-quark systems. The static potential measured in simulations of lattice-QCD

is not related in any known way to the question of light-quark confinement. Light-quark

creation and annihilation effects are fundamentally nonperturbative. Hence it is impossible

in principle to compute a potential between two light quarks [4, 5]. On the other hand,

confinement can be related to the analytic properties of QCD’s Schwinger functions [6–14],

so the question of light-quark confinement may be translated into the challenge of charting

the infrared behavior of QCD’s β-function.

To a large degree, this is also true of explaining dynamical chiral symmetry breaking

(DCSB), a phenomenon which has an enormous impact on the measurable properties of

mesons and baryons [12, 13]. It is known that DCSB; namely, the generation of mass from

nothing, does occur in QCD [15–18]. It arises primarily because a dense cloud of gluons

comes to clothe a low-momentum quark [11, 19]. This is readily seen by solving the Dyson-

Schwinger equation (DSE) for the dressed-quark propagator; i.e., the gap equation. However,

the origin of the interaction strength at infrared momenta, which guarantees DCSB through

the gap equation, is currently unknown. This relationship ties confinement to DCSB. The

crucial role of DCSB means that reliable information about the β-function can only be
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obtained via a symmetry-preserving treatment of the bound-state problem that is capable

of veraciously expressing DCSB. The DSEs provide such a framework [7–13] and will be

employed herein.

A considerable body of recent work (e.g., Refs. [11, 12, 20–31]) has shown that in order

to gain sensitivity to the long-range part of the interaction, one should minimally study the

properties of mesons with significant rest-frame quark orbital angular momentum, such as

scalar- and pseudovector-mesons, the radial excitations of pseudoscalar- and vector-mesons,

and tensor mesons. A challenging aspect of this problem is that the leading-order (rainbow-

ladder) in the most widely used symmetry-preserving DSE truncation scheme [32, 33] fails to

adequately express the full power of DCSB in the kernels of the bound-state Bethe-Salpeter

equations (BSEs) [26, 29, 34]. Consequently, the results produced for systems other than

ground-state flavoured-pseudoscalar- and vector-mesons have most often been qualitatively

and quantitatively incorrect.

Is there any reason then to revisit the problem of the spectrum of excited and exotic

mesons using the rainbow-ladder truncation? The answer is “no,” if the goal is to extract

quantitatively reliable information about the infrared behaviour of QCD’s β-function. On

the other hand, the answer is “yes,” if one can exploit the truncation’s simplicity in order to:

identify features of excited and exotic states that are plausibly independent of the truncation;

or techniques that can be useful in connection with more sophisticated truncations. Such is

our aim herein.

In Sec. II we present the gap- and Bethe-Salpeter-equations in the symmetry-preserving

rainbow-ladder truncation, explain the structure of their solutions and define their kernels.

Section III reports and interprets our numerical results, which include: masses and decay

constants; an investigation of the relative importance of various Dirac structures within

meson Bethe-Salpeter amplitudes; and an exploration of the pointwise behaviour and sign

of the leading invariant amplitudes. Section IV is an epilogue.
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II. GAP AND BETHE-SALPETER EQUATIONS

The renormalised rainbow-gap- and ladder-Bethe-Salpeter-equations are, respectively:

S(p)−1 = Z2 (iγ · p+mbm)

+ Z2
2

∫ Λ

ℓ

G(ℓ)ℓ2Dfree
µν (ℓ)

λa

2
γµS(p− ℓ)

λa

2
γν , (1)

ΓM(k;P ) = −Z2
2

∫ Λ

q

G((k − q)2) (k − q)2Dfree
µν (k − q)

×λa

2
γµS(q+)ΓM(q;P )S(q−)

λa

2
γν , (2)

where: we use a Euclidean metric [12];
∫ Λ

ℓ
:=

∫ Λ
d
4
ℓ

(2π)4 represents a Poincaré-invariant regular-

ization of the integral, with Λ the ultraviolet regularization mass-scale; Z2(ζ,Λ) is the quark

wavefunction renormalisation constant, whose location and strength in these equations may

be understood from Refs. [33, 35]; Dfree
µν (ℓ) is the Landau-gauge free-gauge-boson propaga-

tor;1 one can choose q± = q ± P/2 without loss of generality in this Poincaré covariant

approach; and

ℓ2G(ℓ2) = ℓ2GIR(ℓ
2) + 4πα̃pQCD(ℓ

2) (3)

specifies the interaction, with α̃pQCD(k
2) a bounded, monotonically-decreasing regular con-

tinuation of the perturbative-QCD running coupling to all values of spacelike-ℓ2, and GIR(ℓ
2)

an Ansatz for the interaction at infrared momenta, such that GIR(ℓ
2) ≪ α̃pQCD(ℓ

2) ∀ℓ2 &

2GeV2. The form of GIR(ℓ
2) determines whether confinement and/or DCSB are realised in

solutions of the gap equation.

The solution of the gap equation is a dressed-quark propagator

S(p) =
1

iγ · pA(p2, ζ2) +B(p2, ζ2)
=

Z(p2, ζ2)

iγ · p+M(p2)
, (4)

which is obtained from Eq. (1) augmented by a renormalisation condition. A mass-

independent scheme is a useful choice and can be implemented by fixing all renormalisation

constants in the chiral limit. Notably, the mass function, M(p2) = B(p2, ζ2)/A(p2, ζ2), is

independent of the renormalisation point, ζ ; and the renormalised current-quark mass is

given by

mζ = Zm(ζ,Λ)m
bm(Λ) = Z−1

4 Z2m
bm, (5)

1 Landau gauge is used for many reasons [36, 37], for example, it is: a fixed point of the renormalisation

group; that gauge for which sensitivity to model-dependent differences between Ansätze for the fermion–

gauge-boson vertex are least noticeable; and a covariant gauge, which is readily implemented in simulations

of lattice regularised QCD (see, e.g., Refs. [14, 16, 17, 38–42], and citations therein and thereto).
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wherein Z4 is the renormalisation constant associated with the Lagrangian’s mass-term.

Like the running coupling constant, this “running mass” is a familiar concept. However, it

is not commonly appreciated that mζ is simply the dressed-quark mass function evaluated

at one particular deep spacelike point; viz,

mζ = M(ζ2) . (6)

The renormalisation-group invariant current-quark mass may be inferred via

m̂f = lim
p2→∞

[

1

2
ln

p2

Λ2
QCD

]γm

Mf (p
2) , (7)

where f specifies the quark’s flavour, γm = 12/(33 − 2Nfα): Nfα is the number of quark

flavours employed in computing the running coupling; and ΛQCD is QCD’s dynamically-

generated renormalisation-group-invariant mass-scale. The chiral limit is expressed by

m̂f = 0 . (8)

Moreover,

∀ζ2 ≫ Λ2
QCD,

Mf1(p
2 = ζ2)

Mf2(p
2 = ζ2)

=
mζ

f1

mζ
f2

=
m̂f1

m̂f2

. (9)

We would like to emphasise, however, that in the presence of DCSB the ratioMf1(p
2)/Mf2(p

2)

is not independent of p2: in the infrared; i.e., ∀p2 . Λ2
QCD, it then expresses a ratio of

constituent-like quark masses, which, for light quarks, are two orders-of-magnitude larger

than their current-masses and nonlinearly related to them [43, 44]. (See, e.g., the discussion

following Eq. (15).)

The BSE is an eigenvalue problem for the meson masses-squared; i.e., in a given channel

Eq. (2) has solutions only at particular, isolated values of P 2 = −m2
M . At these values,

solving the equation produces the associated meson’s Bethe-Salpeter amplitude, which can

then be used in the computation of observable properties. Herein we consider2 flavoured-

pseudoscalar-, scalar- and vector-meson ground-, radially-excited- and exotic-states, so that

2 Masses and other properties of charge-neutral pseudoscalar mesons are affected by the non-Abelian

anomaly. In the BSE context, this is discussed in Ref. [45]. Since the non-Abelian anomaly is a cor-

rection to rainbow-ladder truncation that is qualitatively different to the focus of our study, herein we

specialise to flavoured pseudoscalars.
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the following amplitudes arise:

ΓJP=0−(k;P ) =

4
∑

i=1

γ5τ
i
0−(k, P )F i

0−(k;P ), (10)

Γ0+(k;P ) =

4
∑

i=1

τ i0+(k, P )F i
0+(k;P ), (11)

Γ1−(k;P ) =
8

∑

i=1

τ i1−(k, P )F i
1−(k;P ), (12)

with (aTµ := aµ − Pµ a · P/P 2)

τ 10− = iτ 10+ = iID, (13a)

τ 20− = γ · P, τ 20+ = k · P τ 20− , (13b)

τ 30− = k · P τ 30+ , τ
3
0+ = P 2γ · k − k · Pγ · P, (13c)

τ 40− = τ 40+ = σµνPµkν, (13d)

τ 11− = iγT
µ , (13e)

τ 21− = i[3kT
µ γ · kT − γT

µ k
T · kT ], (13f)

τ 31− = ikT
µ k · P γ · P, (13g)

τ 41− = i[γT
µ γ · P γ · kT + kT

µ γ · P ], (13h)

τ 51− = kT
µ , (13i)

τ 61− = k · P [γT
µ γ

T · k − γ · kTγT
µ ], (13j)

τ 71− = (kT )2(γT
µ γ · P − γ · PγT

µ )

−2kT
µ γ · kTγ · P, (13k)

τ 81− = kT
µ γ · kTγ · P. (13l)

The canonical normalisation condition (see, e.g., Eq. (27) in Ref. [20] or, more generally,

Ref. [46]) constrains the bound-state to produce a pole with unit residue in the quark-

antiquark scattering matrix.

It remains only to specify the interaction in order to proceed. We use that explained in

Ref. [31]; viz.,

G(s) = 8π2

ω4
D e−s/ω2

+
8π2γmF(s)

ln[τ + (1 + s/Λ2
QCD)

2]
, (14)
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where: γm = 12/25, ΛQCD = 0.234GeV; τ = e2 − 1; and F(s) = {1 − exp(−s/[4m2
t ])}/s,

mt = 0.5GeV. This interaction preserves the one-loop renormalisation-group behavior of

QCD in the gap- and Bethe-Salpeter equations [20], and the infrared behaviour can serve

to ensure confinement and DCSB. Moreover, it is consistent with modern DSE and lattice

studies, which indicate that the gluon propagator is a bounded, regular function of spacelike

momenta that achieves its maximum value on this domain at s = 0 [38–40, 47, 48], and

the dressed-quark-gluon vertex does not possess any structure which can qualitatively alter

this behaviour [49, 50]. Notably, as illustrated in Ref. [31], the parameters D and ω are not

independent: with Dω =constant, one can expect computed observables to be practically

insensitive to ω on the domain ω ∈ [0.4, 0.6]GeV.

III. NUMERICAL RESULTS FOR BOUND-STATES PROPERTIES

A. Ground states

Using the method of Ref. [51], we solved the gap equation for light u = d quarks and the

s-quark, with their current-quark masses fixed by requiring that the pion and kaon BSEs

produce mπ ≈ 0.138GeV and mK ≈ 0.496GeV. This is straightforward in rainbow-ladder

truncation because there is no coupling between the separate gap equations and no feedback

from the BSEs [52]; and yields

mζ
u=d = 3.4MeV , mζ

s = 82MeV (15)

quoted at our renormalisation point ζ = 19GeV, a value chosen to match the bulk of

extant studies. These values correspond to renormalisation-group-invariant masses of m̂u,d =

6MeV, m̂s = 146MeV, one-loop-evolved masses of m1GeV
u=d = 5MeV, m1GeV

s = 129MeV; and

give ms/mu = 24. They are consequently comparable with contemporary estimates by other

means [53]. NB. With ω = 0.6GeV,ME
s /ME

u = 1.52 ≪ m̂s/m̂u, where the constituent-quark

mass ME
f := {s|s > 0, s = M2

f (s)}.
In Table I we report selected results related to ground-state pseudoscalar-, scalar- and

vector-mesons. The meson masses are obtained in solving the BSEs. Regarding the other

meson quantities, in terms of the canonically normalised Bethe-Salpeter amplitudes and

with

χJP

12
(k;P ) = Sf1(k+)ΓJP (k;K)Sf2(k−), (16)
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ω 0.4 0.5 0.6 0.7

A(0) 2.07 1.70 1.38 1.16

M(0) 0.62 0.52 0.42 0.29

mπ 0.139 0.134 0.136 0.139

fπ 0.094 0.093 0.090 0.081

ρ
1/2
π 0.49 0.49 0.49 0.48

mK 0.496 0.495 0.497 0.503

fK 0.11 0.11 0.11 0.10

ρ
1/2
K 0.55 0.55 0.55 0.55

mσ 0.67 0.65 0.59 0.46

ρ
1/2
σ 0.53 0.53 0.51 0.48

mκ 0.89 0.88 0.85 0.77

fκ+ 0.035 0.036 0.037 0.042

ρ
1/2
κ 0.59 0.59 0.58 0.56

mρ 0.76 0.74 0.72 0.67

fρ 0.14 0.15 0.14 0.12

mφ 1.09 1.08 1.07 1.05

fφ 0.19 0.19 0.19 0.18

TABLE I. Results obtained using the interaction in Eq. (14) with Dω = (0.8GeV)3. The current-

quark masses at ζ = 19GeV are given in Eq. (15). Dimensioned quantities are reported in GeV. For

comparison, some experimental values are [53]: fπ = 0.092GeV, mπ = 0.138GeV; fK = 0.113GeV,

mK = 0.496GeV; fρ = 0.153GeV, mρ = 0.777GeV; and fφ = 0.168GeV, mφ = 1.02GeV. NB.

The scalar mesons listed here are not directly comparable with the lightest scalars in the hadron

spectrum because the rainbow-ladder truncation is a priori known to be a poor approximation

in this channel: nonresonant corrections [26, 29] and resonant final-state interactions are both

important [44].
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where f1, f2 are the meson’s valence-quark and -antiquark, respectively, one has [20, 54, 55]

f0−
12
Pµ = Z2 trCD

∫ Λ

k

iγ5γµχ0−
12
(k;P ) , (17)

iρζ
0−
12

= Z4 trCD

∫ Λ

k

γ5χ0−
12
(k;P ) , (18)

f0+
12
Pµ = Z2 trCD

∫ Λ

k

iγµχ0+
12
(k;P ) , (19)

ρζ
0+
12

= −Z4 trCD

∫ Λ

k

χ0+
12
(k;P ) , (20)

f1−
12
m1−

12
= 1

3
Z2 trCD

∫ Λ

k

γµχ1−
12
(k;P ) . (21)

The Table confirms that, with Dω =constant, observable properties of ground-state scalar-,

vector- and flavoured-pseudoscalar-mesons computed with Eq. (14) are practically insensitive

to variations of ω ∈ [0.4, 0.6]GeV.

It is noteworthy, and readily verified using entries in the Table, that the pseudoscalar-

and scalar- meson masses satisfy the following identities, exact in QCD [20, 54]:3

f0−
12
m2

0−
12

= (mζ
f1
+mζ

f2
)ρζ

0−
12

, (22)

f0+
12
m2

0+
12

= −(mζ
f1
−mζ

f2
)ρζ

0+
12

. (23)

Furthermore, the products f0±
12
ρ0±

12
describe in-meson condensates [20, 54, 58].

B. Radial excitations and exotics

In addition to properties of the ground-states, we have computed selected quantities

associated with J = 0, 1 radial excitations and exotics. In the Poincaré covariant DSE

treatment, exotic states appear as poles in vertices generated by interpolating fields with

“unnatural time-parity” [59]. Results are presented in Table II. The last column in the

Table was prepared as follows. We fitted the entries in each row to both m(ω) = constant

and

m(ω) = ω(c0 + c1ω), (24)

then computed the standard-deviation of the relative error in each fit, σ0 for the constant

and σ2 for Eq. (24), and finally formed the ratio: σ20 = σ2/σ0.

3 Notwithstanding complexities associated with the structure of light-quark scalars [44, 56, 57], the iden-

tity written here applies to any scalar meson that can be produced via e+e− annihilation. It is not of

experimental significance, however, if the pole is deep in the complex plane.
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ω 0.4 0.5 0.6 σ20

mπ 0.214 0.155 0.147 0.83

m0−− 0.814 0.940 1.053 0.03

mπ1
1.119 1.283 1.411 0.02

mσ 0.970 0.923 0.913 1.25

m0+− 1.186 1.252 1.323 0.34

mσ1
1.358 1.489 1.575 0.14

mρ 1.088 1.046 1.029 1.22

m1−+ 1.234 1.277 1.318 0.60

mρ1 1.253 1.260 1.303 0.03

TABLE II. Masses obtained with Eq. (14), Dω = (1.1GeV)3. The subscript “1” indicates first

radial excitation. The last column measures sensitivity to variations in rω := 1/ω: σ20 ≪ 1

indicates strong sensitivity; and σ20 ≈ 1, immaterial sensitivity. Dimensioned quantities reported

in GeV.

In preparing the table we used Dω = (1.1GeV)3. This has the effect of inflating the

π- and ρ-meson ground-state masses to a point wherefrom corrections to rainbow-ladder

truncation can plausibly return them to the observed values [60, 61]. It is therefore notable

that, in contrast to Table I, the value reported for mσ in Table II matches estimates for the

mass of the dressed-quark-core component of the σ-meson obtained using unitarised chiral

perturbation theory [56, 57].

A comparison between the ω-dependence of ground-state properties and those of excited-

and exotic-states was drawn in Ref. [31] and we only summarise it here. Ground-state masses

of light-quark pseudoscalar- and vector-mesons are quite insensitive to ω ∈ [0.4, 0.6]GeV.

Any minor variation is described by a decreasing function. In the case of exotics and radial

excitations, the variation with ω is described by an increasing function and the variation

is usually significant. This is readily understood. The quantity rω := 1/ω is a length-scale

that measures the range over which the infrared part of Eq. (3), GIR, is active. For ω = 0

this range is infinite, but it decreases with increasing ω. One expects exotic- and excited-

states to be more sensitive to long-range features of the interaction than ground-states and,

additionally, that their masses should increase if the magnitude and range of the strong
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FIG. 1. Pseudoscalar mesons. Relative difference between the mass computed with all the am-

plitudes in Eq. (10) and that obtained when the identified i ≥ 2 amplitude is omitted: circles –

ground-state pion; squares – JPC = 0−− exotic; and diamonds – first pseudoscalar radial excita-

tion. In all cases, ω = 0.6GeV, Dω = (1.1GeV)3. There is only minor quantitative variation with

ω ∈ [0.4, 0.6]GeV. NB. The i = 1 amplitude is never omitted, it specifies the reference value.

piece of the interaction is reduced because there is less binding energy.

Table II confirms a known fault with the rainbow-ladder truncation; viz., whilst it binds

in exotic channels, it produces masses that are too light, just as it does for axial-vector

mesons. It is similarly noticeable that mπ1
is far more sensitive to variations in ω than is

mρ1 ; and although mπ1
< mρ1 for ω = 0.4GeV, the ordering is rapidly reversed. Thus, in

conflict with experiment, one usually finds mπ1
> mρ1 in rainbow-ladder truncation. This,

too, is a property of the truncation, which is insensitive to the details of G(k2); e.g., the

same ordering is obtained with a momentum-independent interaction [61].

C. Structure of bound states

In order to develop insight, both into the structure of excited- and exotic-states, and for

progressing beyond rainbow-ladder truncation, it is useful to know which of the invariant

amplitudes in Eqs. (10)-(12) are dominant. One useful measure of an amplitude’s importance
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FIG. 2. Scalar mesons. Relative difference between the mass computed with all the amplitudes in

Eq. (11) and that obtained when the identified i ≥ 2 amplitude is omitted: circles – ground-state

u = d scalar; squares – JPC = 0+− exotic; and diamonds – first pseudoscalar radial excitation.

In all cases, ω = 0.6GeV, Dω = (1.1GeV)3. There is only minor quantitative variation with

ω ∈ [0.4, 0.6]GeV. NB. The i = 1 amplitude is never omitted, it specifies the reference value.

is the contribution it makes to a given meson’s mass. Figure 1 displays the result for

pseudoscalar mesons: in all cases a good approximation is obtained by retaining F 1
0−

and

F 2
0−
. This outcome is in agreement with extant ground-state computations [20] but extends

those rainbow-ladder conclusions to excited- and exotic-states. Evidently, there is little

here to distinguish between the exotic and the radial excitation. Curiously, F 2
0−

plays a

role of similar magnitude in each state and the amplitudes F 3
0− and F 4

0− are always largely

unimportant. These last two, in this instance small, amplitudes are those most directly

associated with nonzero quark orbital angular momentum in the meson’s rest-frame.

For scalar mesons, on the other hand, one reads from Fig. 2 that F 1
0+ , F

3
0+ and F 4

0+ should

be included if a reliable approximation is to be obtained. The latter two amplitudes are

directly associated with significant rest-frame quark orbital angular momentum. Notably,

in quantum mechanical models, scalar mesons are identified as 3P0 states, in contrast to 1S0

for pseudoscalar mesons.

The vector meson (3S1) situation is displayed in Fig. 3. In agreement with Ref. [62], a good
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FIG. 3. Vector mesons. Relative difference between the mass computed with all the amplitudes in

Eq. (12) and that obtained when the identified i ≥ 2 amplitude is omitted: circles – ground-state

u = d vector; squares – JPC = 1−+ exotic; and diamonds – first vector radial excitation. In all

cases, ω = 0.6GeV, Dω = (1.1GeV)3. Whilst there are quantitative changes with ω, the pattern

of amplitude importance is unchanged. NB. The i = 1 amplitude is never omitted, it specifies the

reference value.

approximation for the vector-meson ground-state is obtained by retaining F 1
1− , F

4
1− , F

5
1−. The

last two amplitudes are associated with P -wave components in the rest-frame. However, for

the first radial excitation, F 2
1−

is also important: this amplitude is directly associated with

a D-wave component in the radially-excited vector-meson’s rest frame. These observations

suggest that a BSE might be built which projects selectively onto the first radially excited

state.

The additional information contained in these figures indicates that the shortcomings

identified above, of the rainbow-ladder truncation for states other than ground-state vector-

and flavoured-pseudoscalar-mesons, can be attributed to this truncation’s inadequate ex-

pression in the Bethe-Salpeter kernels of effects which in quantum mechanics would be

described as spin-orbit interactions. Namely, treating the quark-gluon vertex as effectively

bare in both the gap- and Bethe-Salpeter-equations leads to omission of critically impor-

tant helicity-flipping interactions that are dramatically enhanced by DCSB, as discussed in
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Refs. [26, 29, 34].

One may readily expand on this. For example, vector meson bound states possess nonzero

magnetic- and quadrupole-moments [63]. This fact, Fig. 3 and the associated discussion

together indicate that there is appreciably more dressed-quark orbital angular momentum

within these states than within pseudoscalar mesons. Hence, spin-orbit repulsion could

significantly boost mρ1 and thereby produce the correct level ordering; viz., mρ1 > mπ1
.

Moreover, since exotic states appear as poles in vertices generated by interpolating fields

with “unnatural time-parity,” the importance of orbital angular momentum within these

states is magnified. These comments apply with equal force to tensor mesons, which cannot

be formed without rest-frame quark orbital angular momentum.

At present the best hope for a realistic description of the meson spectrum within a

Poincaré covariant approach4 is provided by the essentially nonperturbative DSE truncation

scheme whose use is illustrated most fully in Ref. [29]. That symmetry-preserving scheme

deeply embeds effects associated with DCSB into the Bethe-Salpeter kernel.

D. Connecting amplitudes with observables

Whilst not directly observable, the momentum-dependence of meson Bethe-Salpeter am-

plitudes is a crucial determinative factor in the computation of measurable quantities. In

Figs. 4 and 5, therefore, we depict the ω-dependence of a few low-order Chebyshev moments

of the leading invariant amplitude for the pseudoscalar and vector mesons:

nFM(p2) :=
2

π

∫ 1

−1

dx
√
1− x2 Un(x)FM(k2, x;P 2) , (25)

where k · P = x
√
k2P 2 and Un(x) is a Chebyshev polynomial of the second kind. NB. For

pseudoscalar and vector states with natural C-parity, only the even moments are nonzero,

whereas it is the odd moments which are nonzero for the exotic partners of these states.

The upper four panels in Fig. 4 compare the amplitudes of the ground-state and first-

radially-excited pseudoscalar mesons. The ground-state is clearly insensitive to ω. However,

as hoped for and anticipated, the radial excitation reacts strongly to variations in ω. Most

notable is the suppression of 0Eπ1
with decreasing ω, to be replaced by an increasingly large

2Eπ1
. Indeed, at ω = 0.4GeV, 0Eπ1

is almost negligible and possesses two zeros, instead

4 A lattice-QCD perspective on the meson spectrum may be drawn from Ref. [64].
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FIG. 4. Pseudoscalar mesons. ω-dependence of low-order Chebyshev-projections of leading in-

variant amplitude for ground-, radially-excited- and exotic-states: upper four panels, ground and

radial; lower four panels, ground and exotic. In all panels, solid – zeroth moment, ground-state;

dashed – leading moment, comparison state; dash-dot – subleading moment, comparison state.

Row-1, left, ω = 0.4GeV; Row-1, right, ω = 0.5GeV; Row-2, left, ω = 0.6GeV; and Row 2, right,

ω = 0.7GeV. This pattern is repeated in the next two rows. The normalisation is chosen such that

0Eπ0
(p2 = 0) = 1; and Dω = (1.1GeV)3.
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of the single zero expected in the amplitude of a first radial excitation since the work of

Ref. [21]. In such circumstances, the radial excitation may even possess a smaller charge

radius than the ground state [22].

In our view these features signal that values of ω . 0.5GeV in Eq. (14) are unphysical;

i.e., the long-range behaviour of a realistic β-function cannot dramatically suppress the

radial excitation’s leading amplitude nor induce it to have a second zero. This perspective is

supported by the following considerations. Neither the homogeneous BSE nor the canonical

normalisation condition fix the sign of the Bethe-Salpeter amplitude at k2 = 0. As in

quantum mechanics, this is arbitrary and cannot affect observables. Another parallel with

quantum mechanics is also relevant. Namely, for a ground-state, the sign of the radial

wave function at the origin in configuration space is the same as that of its analogue at the

origin in momentum space, whereas these signs are opposite for the first radial excitation.

This pattern repeats for higher even- and odd-numbered radial excitations. Here, a direct

solution of the inhomogeneous BSE is instructive because this equation does determine

signs. For example, consider the pseudoscalar vertex: Fig. 6 of Ref. [25] illustrates a case in

which the residue associated with the pseudoscalar meson ground-state is positive and that

connected with the first radial excitation is negative, which is the behaviour found herein

for ω & 0.5GeV. The residue is a product of the pseudoscalar-meson’s bound-state Bethe-

Salpeter amplitude at k2 = 0, Γ0−(0;P
2), and ρ0−. The latter is the expression in quantum

field theory for the value of the Bethe-Salpeter wave function at the origin in configuration

space. Thus, the pattern exposed by the inhomogeneous BSE parallels that in quantum

mechanics.

It is straightforward to see that this pattern is realised in the second, third and fourth

panels of Fig. 4, which depict results obtained with ω ≥ 0.5GeV. Therein, the k2 = 0 values

of the leading amplitudes’ lowest Chebyshev projections are positive; and whilst that for the

ground-state remains positive, that for the first radial excitation changes sign, so that it is a

negative-definite function for k2 & 1GeV2. In performing a Fourier transform, large-k2 maps

onto small x2 and hence this behaviour guarantees that the Bethe-Salpeter wave function

for the first radial excitation is negative at the origin in configuration space.

These observations reemphasise the peculiar character of the ω = 0.4GeV solution in the

top-left panel of the Fig. 4 and explain our choice of sign for all Bethe-Salpeter amplitudes.

The ground-state amplitude is positive at large-k2, the first radial excitation is negative at
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large-k2, and so on. With this convention, one necessarily finds ρζπ0
> 0, ρζπ1

< 0, etc., and

hence, from Eq. (22), fπ0
> 0, fπ1

< 0. We depict the ω-dependence of the leptonic decay

constants in Fig. 6.

The bottom four panels of Fig. 4 display low-order moments of the exotic-pseudoscalar-

meson’s leading invariant amplitude, contrasted with the ground-state’s zeroth moment. So

long as ω & 0.5GeV, the first moment of the exotic amplitude is bounded above by 0Eπ0

and the third moment is negative definite. This is the first time these features have been

exposed but we expect them to be characteristic of the rainbow-ladder truncation. It will

be important to learn whether this pattern persists beyond rainbow-ladder truncation.

The top four panels in Fig. 5 compare the amplitudes of the ground-state and first-

radially-excited vector mesons. The ground-state is insensitive to ω so long as ω & 0.5GeV

but again the radial excitation reacts strongly to variations in ω. In this case, natural

behaviour for the excited state’s amplitudes is only obtained for ω & 0.6GeV. For smaller

values, the zeroth moment is negative-definite and the second moment exhibits a zero. NB.

The sign of the amplitudes is fixed via the same prescription used for pseudoscalar mesons,

and hence fρ0 > 0, fρ1 < 0.

The bottom four panels of Fig. 5 display low-order moments of the exotic-vector-meson’s

leading invariant amplitude, contrasted with the ground-state’s zeroth moment. In this

case, so long as ω & 0.6GeV, the first moment of the exotic amplitude is bounded above by

0Eρ0 and the third moment is negative definite. The similarity to the lower panels of Fig. 4

encourages us in the expectation that these features are characteristic of the rainbow-ladder

truncation. Moreover, they suggest again that there is too much similarity between natural

and exotic C-parity states in rainbow-ladder truncation.

In Fig. 6 we depict the ω-dependence of pseudoscalar- and vector-meson leptonic decay

constants. Those for the ground-states are positive whilst those for the first radial excitations

are negative. The origin of this outcome in an internally consistent treatment of bound-

states was explained above. Notable, too, is the small magnitude of the decay constant

for the pion’s first radial excitation: fπ1
≈ −1MeV. This was predicted in Ref. [21] and is

a consequence of the axial-vector Ward-Takahashi identity. It is consistent with data on

τ → π(1300)ντ [65] and numerical simulations of lattice-regularised QCD [24].
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FIG. 5. Vector mesons. ω-dependence of low-order Chebyshev-projections of leading invariant

amplitude for ground-, radially-excited- and exotic-states: upper four panels, ground and radial;

lower four panels, ground and exotic. In all panels, solid – zeroth moment, ground-state; dashed

– leading moment, comparison state; dash-dot – subleading moment, comparison state. Row-

1, left, ω = 0.4GeV; Row-1, right, ω = 0.5GeV; Row-2, left, ω = 0.6GeV; and Row 2, right,

ω = 0.7GeV. This pattern is repeated in the next two rows. The normalisation is chosen such that

0Eρ0(p
2 = 0) = 1; and Dω = (1.1GeV)3.
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radially-excited rho-meson, dash-dot line. (Dω = (1.1GeV)3.)

IV. CONCLUSION

Using an interaction kernel that is consonant with modern DSE- and lattice-QCD results,

we employed a rainbow-ladder truncation of QCD’s Dyson-Schwinger equations in an anal-

ysis of ground-state, radially-excited and exotic scalar-, vector- and flavoured-pseudoscalar-

mesons. We confirmed that rainbow-ladder truncation is incapable of providing realistic pre-

dictions for the masses of excited- and exotic-states; e.g., the ordering between pseudoscalar

and vector radially-excited states is incorrect, and computed masses for exotic states are too

low in comparison with other estimates. Indeed, in rainbow-ladder truncation, it appears

that exotic states are in most respects too much like their C-parity partners.

On the other hand, much can still be learnt about ground-state baryons using the rainbow-

ladder truncation [66–68]. It also provides information that is useful when working beyond

this leading-order. For example, in each channel the rainbow-ladder truncation indicates

those invariant amplitudes which are likely to dominate in any solution of the Bethe-Salpeter

equation. This knowledge can be used in developing integral projection techniques that sup-

press ground-state contamination when searching for excited states. Moreover, the response
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of observables, and the Bethe-Salpeter amplitudes which produce them, to changes in the

infrared evolution of the interaction kernel can be used effectively to demarcate the do-

main of physically allowed possibilities for that evolution. This is valuable in qualitatively

constraining the long-range behaviour of QCD’s β-function. In addition, the symmetry-

preserving character of the rainbow-ladder truncation and the ready access it provides to

Bethe-Salpeter amplitudes for bound-states enable one to highlight and illustrate features

of hadron observables that do not depend on details of the dynamics.

There are many indications that dynamical chiral symmetry breaking (DCSB), of which

the momentum-dependence of the dressed-quark mass-function is a striking signal, has an

enormous impact on hadron properties. This study is one of a growing body which indicates

that the veracious expression of DCSB in the bound-state problem is essential if one is to

reliably predict and understand the spectrum and properties of excited and exotic hadrons.

Achieving this will provide the power to use extant and forthcoming data as a tool with

which to chart the nonperturbative evolution of QCD’s β-function.
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