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Jet momentum balance measurements, such as those recently performed by the CMS collabo-
ration, provide an opportunity to quantify the energy transferred from a parton shower to the
underlying medium in heavy-ion collisions. Specifically, I argue that the Cooper-Frye freezeout dis-
tribution associated with the energy and momentum deposited by the parton shower is controlled to
a significant extent by the distribution of the underlying bulk matter and independent of the details
of how deposited energy is redistributed in the medium, which is largely determined by transport
coefficients such as shear viscosity. Thus by matching the distribution of momentum associated with
the secondary jet in such measurements to the thermal distribution of the underlying medium, one
can obtain a model independent estimate on the amount of parton shower energy deposited.

PACS numbers:

I. INTRODUCTION

The suppression in energetic leading particle produc-
tion rates in relativistic heavy-ion collisions relative to
that expected from a naive superposition of nucleon-
nucleon collisions has long been regarded as a signature of
the formation of the quark gluon plasma (QGP) [1]. The
observation of this suppression in high pT measurements
is one of the most striking results from the heavy-ion pro-
gram at the Relativistic Heavy-Ion Collider (RHIC) [2]
and now at the Large Hadron Collider (LHC) [3]. This
phenomena, often referred to as “jet quenching” [4], is
largely reflective of the interaction of energetic, or fast,
partons with the QGP and is a useful probe of the hot
and dense matter formed in relativistic heavy-ion colli-
sions.

Jet observables are more differential than leading parti-
cle observables and have the potential to probe the QGP
and partonic energy loss dynamics in new and powerful
ways. The definition of a jet depends on parameters such
as the jet cone radius and minimum energy acceptance
cuts. The freedom one has in choosing these parameters
can be exploited to gain new insights into the physics of
the jet-medium interaction. A fast parton evolves into
an in-medium parton shower through medium-induced
radiative processes [5, 6]. The parton shower is further
modified through collisional energy losses to the under-
lying medium [7–9] which serve to alter the spectrum of
radiated gluons. Jet observables have been proposed as
a channel through which to constrain the final shape and
energy distribution associated with this shower [10, 11].
For example, the variation of the jet nuclear modification
factor, RAA, with the jet cone radius may be sensitive to
the final angular distribution of emitted radiation.

Parton showers can be substantially modified through
collisional energy losses - or energy deposition - to the
underlying medium. The dynamics of the parton shower
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energy deposition is reflective of the properties of the
QGP and is also sensitive to the distribution of medium
induced radiation - such as the gluon multiplicity and an-
gle of emission. Knowing the amount of energy deposited
by a parton shower is thus not only important for un-
derstanding jet measurements but also provides another
window into the properties of medium induced radiation.

In this paper, I show that jet momentum balance mea-
surements, such as those recently performed by the CMS
collaboration [12] at the LHC, provide an opportunity
to quantify parton shower energy deposition in heavy-
ion collisions. This is true because, as will be argued for
and shown on a specific example below, the Cooper-Frye
freezeout spectrum associated with the energy and mo-
mentum deposited by the parton shower is largely con-
trolled by the distribution of the underlying bulk matter
and independent of the details of how deposited energy
is redistributed in the medium. Thus by matching the
distribution of momentum associated with the secondary
jet in such measurements to the thermal distribution of
the underlying medium, one can obtain a model indepen-
dent estimate on the amount of parton shower energy and
momentum deposited.

In the case of dijets this model independent estimate
is for the net momentum deposited by the two (or more)
parton showers. To estimate the energy and momentum
deposited by a single parton shower in dijet measure-
ments requires some model estimate on relative path-
length and parent parton species. However, for jet mo-
mentum balance measurements performed on jets tagged
with electroweak bosons, one can obtain a model inde-
pendent estimate of single parton shower energy deposi-
tion.

It is non-trivial that the freezeout spectrum associated
with parton shower energy deposition may be largely in-
dependent of the details of how deposited energy is redis-
tributed in the QGP. When energy and momentum are
deposited, the disturbance is initially localized around
the axis of propagation of the parton shower, but the
medium acts to redistribute the energy and momentum
to larger angles and softer scales. The details of how
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this redistribution occurs, or the medium response to the
parton shower, depends to a large extent on the shear
viscosity and speed of sound of the bulk medium. In
particular, a more viscous medium tends to dissipate the
energy to softer scales more quickly than a less viscous
medium. One might well expect the freezeout spectrum
associated with parton shower energy deposition to de-
pend sensitively on the shear viscosity of the medium.
However, as will be argued in what follows, this is not
the case. Rather, the final spectrum associated with the
parton shower energy deposition is constrained largely by
the distribution of the underlying medium, which in turn
can be used to quantify the amount of energy deposited.
The paper is laid out as follows. In section II the CMS

dijet momentum balance measurement is discussed. I
argue that the results of the dijet momentum balance
measurement have a natural interpretation in terms of
parton shower energy deposition. I further argue why the
freezeout spectrum associated with the parton shower en-
ergy deposition might depend only weakly on the details
of how the medium redistributes that energy - which is
largely determined by the speed of sound and shear vis-
cosity. I then demonstrate this on the specific example of
a parton shower in linearized hydrodynamics. This sim-
plified example provides a nice testing ground to show
the general principle which may hold for more compli-
cated examples as well. In section III the CMS jet mo-
mentum balance measurement results are examined and
compared to data on bulk particle production at LHC
energies. From this comparison, I estimate that in dijet
events with asymmetry of 0.4, the secondary jet deposits
about 30-40 GeV of energy. Section IV concludes with
summary remarks.

II. COOPER FRYE FREEZEOUT FROM A

PARTON SHOWER IN HYDRODYNAMICS

This section begins with a discussion of the dijet mo-
mentum balance measurement performed by CMS [12].
In their analysis, CMS looked at jet production in PbPb
collisions at a nucleon-nucleon center-of-mass energy of
2.76 TeV. They considered events with a leading jet of
pT 1 > 120 GeV and secondary jet of pT 2 > 50 GeV, with
no explicit requirement made either on the presence or
absence of a third jet in the event. Using an iterative
cone algorithm jets were reconstructed with radius of 0.5
and minimum pT acceptance of 1.0 GeV.
CMS observed a significant dijet asymmetry, Aj ≡

(pT 1 − pT 2)/(pT 1 + pT 2), in PbPb collisions relative to
pp. Such an enhanced asymmetry is reflective of medium
modification of parton showers in which energy and mo-
mentum are transferred out of the jet reconstruction
phase space parameters. One way to help quantify the
distribution of this missing momentum is through the
overall momentum balance of the dijet event. In this
analysis, the pT tracks of an event are projected onto
the axis of the leading jet and summed over to explicitly

account for overall momentum conservation in the event.
When averaged over many events, CMS found that a sur-
plus of tracks with momentum projection greater than 8
GeV in the hemisphere of the leading jet were balanced
by those with momentum projection less than 8 GeV in
the opposite hemisphere, the majority of which were be-
tween 0.5− 2.0 GeV for central events. The distribution
of the momentum balance in the hemisphere opposite
the leading jet was much softer than that predicted by
PYTHIA + HYDJET.

The physical picture that emerges from the CMS dijet
momentum balance measurement is that the secondary
jet, which on average must traverse more of the hot and
dense medium formed in heavy-ion collisions than the
leading jet, is modified by interactions with the medium
in such a way that the energy and momentum lost by the
jet is transferred to relatively soft scales. I here argue
that the CMS results on dijet momentum balance have a
natural interpretation in terms of the transfer of energy
and momentum from a medium induced parton shower
to the underlying medium which then carries that energy
and momentum to larger angles and softer scales through
transport processes.

As will be demonstrated in the rest of this section,
the amount of this parton shower energy deposition can
be quantified by matching the distribution of momentum
associated with the secondary jet in such measurements
to the thermal distribution of the underlying medium.
The effect of parton shower energy and momentum de-
position is to generate a disturbance in the underlying
medium which shows up in the momentum balance of a
heavy-ion collision. Provided that this disturbance is not
too strong, it is not unreasonable to think that one can
obtain an estimate on parton shower energy deposition
by matching the distribution of momentum associated
with energy deposition to the thermal distribution of the
underlying medium. However, what is not obvious is how
close this matching is to the actual energy deposition, or
how sensitively the results depend on the details of how
the medium redistributes that energy. Further, one has
the added subtlety that jet momentum balance measures
momentum, which vanishes on the whole for the under-
lying medium (in the absence of jets). So it is necessary
to define what is meant by matching the distribution as-
sociated with parton shower energy deposition to that of
the unperturbed medium. This section aims to give some
clarity to these details.

A. The Parton Shower Spectrum from Cooper Frye

Consider the Cooper-Frye (CF) [13] freezeout prescrip-
tion for converting energy and momentum into a final
state particle distribution dN :

E
dN

d3p
=

∫

d3σµ p
µ

(2π)3
f(p, x), (1)
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where E and p are the energy and momentum of particles
in the final state and f(p, x) is the distribution function
just before freezeout. In Equation (1) d3σµ is the normal
vector to the freezeout hypersurface and any degeneracy
factors or summation over final state particles has been
suppressed. For the purposes considered here, the im-
portant feature of (1) is that energy and momentum are
explicitly conserved. This is particularly important when
considering the example of a parton shower in hydrody-
namics, where it is necessary to track the energy and mo-
mentum deposited by the parton shower from the time
of deposition all the way through to the final particle
spectrum.

In this section the orientation of d3σµ will be deter-
mined by the local fluid velocity of the medium. This
choice corresponds to freezing out at a constant proper
time and has the advantage that the local flow velocity
takes an especially transparent form: u ≡ g/ǫ, where g

is the momentum density of the medium and ǫ is the en-
ergy density [14]. In the implementation that follows I
will ignore differences between the proper time and the
global time as these differences are of higher order in the
solution to linearized hydrodynamics. Thus the time of
freezeout in the proper frame will be the same as in the
frame of computation. Additionally, final state particles
will be taken as massless and described by a Boltzmann
distribution for simplicity. Viscous corrections to the dis-
tribution function will not be considered. One expects
these corrections may be small in the momentum range
of interest, however this must be quantified. In this case,
one has

E
dN

d3p
=

∫

d3x p (1− u · p̂)
(2π)3

exp
[

− p

T
γ(1− u · p̂)

]

(2)

where u is the local fluid velocity, γ = 1/
√
1− u2 and T

is the temperature at freezeout. When speaking of the
distribution of the unperturbed, or underlying thermal,
medium it is here meant

∫

d3pE
dN

d3p
, p1 < |p| < p2 (3)

where E dN
d3p is obtained in the case of no parton shower

energy deposition. The differential form of (3) will also
be used later, which is obtained by not performing the
d|p| integration. In the language of a heavy-ion collision,
if one ignores mass effects and focuses on the region of
mid-rapidity, then the underlying particle distribution is

∫

dpT pT
dN

dpT
, p1 < pT < p2 (4)

which can be evaluated directly from experimental data.
Equation (4) will be put into use in section III.

To analyze the momentum balance associated with
a parton shower one needs the total momentum. This
quantity, which evaluates to zero for a medium without

parton shower energy deposition, is obtained from (2) as

P =

∫

d3pp
dN

d3p

=

∫

d3p d3xp (1− u · p̂)
(2π)3

exp
[

− p

T
γ(1− u · p̂)

]

.

(5)

The reader can verify that (5) conserves momentum in
the sense that u ≡ g/ǫ, where as mentioned previously g

is the momentum density and ǫ is the energy density. The
total momentum within some interval, p1 < |pi| < p2, is
obtained by limiting the integration in (5) to the appro-
priate region (the component i will be determined by the
parton shower direction of propagation). This is what is
meant by the distribution of momentum associated with
parton shower energy deposition, and will be referred to
as the momentum deposition spectrum in what follows.
Again, one can also use the differential form of (5) by
not performing the d|pi| integration. Note that the mo-
mentum deposition spectrum does not contain all of the
energy and momentum ’lost’ by a parton shower, but
only that fraction that goes into the underlying thermal
medium.
In the limit that the effect of the parton shower on

the underlying medium is small - small meaning that on
average the flow velocity and temperature fluctuations
can be linearized - the energy and momentum perturba-
tions generated by the parton shower decouple from the
momentum dependence of the final particle distribution.
For a static background this ensures that the momentum
deposition spectrum is completely controlled by the dis-
tribution of the underlying medium - although it is not
immediately obvious in precisely what functional form.
However, it turns out that the functional form is exactly
the same as that of the underlying medium in this limit.
To see this explicitly, consider the static background

approximation in which parton shower energy and mo-
mentum deposition induces a small flow velocity in the
direction of its propagation, which is taken to be in
the x̂ direction. The momentum within some interval,
p1 < px < p2, is found from (2) to be

Px =

∫

d3xu(x)

(2π)2

∫ 1

−1

dv

∫ p2/|v|

p1/|v|

dp p3 v2
p− T

T
e−

p

T , (6)

where any temperature variation generated by the parton
shower is of higher order in the linearization. One can
further proceed with a change in variables m = p/(|v|T )
followed by integrating by parts to find

Px =

∫

d3x gx(x)
1

6

∫ p2/T

p1/T

dmm3 e−m (7)

where gx(x) is the local momentum density, as mentioned
above. It is straightforward to check that this has the
exact same form as the particle distribution of the un-
perturbed medium, normalized to the total momentum
deposited by the parton shower.
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The result of (7) suggests what was stated earlier: that
the momentum deposition spectrum generated by a par-
ton shower is largely controlled by the distribution of
the underlying bulk matter. The result (7) no longer
holds if the linearized approximation breaks down, even
in the case of a static background. However, for a real-
istic amount of energy deposition, the linearized approx-
imation is relatively accurate when integrating over the
entire volume - provided the energy deposition is not too
localized.

B. A Specific Example - Parton Shower in

Linearized Hydrodynamics

The details of the implementation of linearized hydro-
dynamics coupled to a parton shower source term are dis-
cussed in detail in [15]. In this section I will sketch some
of the qualitative aspects of this implementation for ped-
agogical purposes, leaving the interested reader to refer
to the above work for more detail. In the linearized ap-
proximation one assumes a static background. Although
the static approximation is not realistic for a heavy-ion
collision, two of the important features, energy and mo-
mentum conservation and correct scaling with shear vis-
cosity, remain intact. In this way one hopes to obtain
qualitative information about how the momentum depo-
sition spectrum relates to the distribution of the under-
lying medium in a heavy-ion collision.
Of course, a more realistic treatment would be to incor-

porate parton shower energy deposition in a full viscous
hydrodynamic simulation of a heavy-ion collision. Then
one could evaluate the momentum deposition spectrum
and compare to the distribution in events without energy
deposition. However, in order to make a complete com-
parison, it is necessary to vary the dependence on the
shear viscosity as well as consider other possibly impor-
tant details to ensure these do not significantly alter the
results. The linearized approximation provides a conve-
nient way to consider these variations in this first study.
It is important to distinguish between the lineariza-

tion performed in the solution to hydrodynamics in what
follows and the linearization performed above in the CF
equation. The linearization done above was to illustrate
what happens in a certain limit, but is not adopted in
what follows. Rather, the results obtained from the hy-
drodynamic solution are kept in their full functional form
when evaluating the final spectrum. This is consistent
even within the regime of validity of linearized hydro-
dynamics because the expansion of the CF equation in-
volved both the perturbation due to the parton shower
and p/T , which need not be small. Additionally, even if
one applies linearized hydrodynamics in a regime where
the linearization breaks down, the energy and momen-
tum are still conserved, so there is at least a qualitative
description of the underlying dynamics.
In any hydrodynamic simulation coupled to a parton

shower it is necessary to specify the source term which

represents the flow of energy and momentum between
parton shower and medium. The simplest form for the
source which conserves energy and momentum is to treat
the parton shower as a point source with a weight given
by the energy loss rate to the medium:

Jν =
dE

dt
(t)uνδ(r− u t), (8)

where Jν is the source term, dE/dt is the rate of energy
loss (to be discussed in the next section, see Figure 1)
and uν = (1,u) with u being the velocity of the parton
shower. This form of the source neglects the broaden-
ing of the parton shower due to finite emission angles
but is adequate for the purpose of conserving energy and
momentum, which is the focus here. Additionally, the
energy and momentum deposited by this source term are
equivalent, provided |u| → 1 which is adopted in what
follows. Thus the momentum balance should recover the
amount of energy deposited by the parton shower.
In order to obtain the final particle distribution for the

CF freezeout spectrum it is necessary to evaluate both
the energy and momentum density perturbation gener-
ated by the parton showers. To illustrate how these are
obtained, I focus on the energy density perturbation, δǫ,
which has the momentum space representation in lin-
earized hydrodynamics [15]

δǫ(r, t) =

∫

d4k

(2π)4
e−ik·x ikJL(k) + J0(k)(iω − Γsk

2)

ω2 − c2sk
2 + iΓsωk2

.

(9)

In the above equation, cs denotes the speed of sound
and Γs = 4η

3sT is the sound attenuation length with η/s
being the shear viscosity to entropy density ratio in the
medium. Also, the source vector has been divided into

transverse and longitudinal parts: J = k̂JL + JT .
For the time-dependent source term of equation (8) it

is convenient to write the momentum space form as

Jν(k) =

∫ ts

0

dt′
dE

dt
(t′)uν e−ik·ut′+iωt′ (10)

where the t′ integration runs over the interval during
which the parton shower is depositing energy. In equation
(10) this interval is from t = 0 to t = ts, at which point
the parton shower stops interacting with the medium. So
explicitly

δǫ(r, t) =

∫

d4k

(2π)4

∫ ts

0

dt′
dE

dt
(t′)uν

× e−iω(t−t′)+ik·(r−ut′) iu · k+ (iω − Γsk
2)

ω2 − c2sk
2 + iΓsωk2

.

(11)

where t > ts. If the parton shower continues to deposit
energy indefinitely, then the upper limit of the t′ integra-
tion would simply be t.
In this paper, t in equation (11) represents the mo-

ment of freezeout, and ts is taken to be 8 fm (for reasons
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discussed in the following section). The difference be-
tween these two times, t − ts, is here referred to as the
’gap’ time. The gap time is a freely adjustable parameter
which will be varied to see how it affects the CF freezeout
spectrum.

1. Calculating the Parton Shower Energy Deposition Rate

The parton shower energy deposition rate is an essen-
tial quantity in evaluating the medium response and in
turn the momentum deposition spectrum, and in the fol-
lowing paragraphs I will discuss the approach used here
to evaluate it. A fast parton evolves into an in-medium
parton shower through medium-induced radiative pro-
cesses. These processes are here constrained by the
Gyulassy-Levai-Vitev (GLV) radiative energy loss for-
malism [16]. I make use of the bremsstrahlung spectra for
jets averaged over the collision geometry in central PbPb
reactions at the LHC. These spectra have been previ-
ously employed to discuss jet and particle production in
heavy-ion collisions at the highest

√
sNN [17], and more

recently to consider next to leading order jet production
at

√
sNN = 2.76 GeV [18].

As a rough approximation of the scenario observed in
dijet measurements, I will consider 120 GeV dijets pro-
duced in

√
sNN = 2.76 GeV heavy-ion collisions. Using

results based on the analysis of [18] one finds for these pa-
rameters that the probability that the primary partons
initiating the dijets are two gluons is about 37%, the
probability for two quarks is about 21%, and the proba-
bility for a quark and a gluon is about 42%. Thus almost
80% of dijet events contain at least one primary gluon
jet. Further, because the average squared color charge of
the gluon is larger than that of the quark, gluons on av-
erage lose more energy to the medium than quarks. This
creates a bias such that secondary jets in dijet events are
most often initiated by gluons.
With the assumption that the secondary jet deposits

the bulk of the energy, it makes sense to focus on 120
GeV gluon initiated parton showers. However, correc-
tions for the primary jet and ratio of secondary jets ini-
tiated by quarks versus gluons will be estimated in the
next section, so I also include the quark initiated parton
shower energy deposition for later reference. The energy
and momentum deposited by the primary jet should not
change the qualitative results of this section, other than
to reduce the net momentum deposited along the axis
of the secondary jet. The medium induced gluon emis-
sion is probabilistic and depends on the parton species.
The most likely number for a 120 GeV gluon propagating
in a QGP produced in a

√
sNN = 2.76 GeV heavy-ion

colilsion is 14 with average energy ωg ≈ 4.8 GeV and
average emission angle θ ≈ 0.7. For a 120 GeV quark,
the most likely number changes to 6 with average energy
ωg ≈ 6 GeV. The parton shower energy deposition is of
a collisional nature. The rate of this energy deposition
is here taken from the recent results on parton shower

energy loss by Neufeld and Vitev [8], which was an ex-
tension of the work done in [19]. In this work, the finite
time effects associated with the formation of the gluon in
the medium were included as well as the quantum color
interference between primary parton and radiated gluon.
In order to have a consistent treatment, one should ac-

count for the softening of the parton shower due to the
collisional energy losses. Although this effect was not
accounted for in the work in [8], it can be implemented
in a phenomenological way by using the rate of energy
transfer from each parton in the shower as a differen-
tial equation to evolve the energy of that parton. The
rate of energy transfer from each parton here depends
logarithmically on the energy through an ultraviolet cut-
off characteristic of collisional energy loss and enters as
dE/dt ∼ m2

D ln(1.6
√
ET/mD) where T is the tempera-

ture of the medium, E is the energy of the parton, mD

is the Debye mass, and the numerical factor of 1.6 in
the logarithm was evaluated in [20] for number of active
quark flavors, NF , equal zero.
As in [8], the quantum color interference effects be-

tween the primary and radiated partons are taken to be
associated with the rate of energy transfer from the ra-
diated gluon. For the purposes of extracting the energy
deposition the gluon emission points are uniformly dis-
tributed along the parton propagation path in a medium
of length 8 fm (this pathlength is based on the analy-
sis of [18]). With these details in place, the result for
the energy loss rate as a function of parton shower path-
length is shown in Figure 1 for the parameters: g = 2,
T = 0.35 GeV and mD = gT , which are based on the
average values obtained for LHC collision energies in a
Bjorken expanding plasma, and one has NF = 0 for a
gluon-dominated medium. The total integrated energy
deposition shown in Figure 1 amounts to about 51 GeV
for the primary gluon and about 25.5 GeV for the pri-
mary quark. As mentioned, I will focus on gluon initiated
parton showers in the rest of this section, so it will be nec-
essary to verify 51 GeV is recovered in the momentum
balance performed in this section. The result of the gluon
energy deposition in Figure 1 is used in the source term
of equation (8).
The details of the evaluation of the parton shower en-

ergy deposition rate and implementation into linearized
hydrodynamics have intentionally been made brief here
in order to keep the presentation concise. The important
point of this section is to show the qualitative features
of the final spectrum of parton shower momentum depo-
sition and how that compares to the distribution of the
underlying medium. The interested reader is directed
to the references listed above for more detailed explana-
tions.

2. Results on the Momentum Deposition Spectrum

With the ingredients discussed above, it is now pos-
sible to obtain the momentum deposition spectrum for
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 PQ: 6 rad. gluon E = 6 GeV

FIG. 1: (Color online) Energy deposition rates from parton
showers initiated by a 120 GeV gluon (PG) and 120 GeV
quark (PQ) to the underlying medium as a function of path-
length. The results are obtained using the formalism given by
[8] - which was an extension of the work done in [19]. Details
are discussed in the text.

a parton shower propagating in the x̂ direction. I will
examine the parton shower momentum deposition spec-
trum as a function of two parameters. The first is the
shear viscosity to entropy density ratio. The detailed
structure of the medium response to the parton shower
energy deposition is highly sensitive to the shear viscos-
ity to entropy density ratio. A medium with small shear
viscosity, such as believed to be formed in experimen-
tally accessible heavy-ion collisions [21], is characterized
by a well defined disturbance in the presence of a parton
shower. As one increases the shear viscosity, the distur-
bance generated by the parton shower becomes less well
defined and more smeared. However, no matter how the
details of the medium response change as the shear vis-
cosity is varied, the total energy and momentum are con-
served. As is shown below, this serves to constrain the
form of the final momentum deposition spectrum such
that it does not change much as the shear viscosity is
varied.

The second parameter I will consider is the time be-
tween the end of the parton shower energy deposition and
freezeout. This ’gap’ time (recall equation (11) and the
following paragraph) provides a simple parameter with
which to simulate the expansion of the parton shower
due to finite emission angle and broadening resulting
from scattering with the medium. The point souce δ
function approximation adopted above is convenient for
implementation into hydrodynamics but a realistic par-
ton shower broadens as a function of time. The gap time
provides a convenient way to mimick this broadening and
see how it influences the final spectrum.

I now present the results on the differential momen-
tum deposition spectrum for different shear viscosity to
entropy density ratio, along with the underlying medium
distribution, in Figure 2. The momentum deposition
spectrum is defined in equation (5), and the underly-
ing distribution in equation (3). For all the curves, the
calculation was performed with a gap time of 2 fm. The
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FIG. 2: (Color online) The final freezeout momentum depo-
sition spectrum generated by a parton shower is largely in-
dependent of the details of how the transferred energy and
momentum are redistributed - in this case, as determined
by the shear viscosity. The momentum deposition spectrum
is defined in equation (5) and the underlying distribution in
equation (3).
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FIG. 3: (Color online) As in Figure 2, but in this case the
gap time is varied, which roughly characterizes how broad
the parton shower is. The shear viscosity to entropy density
ratio is kept at 0.2 in all curves.

underlying distribution has been normalized to 50 GeV in
order to match up with the momentum balance curves.
Additionally, the background medium is at rest in this
scenario.

The three momentum deposition curves in Figure 2
each integrate to about 50 GeV, slightly less than the 51
GeV obtained from Figure 1. This discrepancy results
from numerical limitations in the hydrodynamic solutions
and subsequent freezeout, however the difference is rather
small. Notice also that the momentum balance curves are
plotted as dP/d|px|, so that both positive and negative
contributions are contained. This is necessary to recover
all of the deposited momentum.

Figure 2 shows that the final spectrum associated with
the parton shower energy deposition, or the momentum
deposition spectrum, is largely independent of the de-
tails of how the energy and momentum are redistributed
- in this case, as determined by the shear viscosity. The
three curves are almost indistinguishable at a first glance,
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and follow nicely the behavior obtained from linearizing
the CF equation above (recall this is different than lin-
earizing the hydrodynamic equations), even though that
linearization is not adopted in the results presented here.
As mentioned, the results obtained from the hydrody-
namic solution are kept in their full functional form when
evaluating the final spectrum. It is clear from the inset
that as the shear viscosity is made larger, the momen-
tum deposition spectrum moves closer to the underlying
distribution. This makes sense intuitively, since larger
viscosity tends to push the disturbance generated by the
parton shower to softer scales and into the regime where
the CF equation can be linearized.

I next present the results on the differential momentum
deposition spectrum for different gap times, along with
the underlying medium distribution, in Figure 3. For all
the curves, the calculation was performed with a shear
viscosity to entropy density ratio of 0.2. One finds a sim-
ilar result as in Figure 2, that the final spectrum depends
only modestly on the gap time, which loosely represents
how broad the parton shower is. Again the three curves
integrate to about 50 GeV, and the underlying distribu-
tion has been normalized accordingly. From the inset it
is clear that the momentum deposition spectrum moves
closer to the underlying distribution as the gap time is
increased. This occurs for the same reason as when the
shear viscosity is increased in Figure 2. In both cases the
disturbance generated by the parton shower move further
into the regime where the CF equation can be linearized
at the time of freezeout.

When combining the results of Figures 2 and 3 a clear
picture emerges that the results of the parton shower mo-
mentum deposition spectrum are largely independent of
the details of how deposited energy is redistributed in the
medium. As argued for in the Introduction, this is a non-
trivial result considering how significantly these details
change when varying the shear viscosity and gap time.
However, the constraint that momentum be conserved
along with the general form of the CF freezeout formula
seems to provide a limitation on the amount that the
momentum deposition spectrum is modified. Any devia-
tions in the momentum deposition spectrum as compared
to the underlying distribution tend to be in the form of
a slight blueshift.

The relative independence of the parton shower mo-
mentum deposition spectrum on the details of how the
energy and momentum are deposited and redistributed
in the medium is a potentially useful feature, particularly
in the case that one can somehow relate it to the distri-
bution of the underlying medium. For instance, in the
case considered above, the parton shower momentum de-
position spectrum follows almost exactly the distribution
of the underlying medium. Thus, if one had results on
jet momentum balance and wanted to know how much
of that momentum actually was related to parton shower
energy deposition - once again emphasizing that not all
of the ’lost’ energy is deposited in the medium - it would
be possible to obtain a nice estimate using the underlying

distribution. Of course, the ultimate goal is to obtain this
estimate from the jet momentum balance measurements
performed in heavy-ion collisions. In that case, there are
strong underlying flow fields, so it is not obvious how
well the jet momentum deposition spectrum will match
the underlying distribution. Before leaving this section,
I will consider a simple example to get a feel for how the
above results might change when considering a medium
with underlying flow.

C. A Contrived Example with Underlying Flow

Fields

In this subsection, I consider a simple contrived ex-
ample involving a perturbation on top of an underlying
flow field in order to get a qualitative sense for how the
results presented above change in the presence of flow.
Start with a system with flow velocity in the x direction
at the moment of freezeout given by:

u = x̂u0 x, (12)

where u0 is some free parameter, and the medium runs
from x = ±6 with a cross sectional area of 1 in the y and
z directions - units are arbitrary here. Equation (12)
is symmetric in x, so the underlying flow does not con-
tribute to the momentum balance. Now consider adding
a perturbation to the flow such that the total momentum
contained in the perturbation is small compared to the
total energy of the unperturbed system. To constrain
the form of the perturbation, I note that for a system of
the volume described above obeying Boltzmann statis-
tics with uniform temperature T0 = 1 the total energy
contained is

ET =
36

π2
. (13)

If the perturbed flow is written as δu then the total mo-
mentum contained in the perturbation will be

3

π2

∫

d3x δu. (14)

This remains a perturbation on the system for instance,
if
∫

d3x δu = 1. With this motivation, the perturbation
is given the explicit form

u → x̂u0 x+ x̂
Θ(x− σ)Θ(σ − x)

2σ
, (15)

where the range of allowed σ depends on the choice of
u0 (the total velocity should remain less than 1) but can
never exceed 6 because of the volume under considera-
tion.
In this example, σ plays a role similar to shear viscos-

ity or the gap time. As σ is increased, the perturbation
smears out over the volume, and as σ is decreased the
perturbation becomes more localized and well defined.
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FIG. 4: (Color online) The freezeout distribution for the one dimensional flow with a perturbation as described in equations
(12) and (15) - along with the underlying distribution. The parameter σ characterizes how localized the perturbation is. As long
as the perturbation is not too localized, the result depends only insensitively on the value of σ. In each case, the momentum
deposition spectrum has some amount of blueshift relative to the underlying distribution.

However, no matter what the value of σ is, the total mo-
mentum contained in the perturbation remains constant.
Now I present results on the spectrum of the momentum
perturbation and the underlying distribution, similar to
what was done above for the parton shower energy de-
position. I first choose u0 = 0 and vary σ from 1 to 4 by
one. The result is shown in Figure 4a. The scenario for
u0 = 0 is rather similar to the case of the parton shower
energy deposition in linearized hydrodynamics and one
naively expects there to be a similar type matching to
the underlying distribution, which is indeed the case for
σ = 2, 3, 4. One starts to see deviation for the case of
σ = 1, which shows a moderate blueshifting of the mo-
mentum deposition spectrum. From equation (15) it is
clear that σ = 1 has a magnitude of 0.5 and is rather
localized. It seems that if the perturbed flow becomes
too localized, the momentum balance spectrum begins
to blueshift away from the underlying distribution.

Now I present the result for u0 = 0.5/6 in Figure 4b.
This corresponds to an underlying flow field that varies
from 0 at the center to 0.5 at the edge of the volume.
Interestingly, the qualitative features of the result do not
change much when including flow in the example con-
sidered here. Again, whatever deviation there is from
the underlying spectrum results in a slight to moderate
blueshift of the momentum deposition spectrum.

I here summarize the main observations of this section:

• The momentum deposition spectrum generated by
a parton shower (defined in equation (5)) in lin-
earized hydrodynamics is relatively independent of
the details of how the energy is redistributed in the
medium. Furthermore, the spectrum matches quite
closely to the shape of the underlying medium dis-
tribution (defined in equation (3)) as seen in Fig-
ures 2 and 3.

• When considering the simple example of one dimen-
sional flow with a perturbation, the previous con-
clusion still holds, except in the case when the de-
posited momentum is very localized in the medium,
as seen in Figure 4.

• Whatever deviations there are in the shape of the
momentum deposition spectrum as compared to
the underlying medium distribution tend to be in
the form of a blueshift.

In the next section I will apply these conclusions to
the jet momentum balance measurements performed by
CMS to obtain an estimate on the parton shower energy
deposition in heavy-ion collisions.

III. EXTRACTING THE ENERGY

DEPOSITION FROM JET MOMENTUM

BALANCE

Assuming the results of the previous section hold in
the case of a heavy-ion collision, it should be possible
to make a reasonable estimate on parton shower energy
deposition using experimental results. In this section I
examine the CMS results on dijet momentum balance
[12] and compare to results on the bulk particle spectra
presented by ALICE [22]. In this way the amount of
parton shower momentum deposited in these events is
estimated, including corrections made for the primary
jet and ratios of quark to gluon initiated jets.
I consider the dijet events with Aj = 0.4 as shown in

Figure 14 of reference [12], and make the assumption that
only tracks with momentum projection less than 8 GeV
are part of the parton shower energy deposition, from
which there is a total of about 36 GeV available. As
discussed in the Introduction, not all of the 36 GeV mo-
mentum projected onto the secondary jet axis is part of
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FIG. 5: (Color online) Using the appropriately normalized pT

distribution of primary charged particles at mid-rapidity for
central collisions [22], the momentum balance for dijet events
with asymmetry of 0.4 as measured by CMS [12] is matched to
the underlying distribution - as defined by Equation (4). This
type of matching provides a lower limit on the parton shower
energy deposition. The comparison suggests that about 25
GeV of the 36 GeV momentum projected onto the secondary
jet axis is part of the parton shower energy deposition.

the parton shower energy deposition - only some portion
of the medium induced energy loss is transferred to the
medium. The expectation is that the momentum balance
should should contain a thermal contribution from the
energy deposition and a non-thermal contribution from
whatever is not transferred to the medium.

To estimate what fraction of the 36 GeV is from the
energy deposition, I follow the conclusions of the previ-
ous section and match the momentum balance distribu-
tion to the distribution of the underlying medium. Us-
ing the appropriately normalized pT distribution of pri-
mary charged particles at mid-rapidity for central colli-
sions [22] for the underlying distribution - as defined by
Equation (4) - the momentum balance is matched, as in
Figure 5. The matching is done by assuming the two
spectrums are identical in the smallest momentum bin
of 0.5-1 GeV. Using the smallest momentum bin for the
matching makes sense because one expects the thermal
medium to dominate the spectrum in the low pT region.
This type of matching likely provides a lower limit on the
parton shower energy deposition, since according to the
last section the momentum deposition spectrum tends
to blueshift relative to the underlying distribution. The
comparison in Figure 5 is consistent with the expectation
that the dijet momentum balance contains both a ther-
mal and non-thermal part. From Figure 5 it is estimated
that about 25 GeV of the 36 GeV momentum projected
onto the secondary jet axis is part of the parton shower
energy deposition.

This number is smaller than the 51 GeV calculated
in the previous section for a 120 GeV gluon traveling
about 8 fm in medium. However, to estimate single par-
ton shower energy and momentum deposition from dijet
measurements some model dependence must enter. One
needs to estimate the corrections for the primary jet and
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FIG. 6: (Color online) To compare single parton shower en-
ergy and momentum deposition to what can be extracted di-
rectly from dijet measurements requires some model input,
including corrections for the primary jet and the ratio of sec-
ondary jets initiated by quarks versus gluons. These correc-
tions are discussed in the text and shown in the Figure along
with the uncertainty. The experimental estimate is obtained
by matching momentum balance results to the underlying dis-
tribution.

the ratio of secondary jets initiated by quarks versus glu-
ons. These corrections are estimated in the discussion
that follows, and are graphically demonstrated in Figure
6 for the reader’s convenience.

The first correction to consider is that not all of the
secondary jets are initiated by gluons. Using the precise
percentages quoted in section II, at least 21% of the sec-
ondary jets are initiated by quarks. Further, for the sake
of argument, assume that from the 42% of dijets com-
ing from a quark and a gluon the secondary jets are all
initiated by gluons (quarks). In that case, the energy de-
position of secondary jets averages to 45.5 (35) GeV, as
seen in the first band of Figure 6. The band represents
the possible range one can obtain from these two extreme
scenarios.

Another source of uncertainty is in ignoring the con-
tribution of the primary jet. Estimates based on the
analysis of [18] suggest the primary jet travels about 2
fm in medium. The energy and momentum deposited by
the primary jet should not change the qualitative results
of the previous section, but it will reduce the net mo-
mentum deposited along the axis of the secondary jet.
Using the result of Figure 1, there is about 7.3 GeV de-
posited by a primary gluon in 2 fm of pathlength, and
3.2 GeV for a primary quark. Again assuming that from
the 42% of dijets coming from a quark and a gluon the
primary jets are all initiated by quarks (gluons), the en-
ergy deposition of primary jets averages to 4.7 (6.4) GeV.
This energy deposition serves to reduce the net momen-
tum deposited by the dijet pair. Consistently keeping
track of the previous two paragraphs yields a range of 28-
41 GeV predicted net momentum deposited by the dijet
pair, which is illustrated by the second band of Figure 6.

The final source of uncertainty is from the tendency
for the momentum balance spectrum to be blueshifted
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with respect to the underlying distribution. For this rea-
son, the 25 GeV estimate above is likely a lower limit
as long as the assumption that the two spectrums are
identical in the smallest momentum bin holds. At the
other extreme, one could consider that all of the contri-
bution less than 8 GeV projected along the secondary jet
axis is part of the parton shower energy deposition. This
amount, which totals 36 GeV, serves as an upper limit
and is shown along with the 25 GeV lower limit as the
’experimental estimate’ in Figure 6. As one can see from
the Figure, once these corrections are implemented the
theory prediction and the estimate from experiment are
compatible with each other.
One can also work backwards from the 25 GeV esti-

mate made above to obtain an estimate for the amount
of energy deposited by the secondary jet. For example,
the result of Figure 1 shows there is about 7.3 GeV de-
posited by a primary gluon in 2 fm of pathlength, and 3.2
GeV for a primary quark. These numbers are roughly 1/8
of the total amount deposited in 8 fm pathlength. Us-
ing this ratio and ignoring any uncertainty coming from
parent parton species, it is found that the secondary jet
deposits about 29 GeV. If one instead uses the upper
limit estimate that all of the contribution less than 8 GeV
projected along the secondary jet axis is part of the par-
ton shower energy deposition, one finds there is about 41
GeV deposited by the secondary jet. So I estimate that
in dijet events with asymmetry of 0.4, the secondary jet
deposits about 30-40 GeV of energy.
Clearly any uncertainties regarding pathlength and

parent parton ratios tend to make the extraction of the
secondary jet energy deposition less precise. Although
the net momentum deposition from the dijet system can
be estimated in a model independent way by matching
the distribution of momentum associated with the jet
momentum balance to the thermal distribution of the
underlying medium, making corrections for the primary
jet and parent parton ratios requires some model input.
For instance, if the relative pathlengths change signifi-
cantly from the estimates quoted above, the extraction
of the secondary jet energy deposition also changes.
To more precisely constrain the parton shower energy

deposition, momentum balance measurements for jets
tagged with electroweak bosons are ideal. In this way,
one significantly reduces the uncertainty due to path-
length and fraction of quark versus gluon initiated jets
and can obtain a truly model independent estimate of
single parton shower energy deposition.

IV. SUMMARY AND CONCLUSIONS

In this paper I have shown that jet momentum balance
measurements provide an opportunity to quantify parton
shower energy deposition in heavy-ion collisions. This is
true because the momentum deposition spectrum gener-
ated by a parton shower (equation (5)) is relatively inde-
pendent of the details of how the energy is redistributed

in the medium, which is largely determined by transport
coefficients such as shear viscosity. This was shown ex-
plicitly in section II for the momentum deposition spec-
trum generated by a parton shower in linearized hydrody-
namics. Furthermore, the spectrummatches quite closely
to the shape of the underlying medium distribution (de-
fined in equation (3)) as seen in Figures 2 and 3. What-
ever deviations there are in the shape of the momen-
tum deposition spectrum as compared to the underlying
medium distribution tend to be in the form of a blueshift.
These observations were applied in section III to the

CMS results on dijet momentum balance and results on
the bulk particle spectra presented by ALICE. From the
comparison I obtained a lower limit estimate that 25 GeV
of net momentum is deposited by dijets in events with
asymmetry of 0.4. This estimate was compared to the-
oretical predictions presented in Figure 1. After making
appropriate corrections for parent parton species and the
primary jet, the theory prediction is compatible with the
estimate from experiment, as seen in Figure 6.
In conclusion, the main results from this paper are:

• For the cases considered here, the momentum de-
position freezeout spectrum generated by a parton
shower is relatively independent of the details of
how the energy is redistributed in the medium.
Furthermore, the spectrum matches quite closely
to the shape of the underlying medium freezeout
distribution as seen in Figures 2 and 3. Whatever
deviations there are in the shape of the momentum
deposition spectrum as compared to the underly-
ing medium distribution tend to be in the form of
a blueshift.

• Applying the previous point to the case of dijet
events measured by CMS with Aj = 0.4 and match-
ing to the underlying distribution using results on
the bulk particle spectra from ALICE, a lower limit
estimate is made that 25 GeV of net momentum is
deposited in the direction of the secondary jet axis,
with an upper limit of 36 GeV. From these num-
bers, it is estimated that the secondary jet deposits
about 30-40 GeV of energy and momentum in the
underlying medium. This is compatible with the
theoretical predictions shown in Figure 1.

• The previous two points also apply to momentum
balance for jets tagged with electroweak bosons.
The advantage of using tagged jets is that the un-
certainty due to pathlength and fraction of quark
versus gluon initiated jets is minimized and one can
obtain a truly model independent estimate of single
parton shower energy deposition.
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