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The present work discusses, from an ab-initio standpoint, the definition, the meaning, and the
usefulness of effective single-particle energies (ESPEs) in doubly closed shell nuclei. We perform
coupled-cluster calculations to quantify to what extent selected closed-shell nuclei in the oxygen and
calcium isotopic chains can effectively be mapped onto an effective independent-particle picture.
To do so, we revisit in detail the notion of ESPEs in the context of strongly correlated many-
nucleon systems and illustrate the necessity to extract ESPEs through the diagonalization of the
centroid matrix, as originally argued by Baranger. For the purpose of illustration, we analyse the
impact of correlations on observable one-nucleon separation energies and non-observable ESPEs in
selected closed-shell oxygen and calcium isotopes. We then state and illustrate the non-observability
of ESPEs. Similarly to spectroscopic factors, ESPEs can indeed be modified by a redefinition
of inaccessible quantities while leaving actual observables unchanged. This leads to the absolute
necessity to employ consistent structure and reaction models based on the same nuclear Hamiltonian
to extract the shell structure in a meaningful fashion from experimental data.

I. INTRODUCTION

The concept of single-nucleon shells dates back to the
early days of nuclear physics and constitutes the basic
pillar of the nuclear shell model [1]. The independent-
particle approximation provides a zeroth-order picture of
the structure of nuclei on top of which correlations are
added to provide a more realistic description. Based on
such a rationale, the correlated shell model has been able
to explain the occurrence of extraordinarily stable config-
urations for specific neutron and proton numbers, known
as magic numbers. As a matter of fact, the universal
character of such magic numbers over the nuclear chart
remains an open question today [2]. Recently, the evolu-
tion of shell structure and the understanding of the neu-
tron drip-line location in oxygen isotopes have received
considerable experimental and theoretical attention [3–
5], e.g. significant shell gaps have been identified in 22O
and 24O leading to the interpretation of new magic shell
closures at N = 14, 16 in Z = 8 nuclei.

Identifying the underlying mechanisms responsible for
the occurrence or the disappearance of magic numbers
in specific regions of the nuclear chart requires improve-
ment on the traditional shell model by allowing for a
more systematic and consistent inclusion of correlations.
In particular, questions related to the impact of contin-
uum degrees of freedom [6–8] and of three-nucleon forces
on the evolution of nuclear shells is a frontier driving
low-energy nuclear physics research in connection with
radioactive ion beam facilities [5, 9, 10].
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Whether a certain nucleon number qualifies as a (new)
magic number cannot be postulated a priori. Experi-
mentally, several quantities, e.g. the excitation energy
and the collective character of the first 2+ state in even-
even isotopes, the size of the gap in the one-nucleon addi-
tion/removal spectrum, and the spectroscopic factors of
associated low-lying states in odd-even neighbours need
to be extracted in order to make such an assessment.
Theoretically, the same quantities need to be computed
while including all many-body correlations that could
play a role in order to check whether the picture asso-
ciated with a magic number eventually holds.
It can be useful in this context, for analysis and in-

terpretation purposes, to extract a single-nucleon shell
structure, i.e. a set of effective single-particle ener-
gies (ESPEs) associated with an underlying independent-
particle-like picture the system is mapped on. How-
ever, immediate non-trivial questions arise that are at
the heart of the present study

1. Can a single-nucleon shell structure be unambigu-
ously defined in a system that is intrinsically corre-
lated? In other words, can ESPEs be computed
on the sole basis of outputs of the many-body
Schroedinger equation and not as a result of an a
priori given zeroth-order approximation picture?

2. Correspondingly, to which auxiliary independent-
particle problem are ESPEs related, i.e. which one-
body Hamiltonian are ESPEs the eigenvalues of?

3. To what extent do correlations impact the effec-
tive independent-particle picture provided by such
ESPEs?

4. In which way are ESPEs related to underlying nu-
clear forces?



2

5. Given that an unambiguous definition of ESPEs ex-
ists, is the associated simplified picture needed and
beneficial or potentially misleading? In particular,
are ESPEs physically observable quantities?

Several of the above questions have been answered
long ago while others still necessitate further clarifica-
tions. The procedure to extract ESPEs unambiguously
(cf. point 1 above) goes back to French and Baranger [11–
13] and can be utilized to address points 2, 3, 4, and
5. Such a procedure defines ESPEs as centroid energies
denoting barycenters of correlated total binding energy
differences between the A-nucleon state the one-nucleon
transfer is performed on and the complete set of eigen-
states of the A+1 and A-1 systems. Eventually, cen-
troid energies can be related [12–14] to the monopole
part [15, 16] of underlying nuclear interactions, which ef-
fectively answers points 2 and 4 above.
In spite of the existence of an unambiguous procedure

to compute ESPEs, difficulties exist that can lead to im-
proper conclusions, e.g. conclusions based on an analysis
whose model dependence has not been properly identified
and stated. On the experimental side, extracting a cen-
troid energy necessitates the identification of all many-
body states with a given Jπ from both one-nucleon strip-
ping and pick-up reactions, which is not often possible.
This is particularly critical as one moves away from dou-
bly closed shell nuclei.
Theoretically, various levels of model dependence arise

in the computation of ESPEs. On the deepest level, it is
essential to understand that ESPEs depend, contrary to
true observables, on the resolution scale Λ used to define
and solve the nuclear many-body problem. As a result,
changing Λ through, e.g., a unitary transformation on
Fock space, changes ESPEs while leaving actual observ-
ables invariant. In this sense ESPEs are similar to spec-
troscopic factors; i.e. they can be used as a Λ-dependent
analysis tool but cannot be seen as fundamental observ-
able quantities. Moreover, and on a less fundamental
level, approximations are often introduced in the compu-
tation of ESPEs that generate an artificial dependence
on the single-particle basis used. These various points
will be discussed and illustrated in the present paper.
Difficulties may also arise when comparing ESPEs

computed from an ab-initio approach on the one hand
and from more effective methods, e.g. shell model and
energy density functional, on the other. For instance,
while the empirical shell-model ”anchors” ESPEs on one-
nucleon addition (removal) energies to (from) the closed-
shell core nucleus of reference, this is not the case in an
ab-initio context, as will be illustrated below.
The present paper follows the approach by Baranger as

a way to delve further into the meaning and the useful-
ness of ESPEs by addressing questions 3 and 5 above, as
well as by quantifying the error made when using approx-
imations to Baranger’s definition. The paper is organized
as follows. Section II collects essentially known results
regarding the definition and the computation of ESPEs.
Such a rather exhaustive introductory part is needed to

discuss points that have often been overlooked over the
years. Section III details the computation of ESPEs
within the frame of the coupled-cluster (CC) method.
Section IV reports our results and illustrates various key
properties of ESPEs. Specifically, the effect of correla-
tions on both one-nucleon separation energies and on ES-
PEs is discussed, focusing first on a few specific examples
before addressing systematics in oxygen and calcium iso-
topes. Starting from the ab-initio perspective provided
by our results, the textbook rationale behind the trun-
cated shell model is then briefly justified. Next, errors
made by computing ESPEs in approximate ways are ad-
dressed before illustrating the deeper model dependence
of ESPEs associated with their intrinsic resolution scale
dependence. Conclusions are given in Sec. V.

II. EFFECTIVE SINGLE-PARTICLE ENERGIES

In low-energy nuclear structure theory, one usually
starts from an independent-particle model to convey the
basic notions of single-particle states and shell structure.
In this context, one resorts to systems that can be pos-
tulated a priori as being little influenced by correlations
such that an effective independent-particle picture can be
safely used. In a second step, actual correlations are in-
troduced to explain, e.g., the fragmentation of the single-
particle strength visible in one-nucleon transfer reactions.
Such a pedagogical presentation makes it difficult to pic-
ture the possibility to define and extract a posteriori an
effective, underlying single-particle shell structure in the
presence of correlations, i.e. for A-body systems that are,
strictly speaking, always correlated. It is thus more in-
structive to start from a realistic picture of the nucleus,
i.e. a rather strongly correlated system, and extract a
posteriori an effective single-particle shell structure from
which correlations are to a large extent, but not entirely,
screened out [12].
To do so, we introduce the nuclear Hamiltonian under

the form1 H = T + V 2N + V 3N + . . ., where T denotes
the kinetic energy operator while V BN corresponds to a
B-body interaction. We limit ourselves to 2N and 3N
interactions throughout the formal part of the paper and
to 2N forces in actual applications. Studying the impact
of 3N interactions and forces of higher rank is postponed
to future works. Given H , eigenstates and eigenenergies
of the A-nucleon system are obtained by solving

H |ΨA
µ 〉 = EA

µ |Ψ
A
µ 〉 , (1)

1 The complication associated with the self-bound character of
the nucleus, i.e. the need to subtract the center-of-mass mo-
tion in order to deal with internal many-body states and eigen-
energies [17], is overlooked in the present paper. Dealing with
this difficulty in actual calculations is mandatory but would un-
necessarily complicate the analytical expressions presented here
without modifying significantly the outcome.
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where the symmetry quantum number denoting the par-
ticle number has been singled out. The label µ collects
a principal quantum number nµ, total angular momen-
tum Jµ, the projection of the latter along the z axis Mµ,
parity Πµ and isospin projection along the z axis Tµ of
the many-body state of interest. Use of the Greek label
κµ will be made to denote the subset of quantum num-
bers κµ ≡ (Πµ, Jµ, Tµ). Due to rotational invariance of
the nuclear Hamiltonian, eigenenergies EA

µ ≡ EA
nµκµ

are
independent of Mµ.
In the following, we consider a spherical single-

particle basis {a†p} appropriate to discussing the spher-

ical shell structure. Basis states are labelled by p ≡
{np, πp, jp,mp, τp} ≡ {np,mp, αp}, where np represents
the principal quantum number, πp the parity, jp the total
angular momentum, mp its projection along the z-axis,
and τp the isospin projection along the same axis.

We also consider the direct-product basis {b†~rστ},
where ~r is the position vector, σ the projection of the
nucleon spin along the z axis, and τ its isospin projec-
tion.

A. Spectroscopic amplitudes

The physical processes providing information on the
single-particle shell structure are one-nucleon transfer re-
actions. Although the discussion can be carried out for
the transfer on any initial [13]. many-body state, we
restrict ourselves in the following to the transfer on the
ground state |ΨA

0 〉 of an even-even system, i.e. a Jπ = 0+

state. Furthermore, we consider this nucleus to be of dou-
bly closed-shell character2.
In this context, let us introduce Uµ (Vν) as the ampli-

tude to reach a specific eigenstate |ΨA+1
µ 〉 (|ΨA-1

ν 〉) of the
A+1 (A-1) system by adding (removing) a nucleon in a
specific single-particle state to (from) the ground state of
the A-body system |ΨA

0 〉. Such spectroscopic amplitudes
can be defined through their representation in any given
single-particle basis. In basis {a†p}, they read

Up
µ ≡ 〈ΨA+1

µ |a†p|Ψ
A
0 〉

∗ , (2a)

V p
ν ≡ 〈ΨA-1

ν |ap|Ψ
A
0 〉

∗, (2b)

whereas their representation in basis {b†~rσq} provides the
associated wave functions or overlap functions

Uµ(~rστ) ≡ 〈ΨA+1
µ |b†~rστ |Ψ

A
0 〉

∗ , (3a)

Vν(~rστ) ≡ 〈ΨA-1
ν |b~rστ |Ψ

A
0 〉

∗. (3b)

An important property regarding the asymptotic be-
haviour of overlap functions derives from their equation

2 Such a notion relates to the filling of shells in the uncorrelated,
e.g. Hartree-Fock, picture.

of motion given by [18]

[h∞ +Σ(ω)]ω=E+
µ
Uµ = E+

µ Uµ , (4)

and similarly for (Vν , E
−
ν ), where (observable) one-

nucleon separation energies are defined through

E+
µ ≡ EA+1

µ − EA
0 , (5a)

E−
ν ≡ EA

0 − EA-1
ν . (5b)

The energy-dependent potential Σ(ω) denotes the dynam-

ical part of the irreducible self-energy [18] that naturally
arises in self-consistent Green’s-function theory and that
is to be evaluated at the eigensolution E+

µ in Eq. (4).
The static field h∞ is defined in Eq. (18) and contains
both the kinetic energy and the energy-independent part
of the one nucleon self-energy. One can show from Eq. (4)
that the long-distance behaviour of the radial part of the
overlap function is governed by the corresponding one-
nucleon separation energy, e.g. for E+

µ < 0

Uµ(rστ) −→
r→+∞

A+
µ

e−ς+µ r

ς+µ r
, (6)

where A+
µ denotes the so-called asymptotic normalization

coefficient (ANC) while the decay constant is given by
ς+µ ≡ (−2mE+

µ /~
2)1/2, where m is the nucleon mass3.

A similar result can, of course, be obtained for Vν(rστ)
whose decay constant ς−ν relates to E−

ν .
From spectroscopic amplitudes one defines addition S+

µ

and removal S−
ν spectroscopic probability matrices asso-

ciated with states |ΨA+1
µ 〉 and |ΨA-1

ν 〉, respectively. Their

matrix elements read in basis {a†p}

S+pq
µ ≡ 〈ΨA

0 |ap|Ψ
A+1
µ 〉〈ΨA+1

µ |a†q|Ψ
A
0 〉 (7a)

= Up
µ U

q ∗
µ ,

S−pq
ν ≡ 〈ΨA

0 |a
†
q|Ψ

A-1
ν 〉〈ΨA-1

ν |ap|Ψ
A
0 〉 (7b)

= V p ∗
ν V q

ν ,

such that their diagonal parts, when expressed in the co-
ordinate space basis, are nothing but transition densities

for the one-nucleon transfer from |ΨA
0 〉 to |ΨA+1

µ 〉 and

|ΨA-1
ν 〉, respectively.
Tracing the two spectroscopic probability matrices

over the one-body Hilbert space H1 gives access to spec-
troscopic factors

SF+
µ ≡

∑

p∈H1

∣
∣Up

µ

∣
∣
2
=

∑

στ

∫

d~r |Uµ(~rστ)|
2
, (8a)

SF−
ν ≡

∑

p∈H1

|V p
ν |

2
=

∑

στ

∫

d~r |Vν(~rστ)|
2
, (8b)

3 Subtracting the center-of-mass motion would lead to using the
reduced mass of the added/removed nucleon.
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which are nothing but the (basis-independent) norm of
spectroscopic amplitudes. A spectroscopic factor char-
acterizes to what extent an eigenstate of the A+1 (A-1)
system can be described as a nucleon added to (removed
from) a single-particle state on top of the ground-state
of the A-nucleon system. Such a feature intrinsically de-
pends on the resolution scale Λ characterizing the nuclear
Hamiltonian and is thus not, strictly speaking, observ-
able [19, 20]. Still, spectroscopic factors can serve as a
tool to analyse the results obtained at a given resolution
scale.

B. Spectral function and strength distribution

We now gather the complete spectroscopic informa-
tion associated with one-nucleon addition and removal
processes in the so-called spectral function S(ω) ≡
S
+(ω)+S

−(ω). The spectral function denotes an energy-
dependent matrix over H1 whose elements in basis {a†p}
are defined through

Spq(ω) ≡
∑

µ∈HA+1

S+pq
µ δ(ω − E+

µ ) +
∑

ν∈HA−1

S−pq
ν δ(ω − E−

ν ),

where the first (second) sum is restricted to eigenstates of
H in the Hilbert space HA+1 (HA−1) associated with the
A+1 (A-1) system. It is of interest to introduce the nth

moment of the spectral function that defines an energy-
independent matrix over H1 through

M
(n) ≡

∫ +∞

−∞

ωn
S(ω) dω. (9)

One can easily obtain from {ap, a
†
q} = δpq that the

zeroth-moment is nothing but the identity matrix

M
(0)
pq =

∑

µ∈HA+1

S+pq
µ +

∑

ν∈HA−1

S−pq
ν = δpq , (10)

such that the diagonal matrix element of S(ω) possesses
the meaning of a probability distribution function (PDF)
in the statistical sense, i.e. the combined probability of
adding and removing a nucleon to/from a specific single-
particle basis state |p〉 integrates to 1 when summing over
all final states in the A±1 systems.
Last, but not least, we introduce the spectral strength

distribution (SDD) as the trace of the spectral function
matrix

S(ω) ≡ TrH1
[S(ω)] (11)

=
∑

µ∈HA+1

SF+
µ δ(ω − E+

µ ) +
∑

ν∈HA−1

SF−
ν δ(ω − E−

ν ) ,

which is a basis-independent function of the energy.

C. Independent-particle vs correlated systems

It is of pedagogical interest to discuss the typical pat-
terns displayed by the spectral strength distribution for

FIG. 1: (Color online) Schematic representation of one-
nucleon addition and removal spectroscopic information for
an independent-particle system. Left: binding energy for
the ground-state of an even-even system and for the states
of neighbouring nuclei reached by direct one-nucleon addi-
tion and removal processes. Right: corresponding spectral
strength distribution.

both independent-particle and correlated systems. The
goal of this exercise is to illustrate in what sense ob-
servable one-nucleon separation energies cannot be inter-
preted as single-particle energies as soon as correlations
are present in the system.

Figure 1 provides a schematic display of one-nucleon
addition and removal spectroscopic information for an
independent-particle system. As many-body eigenstates
of H take the form of Slater determinants in such a
case, there exists a particular single-particle basis of H1

in which addition and removal spectroscopic probability
matrices read

S+pq
µ = δpµ δpq δpa , (12a)

S−pq
ν = δpν δpq δpi ,

where i and a characterize occupied (”hole”) and unoc-
cupied (”particle”) states in the Slater determinant as-
sociated with the A-nucleon ground-state, respectively.
Consequently, the many-body states reached by direct
one-nucleon addition and removal processes are in one-to-
one correspondence with single-particle basis states. As
a result of such a bijection, one-nucleon separation ener-
gies are good candidates to play the role of single-particle
energies. As a matter of fact, one has E+

µ = ǫa δaµ and

E−
ν = ǫi δiν , where ǫa and ǫi denote eigenvalues of the

one-body Hamiltonian governing the uncorrelated system
associated with unoccupied and occupied single-particle
states, respectively. Because the SDD integrates to the
dimension of H1 by construction, spectroscopic factors
of the corresponding states are equal to 1 whereas they
are equal to zero for all the remaining states that are not
reached by the direct one-nucleon transfer.

Let us now move to a correlated system. In any single-
particle basis {a†p} of H1, S

+pq
µ (S−pq

ν ) is now different
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FIG. 2: (Color online) Same as Fig. 1 for a correlated system.

from zero for any combination4 of µ, p and q (ν, p and
q) indices. The SDD is thus fragmented as schemat-
ically displayed in Figure 2, i.e. a larger number of
many-body states are reached through the direct addition
and removal of a nucleon compared to the uncorrelated
case5. Consequently, the number of peaks with non-zero
strength in the SDD is greater than the dimension of H1,
which forbids the establishment of a bijection between
this set of peaks and any basis of H1. Accordingly, and
because the SDD still integrates to the dimension of H1

by construction (see Eq. (10)), spectroscopic factors are
smaller than one. The impossibility to realize such a bi-
jection constitutes the most direct and intuitive way to
understand why observable one-nucleon separation ener-
gies cannot be rigorously associated with single-particle
energies when correlations are present in the system, i.e.
as soon as many-body eigenstates of H differ from Slater
determinants.

D. Effective single-particle energies

The discussion provided above underlines the fact that
a rigorous definition of ESPEs is yet to be provided in
the realistic context of correlated many-nucleon systems.
A key question is: how can one extract a set of single-
particle energy levels that (i) are in one-to-one correspon-
dence with a basis of H1, (ii) are independent of the par-
ticular single-particle basis one is working with, (iii) are
computable only using quantities coming out of the corre-
lated A-body Schrodinger equation and that (iv) reduce
to HF single-particle energies in the HF approximation
to the A-body problem.

Let us make the hypothesis that ideal one-nucleon pick-

4 Except for selection rules dictated by symmetries that lead, ac-
cording to Eq. (20), to πp = πµ, jp = Jµ and τp = Tµ − T0.

5 Of course, the dimension of HA+1 or HA−1 remains the same
whether the system is correlated or not.

up and stripping reactions have been performed such that
separation energies (E+

µ , E
−
ν ) and spectroscopic ampli-

tudes (overlap functions) (Uµ(~rστ), Vν (~rστ)) have been
extracted consistently, i.e. in a way that is consistent
with the chosen nuclear Hamiltonian H(Λ) defined at a
resolution scale Λ. In such a context, a meaningful defi-
nition of ESPEs does exist and goes back to French [11]
and Baranger [12]. It involves the computation of the
so-called centroid matrix which, in an arbitrary spherical
basis of H1 {a†p}, reads

hcentpq ≡
∑

µ∈HA+1

S+pq
µ E+

µ +
∑

ν∈HA−1

S−pq
ν E−

ν , (13a)

and is nothing but the first moment M(1) of the spectral
function matrix (see Eq. 9). Effective single-particle en-
ergies and associated states are extracted, respectively,
as eigenvalues and eigenvectors of hcent, i.e. by solving

hcent ψcent
p = ecentp ψcent

p , (14)

where the resulting spherical basis is denoted as {c†p}.
Written in that basis, centroid energies invoke diagonal
spectroscopic probabilities6

ecentp ≡
∑

µ∈HA+1

S+pp
µ E+

µ +
∑

ν∈HA−1

S−pp
ν E−

ν , (15)

and acquire the meaning of an average of one-nucleon sep-
aration energies weighted by the probability to reach the
corresponding A+1 (A-1) eigenstates by adding (remov-
ing) a nucleon to (from) the single-particle state ψcent

p .
Centroid energies are by construction in one-to-one cor-
respondence with states of a single-particle basis of H1

which, as already pointed out before, is not the case of
correlated one-nucleon separation energies with non-zero
spectroscopic strength.
Equation (14) ensures that ψcent

p (~rστ) and ecentp are
consistent in the sense that the asymptotic behaviour of
the former is driven by the latter, e.g. for ecentp < 0 the
radial part of the wave function behaves asymptotically
as

ψcent
p (rστ) −→

r→+∞
Cp

e−ξp r

ξp r
, (16)

where ξp ≡ (−2mecentp /~2)1/2. Such a result under-
lines that single-particle wave-functions associated with
ESPEs are intrinsically different from overlap functions
Uµ(rστ) (Vν(rστ)) which are probed in transfer experi-
ments.

6 The definition of ecentp sometimes incorporates the denominator
∑

µ∈HA+1
S
+pp
µ +

∑
ν∈HA−1

S
−pp
ν in Eq. (15) to compensate for

the possibility that, e.g. experimentally, normalization condi-
tion 10 might not be exhausted.
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Experimentally, the extraction of ESPEs requires to
collect the full spectroscopic strength up to high enough
missing energies, i.e. the complete set of separation en-
ergies and cross sections from both one-nucleon stripping
and pickup reactions. This unfortunately limits the pos-
sibility to perform sound comparisons on a systematic
basis. Indeed, there are at best only a few nuclei along a
given isotopic or isotonic chain that are characterized by
complete enough spectroscopic data.

E. Sum rule

It is tedious but straightforward to prove that the nth

moment of S(ω) fulfils the identity

M
(n)
pq = 〈ΨA

0 |{

n commutators
︷ ︸︸ ︷

[. . . [[ap, H ], H ], . . .], a†q}|Ψ
A
0 〉 . (17)

Using the second quantized form of T , V 2N, and V 3N, to-
gether with identities provided in Appendix A and sym-
metries of interaction matrix elements, Eq. (17) applied
to n = 1 leads to [12, 13, 21]

hcentpq = Tpq +
∑

rs

V̄ 2N
prqs ρ

[1]
sr +

1

4

∑

rstv

V̄ 3N
prtqsv ρ

[2]
svrt

≡ h∞ , (18)

where V̄ 2N
prqs and V̄ 3N

prtqsv are anti-symmetrized matrix el-
ements and where

ρ[1]pq ≡ 〈ΨA
0 |a

†
qap|Ψ

A
0 〉 =

∑

µ

V p
µ
∗ V q

µ , (19a)

ρ[2]pqrs ≡ 〈ΨA
0 |a

†
ra

†
saqap|Ψ

A
0 〉 , (19b)

denote one- and two-body density matrices of the corre-

lated A-body ground-state, respectively. The static field
h∞, already introduced in Sec. II A, contains both the
kinetic energy and the energy-independent part of the
one-nucleon self-energy in the A-body ground state [21].
Equation (18) demonstrates that the centroid matrix

is a one-body field possessing a simple structure and an
intuitive meaning. In particular, the centroid field re-
duces to the Hartree-Fock (HF) mean field in the HF
approximation. As a result, ESPEs are nothing but HF
single-particle energies in such a case and are equal to
one-nucleon separation energies according to Koopmans’
theorem [22]. Consistently, overlap, centroid, and HF
single-particle wave-functions coincide in that limit. Of
course, centroid energies also reduce to eigenvalues of
the one-body Hamiltonian in the limit of an uncorrelated
system. When correlations beyond HF are switched on,
ESPEs are modified through the presence of correlated
density matrices in Eq. (18); i.e. the B-nucleon interac-
tion is folded with the correlated (B-1)-body density ma-
trix ρ[B-1]. Through that transition, ESPEs continuously
evolve as centroid energies rather than as observable sep-
aration energies such that Koopmans’ theorem does not

hold any more. Centroid energies are schematically com-
pared to observable binding and separation energies in
Figure 3.
On the practical side, Eq. (18) underlines that the av-

eraged information contained in ESPEs only requires the
computation of the A-body ground-state. As long as
one is not interested in the full spectroscopic strength
of the A±1 systems but only in their centroids, one only
needs to compute one nucleus instead of three. In prac-
tice however, Eq. (22) is rarely computed in terms of
the correlated density matrix, e.g. shell-model applica-
tions usually invoke a filling approximation typical of an
independent-particle approximation. This is believed to
be a decent approximation as long as (i) low-lying states
carry a major part of the single-particle spectroscopic
strength, as for the transfer on a doubly closed-shell nu-
cleus, and (ii) nucleons of the other species are themselves
not strongly correlated, because of pairing for example.
See, e.g., Ref. [23] and references therein for a related
discussion. Such an issue becomes critical whenever one
is looking into, e.g., the neutron shell structure of a neu-
tron open-shell nucleus. In such a situation, a normal
filling is inappropriate and it is mandatory to fold the
monopole interaction in Eq. (22) with a density matrix
reflecting the presence of correlations in the system.
Using that the even-even ground state the one-nucleon

transfer is performed on is a JΠ = 0+ state, Wigner-
Eckart’s theorem allows one to obtain the explicit de-
pendence of spectroscopic amplitudes on mp and Mµ,
i.e.

Up
µ ≡ Unp [αp]

nµ
δκµαp δMµmp , (20a)

V p
ν ≡ V np [αp]

nν
δκναp δMν−mp (−1)mp , (20b)

such that the single-particle operator picks out the angu-
lar momentum, the parity and the isospin projection of
the A±1 state the transfer goes to; i.e. jp = Jµ, πp = Πµ

and τp = Tµ − T0. Consequently, the one-body density
matrix of the A-body ground state reads

ρ[1]pq ≡ ρ[α]npnq
δαpαq δmpmq , (21)

such that, retaining the 2N force only for simplicity and
expressing its anti-symmetrized matrix elements in a jj-
coupled scheme, one obtains [12–14] in basis {c†p}

ecentnp[αp]
= t[αp]

npnp
+

∑

nqnr

∑

αq

v̄[αpαqαpαs]
npnqnpnr

ρ[αq ]
nrnq

, (22)

where v̄
[αpαqαpαq ]
npnqnpnr is the reduction of the 2N interaction

to its so-called monopole, i.e. angular averaged, part.
Higher multipoles and in particular the quadrupole part
that drives the dominant part of correlations are screened
out from ESPEs.

F. Resolution-scale dependence

Let us briefly explain the intrinsic resolution-scale de-
pendence of ESPEs. Such a feature derives directly
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FIG. 3: (Color online) Schematic picture. Top: total bind-
ing energies (Eq. 1) of three successive nuclei and associ-
ated one-nucleon addition/removal energies (Eq. 5) from the
ground state of the intermediate system. Bottom left: spec-
tral strength distribution (Eq. 11). Bottom right: correspond-
ing ESPE spectrum (Eq. 15). The color coding underlines
that ESPEs close to the Fermi energy contain significant con-
tributions from both addition and removal channels.

from the resolution scale of spectroscopic amplitudes [19,
20] entering the definition of the centroid matrix, see
Eq. (13a). Following the philosophy of the similarity
renormalization group (SRG) [24, 25], we consider a
change of resolution scale via a unitary transformation
U(Λ) of the Hamiltonian

H(Λ) ≡ U(Λ)H U †(Λ) (23a)

≡ T + V 2N(Λ) + V 3N(Λ) + . . . , (23b)

where the scale characterizing the initial H is omitted for
simplicity. As can be trivially shown, Eq. (23a) induces
a transformation of eigenvectors of Eq. (1)

|ΨA
µ (Λ)〉 ≡ U(Λ) |ΨA

µ 〉 , (24)

such that7 the associated observable, i.e. the eigenen-
ergy, remains unchanged EA

µ (Λ) = EA
µ . Similarly, any

observable associated with a Hermitian operator O must
remain invariant, which imposes the transformation of O
according to O(Λ) ≡ U(Λ)OU †(Λ).
Let us now come to ESPEs. The key difference from

an observable resides in the fact that the very nature of
ESPEs is to inform us of effective single-nucleon degrees
of freedom inside the nuclear medium, independently of
the form of the Hamiltonian. In other words, the choice

is made to keep the definition of ESPEs independent of
Λ. Before or after transformation 23a, ESPEs are always
extracted through Eq. (13a), where S±pq

µ (Λ) retains the
same formal expression as before, i.e. they invoke spec-
troscopic amplitudes computed through

Up
µ(Λ) ≡ 〈ΨA+1

µ (Λ)|a†p|Ψ
A
0 (Λ)〉

∗ , (25a)

V p
ν (Λ) ≡ 〈ΨA-1

ν (Λ)|ap|Ψ
A
0 (Λ)〉

∗. (25b)

Contrary to the many-body states involved, operators a†p
and ap are not transformed in Eq. (25), which generates
automatically an intrinsic dependence of Up

µ and V p
ν on

Λ. One could, of course, choose to transform operators a†p
and ap in the definition of spectroscopic amplitudes in or-
der to make the latter invariant under the unitary trans-
formation. However, transforming a†p, e.g., would result

into a linear combination of operators of the form a†q,

a†qa
†
ras, . . . such that the spectroscopic amplitude would

not provide the information one was after in the first
place, e.g. the overlap between eigenstates of H(Λ) in
the A+1 (A-1) system and the state obtained by adding
(removing) a nucleon to (from) a given single-particle
state |p〉 on top of the A-body ground-state. Eventually,
the resolution-scale dependence of spectroscopic ampli-
tudes propagates to their norm, i.e. spectroscopic fac-
tors [19, 20], and to ESPEs.
The discussion provided above points to an important

conclusion. The information one is sometimes after, e.g.
computing spectroscopic factors and ESPEs, is not nec-
essarily observable. Such an information is not abso-
lute and can be modified by a redefinition of inaccessible
quantities, i.e. the Hamiltonian and its eigenvectors in
the present case, which leaves of course true observables
untouched. It remains to be seen how much ESPEs are
changed in actual calculations by varying the resolution
scale Λ over a reasonable interval of interest. This ques-
tion is addressed in Sec. IV. It could very well be that the
induced variation of the ESPEs is negligible compared

7 In practical applications, such an invariance is broken to some
extent due to the approximate way of performing the transfor-
mation of the Hamiltonian, e.g. neglecting induced many-body
interactions in Eq. (23b), and to approximations performed when
solving the A-body problem [26, 27]. However, the discussion of
the present section is concerned with tracking what happens in
the hypothesis of an exact unitary transformation and an exact
solution of the A-body Schroedinger equation.
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to other sources of uncertainties, e.g. approximations in
their computation. Still, it is of prime importance to keep
such an intrinsic model dependence of ESPEs in mind.

III. COUPLED CLUSTER METHOD

One-nucleon separation energies and spectroscopic am-
plitudes introduced respectively in Eq. (5) and Eqs. (2-3)
are defined without any reference to a particular method
used to solve the many-body problem.
We are presently interested in using the ab-initio

coupled-cluster method (CCM). Let us briefly outline
the procedure to compute ground and excited states of a
closed (sub-)shell nucleus A and of odd A±1 neighbours
within CCM. From there, all needed quantities to com-
pute ESPEs can be extracted. In CCM, the exact ground
state is written in the exponential form

|ΨA
0 〉 = eT |Φ0〉, (26)

where |Φ0〉 is an uncorrelated single-reference Slater
determinant built from a convenient spherical single-
particle basis, usually chosen as mean-field HF orbitals.
Many-body correlations beyond the mean field are intro-
duced by the operator T = T1+T2+ . . .+TA, which is a
linear expansion in n-particle-n-hole excitation operators
Tn, with n = 1, . . . , A.
The only approximation occurring in CCM regards the

truncation of T to a given low-lying excitation level;
e.g. T ≈ T1 + T2 is the most commonly used ap-
proximation known as the coupled-cluster method with
single and double excitations (CCSD). Inserting the
coupled-cluster ansatz (26) into the A-body Schrödinger
equation (Eq. (1)) and projecting from the left with
〈Φ0|e

−T , 〈Φa
i |e

−T and 〈Φab
ij |e

−T respectively, coupled-
cluster equations are obtained under the form

〈Φ0|e
−THeT |Φ0〉 = EA

0 , (27a)

〈Φa
i |e

−THeT |Φ0〉 = 0, (27b)

〈Φab
ij |e

−THeT |Φ0〉 = 0. (27c)

These equations determine the unknown amplitudes en-
tering T1 and T2 as well as the ground state energy EA

0 .
Here 〈Φa

i | and 〈Φab
ij | are one-particle-one-hole and two-

particle-two-hole excited reference states.
Equation (27) underlines that the similarity-

transformed Hamiltonian H̄ ≡ e−THeT plays a key role
such that its ground state is nothing but the reference
state |Φ0〉. The operator H̄ is not Hermitian, which
implies that coupled-cluster theory is manifestly non-
variational. The non-variational nature of CCM makes
it necessary to access both right and left eigenstates of
H̄ to compute associated one- and two-body density ma-
trices. Such eigenstates of H̄ can be computed through
the so-called equation-of-motion coupled-cluster method
(EOM-CCM). The idea of EOM-CC is essentially to
diagonalize H̄ within a subspace of n-particle-m-hole

excited reference functions. Within the EOM-CCSD
approximation, right and left eigenstates of closed-shell
nucleus A are given by

|RA
µ 〉 = RA

µ |Φ0〉 , (28a)

〈LA
µ | = 〈Φ0|L

A
µ , (28b)

where RA
µ (LA

µ ) is a linear combination of one-particle-
one-hole and two-particle-two-hole (de-)excitation oper-
ators. Similarly, EOM-CC is the method of choice to ac-
cess eigenstates of odd A±1 neighbouring nuclei accord-
ing to |RA±1

µ 〉 = RA±1
µ |ΦA

0 〉 and 〈LA±1
µ | = 〈Φ̃A

0 |L
A±1
µ ,

where now RA±1
µ (LA±1

µ ) denotes a linear combination
of one-particle (one-hole) and two-particle-one-hole (one-
particle-two-hole) (de-)excitation operators (see for ex-
ample Ref. [28] for further details). Left and right eigen-
states form a bi-orthogonal set, i.e.

〈Lµ|Rµ′〉 = δµµ′ . (29)

where we have dropped the superscript referring to nu-
cleus A and A±1. Right eigenstates Rµ are solutions of
the eigenvalue problem

(H̄Rµ)C |Φ0〉 = EµRµ|Φ0〉 , (30)

and similarly for left eigenstates Lµ. Here, (H̄Rµ)C de-
notes all terms that connect H̄ with Rµ. The one- and
two-body density matrices of the A-body ground state
together with one-nucleon spectroscopic amplitudes and
probabilities can now be computed according to

ρ[1]pq ≡ 〈Φ0|L
A
0 a

†
qap|Φ0〉 , (31a)

ρ[2]pqrs ≡ 〈Φ0|L
A
0 a

†
ra

†
saqap|Φ0〉 ,

and to

S+pq
µ ≡ 〈Φ0|L

A
0 apR

A+1
µ |Φ0〉〈Φ0|L

A+1
µ a†q|Φ0〉 ,(32a)

S−pq
µ ≡ 〈Φ0|L

A
0 a

†
qR

A−1
µ |Φ0〉〈Φ0|L

A−1
µ ap|Φ0〉 .(32b)

Using the Baker-Campbell-Hausdorff commutator ex-
pansion, one can derive finite and closed-form alge-
braic expressions for similarity-transformed operators ap,

a†p, a
†
qap and a†ra

†
saqap. See Refs. [29, 30] for details

on derivation and computation of spectroscopic factors
within coupled-cluster theory.

IV. RESULTS

Results shown below have been obtained using a
2N force only, thereby omitting forces of higher rank.
In order to improve convergence properties and make
the nuclear many-body problem more perturbative, we
use a soft Vlow-k 2N interaction [31] obtained with a
smooth regulator [32] for various cutoff values between
Λ =2.0 fm−1 and 3.0 fm−1. These soft Vlow-k interactions
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are obtained by evolving down the N3LO Chiral interac-
tion [33] with cutoff Λχ =500MeV. For the single-particle
model space, we use the HF basis built from N+1= 13
major oscillator shells, with a fixed oscillator frequency
of ~ω =16MeV. This model space is sufficient to obtain
fully converged results for medium mass nuclei with soft
Vlow-k interactions (see Ref.[17]).

A. Turning on correlations in a controlled way

Let us first illustrate in a pedagogical manner the effect
of correlations on both one-nucleon separation energies
and ESPEs. To do so, we apply Wick’s theorem with
respect to the HF vacuum |ΦHF

0 〉 and write the Hamilto-
nian in normal-ordered form using the HF single-particle
basis {d†p}, i.e.

H = hHF + Vres , (33)

where

hHF ≡ EHF
0 +

∑

p

ǫHF
p : d†pdp : , (34a)

Vres ≡
1

4

∑

pqrs

V̄ 2N
pqrs : d†pd

†
qdsdr : , (34b)

together with

EHF
0 ≡

A∑

p=1

Tpp +
1

2

A∑

p,q=1

V̄ 2N
pqpq , (34c)

ǫHF
p ≡ Tpp +

A∑

q=1

V̄ 2N
pqpq . (34d)

Scaling the residual interaction Vres by a factor λ ∈ [0, 1],
one defines a parameter-dependent Hamiltonian Hλ ≡
hHF+λVres that tunes correlations between the two limits
of interest, i.e. from the uncorrelated regime H0 = hHF

to the fully correlated regime H1 = H . Eventually, we
solve EOM-CC equations repeatedly for several values of
λ ∈ [0, 1] and for the specific cutoff value Λ =2.4 fm−1.
As a first example, Figure 4 displays, as a function

of the residual interaction strength, one-neutron sepa-
ration energies between 16O ground-state and low-lying
states in 17O along with corresponding ESPEs. Plot-
ted separation energies correspond to the (main) lowest
peak in the additional sector of the SDD for each Jπ

symmetry block. As expected, one-neutron separation
energies and ESPEs are equal in the uncorrelated limit
(λ = 0) and are nothing but HF single-particle energies,
i.e. Koopmans’ theorem is fulfilled. Turning on correla-
tions, two important features manifest themselves. First,
the SDD is fragmented such that the separation energy
of the state carrying the largest strength for a given Jπ

goes down significantly. Second, correlations only slightly
impact centroid energies that keep a strong memory of
HF single-particle energies. Thus, although ESPEs are
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FIG. 4: (Color online) One-neutron addition energies E+
µ on

16O ground-state and corresponding ESPEs ecentp as a function
of the residual interaction strength.
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FIG. 5: (Color online) Removal spectroscopic factor SF−

1/2+

of the lowest 1/2+ state in 23O as a function of the residual
interaction strength.

not independent of correlations, the latter are essentially
screened out as discussed earlier. Eventually, one-nucleon
separation energies and corresponding ESPEs can differ
by several MeVs. This clearly points to the fact that sep-
aration energies should not be identified as ESPEs and
vice versa.

Let us now include more detail by focusing on the low-
est 1/2+ state in 23O, which can be accessed by remov-
ing a neutron from the ground state of 24O. Figure 5
displays the corresponding spectroscopic factor SF−

1/2+

as a function of the residual interaction strength. While
SF−

1/2+ = 1 for λ = 0 as expected, it decreases gently as

the residual interaction is switched on to reach a value
of 0.92 in the fully correlated case. Using it as a (scale-
dependent) analysis tool, such a spectroscopic factor tells
us that the lowest 1/2+ state keeps a well-pronounced
single-particle character even in the fully correlated limit.

Figure 6 shows corresponding neutron separation en-
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FIG. 6: (Color online) Same as Figure 5 for one-neutron re-
moval energy E−

1/2+
and ESPE ecent2s1/2

.

ergy and ESPE as a function of λ. In the uncorrelated
limit, i.e. λ = 0, the separation energy and ESPE co-
incide, while for larger λ they start to deviate. While
ecent2 1/2+ is only slightly influenced by correlations, E−

1/2+

dives significantly as λ increases from 0 to 1. Eventually,
correlations add about 1.5MeV to the separation energy,
such that it differs from ecent2 1/2+ by 1.7MeV for λ = 1.

Even though the 1/2+ state retains to a large extent
its single-particle nature, its energy is strongly impacted
by correlations and does not provide clean information
about the effective single-particle shell structure.

B. Systematics in oxygen and calcium isotopes

We now discuss the evolution and trends of low-lying
one-neutron addition and removal energies together with
ESPEs in doubly closed-shell oxygen and calcium iso-
topes. The present calculations are performed with the
specific cutoff value Λ = 2.4 fm−1. As a result, the neu-
tron drip line in oxygen and calcium isotopes is wrongly
predicted to be located beyond 28O and 60Ca, respec-
tively. Three-body forces seem to be mandatory to cor-
rectly reproduce the drip line location at 24O [5] for oxy-
gen isotopes. It remains to be seen in which way forces
of higher rank modify qualitatively or quantitatively the
conclusions of the present investigation.
Figures 7 and 8 show that separation energies

(E+
µ , E

−
ν ) systematically and significantly differ from cor-

responding centroid energies. As for the energetics, these
results illustrate that ab-initio approaches describe dou-
bly magic nuclei such as 16,24O and 40,48Ca as strongly
correlated systems. Most importantly, how much sepa-
ration energies differ from centroid energies significantly
depends on the nucleus/state, in a way that cannot eas-
ily be traced back to one specific feature. Consequently,
opening or closing of shell gaps in the separation energy
spectrum are not in one-to-one relationship with those
emerging in the ESPE spectrum. One does observe that
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FIG. 7: (Color online) Evolution of selected one-neutron sep-
aration energies E+

µ and corresponding ESPEs ecentp from 16O
to 28O.
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FIG. 8: (Color online) Same as Figure 7 from 40Ca to 60Ca.

16O and 40Ca display the strongest correlations of all,
which may be related to their N=Z character. Trac-
ing the isospin dependence of correlations in oxygen and
calcium isotopic chains, there seems to be a systematic
trend with increasing asymmetry N-Z. In both oxygen
and calcium chains, correlations become less important
for the neutrons close to the Fermi surface when increas-
ing isospin asymmetry N-Z. This trend is consistent with
Ref. [34], where it was found that the spectroscopic fac-
tor for removing a neutron close to the Fermi surface in-
creases with increasing isospin asymmetry and is close to
one for 28O, while the spectroscopic factor for removing
the outermost protons is largely quenched with increas-
ing isospin asymmetry.

One can conclude from Figs. 7 and 8 that inferring one-
nucleon separation energies from ESPEs is not straight-
forward, even in doubly closed-shell nuclei. One should
thus simply not use one for the other.



11

C. Effective shell model

Equation 18 was obtained following an ab-initio strat-
egy, i.e. considering all nucleons as active and interact-
ing via realistic 2N and 3N interactions in a large enough
single-particle Hilbert space. In the traditional effective
shell-model, however, the equivalent of Eq. (18) is derived
from an effective Hamiltonian defined for nval active nu-
cleons in a restricted valence space above a closed core
composed of ncore nucleons and below an excluded space.
In such a context, ESPEs are ”anchored” on (exper-

imental) one-nucleon addition energies to the core nu-
cleus, i.e. ecorep ≡ E+

µ δpk. As seen in previous sections,
this constitutes in fact a bad approximation when tak-
ing an ab-initio perspective. However, and as confirmed
by the present investigation, low-lying states obtained by
adding (removing) one nucleon to (from) a doubly closed
shell nucleus do possess a well-defined single-particle
character. The reason why the corresponding ESPE dif-
fers significantly from the separation energy is due to the
fact that the former collects small strength rejected to
rather high missing energies. Eventually, the fact that
low-lying states carry most of the strength makes them
good candidates to represent quasi single-particle degrees
of freedom. Such a textbook result constitutes the ba-
sic justification for the effective shell model that omits
the high-lying fragmented strength and recollects the full
strength into low-lying states of the core+one-nucleon
system.

D. Using a fixed single-particle basis

Computing ESPEs in an approximate fashion gener-
ates a model dependence that may compromise their use-
fulness. It is, for example, customary to use uncorrelated
occupations of single-particle states in place of the cor-
related one-body density matrix in Eq. (18) and/or to
define ESPEs as the diagonal matrix elements of the cen-
troid field hcent in an a priori chosen single-particle basis,
e.g. a harmonic oscillator basis, rather than as its eigen-
values. The latter approximation is formally questionable
as it provides a basis-dependent definition of ESPEs, the
quality of which depends on the realistic character of the
chosen basis. In practice, the quantitative impact of such
an approximate scheme depends on the situation.
Figure 9 compares in oxygen isotopes properly com-

puted ESPEs with diagonal matrix elements of hcent in
the HF basis used in the calculation8. As can be inferred

8 A more drastic approximation not shown here consists in using
diagonal matrix elements in a harmonic oscillator basis. This is
the choice usually made within the frame of the interacting shell
model. In practice the model space is usually small enough to
contain only one state per symmetry block, e.g. (l, j,m) block in
spherical symmetry. In such a case the arbitrarily chosen basis
is necessarily the eigenbasis of the centroid field, underpinning

from the comparison with Fig. 7, the approximation in-
duces errors on ESPEs that are of the same order as their
difference with one-nucleon separation energies and that
are, in some cases, significant relative to their absolute
values. The error depends both on the state and on the
system, i.e. it might go in opposite directions depending
on the state and/or the nucleus under consideration.

Interestingly, there exists cases for which the ordering
of approximate ESPEs at the Fermi level is inverted com-
pared to full-fledged ones, e.g. for 2s1/2 and 1d5/2 levels

in 22O. Knowing that full-blown ESPEs reproduce the
ordering of one-neutron separation energies across the
whole set of oxygen and calcium isotopes, such an inver-
sion is of noticeable importance. The inversion seen in
22O is consistent with Fig. 2a of Ref. [5] where ESPEs
were computed as diagonal matrix elements of hcent in an
a priori chosen harmonic oscillator basis. The fact that
2s1/2 and 1d5/2 levels are actually not inverted in Fig.
2a of Ref. [5] is simply due to the fact that ESPEs are
anchored on empirical values in 17O. Correcting mentally
for such a fact, one recovers the level inversion seen for
”Diag-ESPE” in Fig. 9 of the present paper.
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FIG. 9: (Color online) ESPEs ecentp compared to diagonal
matrix elements of the centroid field hcent

qq in the underlying
HF basis. Results are displayed from 16O to 28O.

E. Resolution scale dependence

A more fundamental model dependence of ESPEs that
remains even when computing them as eigenvalues of the
centroid matrix relates to the resolution scale character-
izing the Hamiltonian. We start from a Chiral Hamilto-
nian built with a cutoff Λχ (e.g. 500MeV here) up to
a given order (e.g. N3LO here). This in itself carries a
truncation error with respect to using the complete EFT

the strong impact of using a severely restricted model space.
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Lagrangian. Still, this constitutes our reference Hamil-
tonian, which at N3LO contains both 2N and 3N inter-
actions. In a second step, the resolution scale of the
Hamiltonian is lowered to a value Λ through a renor-
malization group transformation, defining in this way
H(Λ) ≡ Hlow-k. Doing so softens the interactions and in-
duces multi-body forces, e.g. 3N interactions are induced
from the original 2N one, while preserving the original
truncation error. As Λ is lowered, true observables re-
main the same as with the original Chiral Hamiltonian
as long as induced interactions are kept in the calculation
and the many-body problem is solved exactly. Contrarily,
even in such conditions non-observables quantities such
as ESPEs are modified when changing Λ. This consti-
tutes the intrinsic scale dependence of ESPEs discussed
in Sec. II F and that we presently wish to characterize.
Of course, whenever induced interactions are discarded
and/or the many-problem is not solved exactly, both ob-
servable and non-observable quantities acquire an addi-
tional artificial dependence on Λ.

As original and induced three-body forces, as well as
clusters beyond singles and doubles, are discarded in the
present calculation, ESPEs display the two sources of
Λ dependence. In order to extract the intrinsic one, one
must first pin down the artificial scale dependence to sub-
tract it eventually. By definition, the latter can be ac-
cessed by focusing on true observables. Figure 10 displays
one-neutron removal energies with Jπ = 1/2+, 5/2+ in
24O for various values9 of the momentum cutoff Λ of
the 2N interaction Vlow-k. Lowering Λ from 3.0 to 2.0
fm−1 changes one-neutron removal energies by about 7
MeV. Eventually, including induced many-body interac-
tions, i.e. three- and possibly four-body forces [26, 27],
and including triples will remove such an artificial depen-
dence of one-neutron removal energies on Λ.

Figure 10 also shows ESPEs ecent2s1/2
and ecent1d5/2

in 24O.

Clearly, they display a significantly larger cutoff variation
than corresponding one-neutron removal energies. Such
a feature, visible in all isotopes and for all states, is iden-
tified with the additional intrinsic scale dependence of
ESPEs. Mentally subtracting the cutoff dependence of
one-neutron removal energies, one sees that such an in-
trinsic scale dependence increases with Λ as the system
becomes less and less perturbative, making ESPEs differ
more and more from separation energies. Quantitatively
speaking, the intrinsic cutoff dependence of ecent2s1/2

and

ecent1d5/2
amounts to about 6 MeV when varying Λ from 2.0

to 3.0 fm−1, which is obviously significant. More specifi-

9 We keep the oscillator frequency fixed at ~ω =16MeV in present
calculations. For large cutoff values, the optimal oscillator fre-
quency is larger, e.g. ~ω =24MeV for Λ = 2.6 fm−1, such that
corresponding values shown in Fig. 10 are not fully converged,
e.g. they changed by about 100 keV for Λ = 2.6 fm−1 when using
~ω =24MeV. Conclusions of the present section are however not
modified by using fully converged values.
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FIG. 10: (Color online) Neutron ESPEs and removal energies
in 24O for Jπ = 1/2+, 5/2+ and Λ ∈ [2.0, 3.0] fm−1.

cally, one notes that both ESPEs do not vary identically
across the range of Λ values. As a matter of fact, one
observes an inversion of the ESPE ordering that is not
reflected in one-neutron separation energies. Besides re-
moving (most of) their artificial cutoff dependence, it will
be of interest to see how much 3N forces modify the in-
trinsic scale dependence of ESPEs. It is anyway likely
that the latter will remain significant.
The above result demonstrates that ESPEs are not

absolute and can be changed significantly by modifying
mildly the character of the Hamiltonian, i.e. by varying
Λ over a rather limited range of values, while keeping
true observables invariant. Consequently, extracting the

single-particle shell structure and its evolution, e.g. with
isospin, from experimental data is an illusory objective.
However, it remains possible to perform a meaningful,
i.e. internally consistent, analysis of a set of experimental
data by extracting ESPEs through consistent structure
and reaction models based on the same nuclear Hamil-
tonian. Eventually, conclusions regarding the extracted
shell structure, e.g. its evolution with isospin, will how-
ever necessarily remain resolution-scale dependent. In
particular, working at large scales is somewhat inappro-
priate in the sense that the extracted shell structure will
not fit with the phenomenological low-energy picture in
such a case [21].

V. CONCLUSIONS

The present work discusses, from an ab-initio stand-
point, the definition, the meaning, and the useful-
ness of ESPEs in doubly closed shell medium-mass nu-
clei. Illustrating the various points with state-of-the-
art coupled-cluster calculations, the following conclusions
are reached.

• A meaningful single-particle shell structure fulfill-
ing a minimal set of properties and known lim-
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its, such as being independent of the particular
single-particle basis one is working with, can be
extracted from correlated one-nucleon separation
energies and associated spectroscopic amplitudes.
Such a definition relates effective single-particle en-
ergies (ESPEs) to the so-called centroid eigenvalues
introduced by Baranger [12].

• The corresponding non-interacting problem is gov-
erned by the one-body centroid field hcent, which
sums the kinetic energy and the energy-independent
part of the irreducible one-nucleon self-energy that
naturally arises in self-consistent Green’s-function
methods.

• It is customary in low-energy nuclear theory to
compute ESPEs in an approximate fashion, e.g. by
defining them as diagonal matrix elements of hcent

in an a priori chosen single-particle basis rather
than as its eigenvalues. We have illustrated the
fact that such approximations are unsafe.

• Even when fulfilling the required set of minimal
properties, ESPEs are not strictly observable as
they intrinsically depend on the resolution scale
Λ of the Hamiltonian, i.e. they change under a
unitary transformation of the Hamiltonian while
true observables remain invariant. We have indeed
demonstrated that ESPEs vary substantially when
modifying mildly the resolution scale, i.e. when
scanning a rather limited range of Λ values while
correcting for the artificial dependence due to the
omission of induced short-range many-forces. Such
a result demonstrates that the objective of extract-
ing a unique single-nucleon shell structure from cor-
related observables, e.g. pinning down the nuclear
shell evolution from experimental data, is intrin-
sically illusory. Still, it is possible to perform a
consistent analysis of experimental data and ex-
tract a meaningful shell structure. To do so, one
must use consistent structure and reaction models
based on the same nuclear Hamiltonian. Eventu-
ally, conclusions regarding the extracted shell struc-
ture will anyway remain resolution-scale depen-
dent; i.e. two practitioners using (the same) con-
sistent method but starting from different, though
unitarily equivalent, Hamiltonians will extract dif-
ferent single-nucleon shell structures from identical
observables, e.g. spectra and cross sections. This
constitutes a puzzling but important result that
sheds a new light on how one should look at the
single-particle shell structure. In particular, work-
ing at large scales is somewhat inappropriate in the
sense that the extracted shell structure will not fit
with the phenomenological low-energy picture in
such a case.

• Extracting an effective single-particle shell struc-
ture is often done for interpretation/analysis pur-
poses and sometimes done to infer the behaviour of

actual observables that are believed to be strongly
correlated to patterns in the ESPE spectrum. In
the present paper, we have focused on one-nucleon
separation energies to low-lying states around good
closed-shell nuclei. The conclusion is that correla-
tions are too strong, even with low-scale interac-
tions, for such separation energies to be in quanti-
tative (sometimes qualitative) correspondence with
effective single-particle energies around the Fermi
energy. This is true even for states that retain a
strong single-particle character, i.e. states carrying
spectroscopic factors close to one. In a forthcoming
study, the same type of analysis will be performed
in connection with the energy of the 2+ excited
state in good closed shell nuclei, i.e. we will study
how much such excitation energies correlate with
the Fermi gap in the ESPE spectrum.

• The present study was conducted on the basis of
two-nucleon interactions only. It remains to be seen
to which extent forces of higher rank modify our
conclusions. At the price of computing ESPEs cor-
rectly, i.e. as eigenvalues of the centroid matrix
rather than as its diagonal matrix elements in an
a priori given (harmonic oscillator) basis, the au-
thors of Refs. [5, 9] could easily repeat the present
analysis within the frame of the shell model and
characterize the impact of three-nucleon forces in a
systematic way.

• In the present work, ESPEs were defined based
on the hypothesis that eigenstates of the nuclear
Hamiltonian are also eigenstates of the particle
number operator. Ab-initio calculations of open-
shell nuclei are currently being developed on the
basis of many-body methods breaking particle-
number symmetry, i.e. using methods formulated
over Fock space rather than over the Hilbert space
associated with a definite number of particles. This
is the case of the so-called self-consistent Gorkov-
Green’s function theory [35]. Extending the defi-
nition of ESPEs accordingly [35], one will be able
to address properties of ESPEs in open-shell nuclei
and conclude on their relevance in such a context.
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Appendix A: Useful identities

Using Wick’s theorem, one can demonstrate the fol-
lowing identities

{[ap, a
†
ras], a

†
q} = +δpr δqs ,

{[ap, a
†
ra

†
satav], a

†
q} = +δpr δqv a

†
sat − δpr δqt a

†
sav

−δps δqv a
†
rat + δps δqt a

†
rav ,

{[ap, a
†
ra

†
sa

†
tawavau], a

†
q} = +δpr δqu a

†
sa

†
tawav − δpr δqv a

†
sa

†
tawau + δpr δqw a

†
sa

†
tavau

−δps δqu a
†
ra

†
tawav + δps δqv a

†
ra

†
tawau − δps δqw a

†
ra

†
tavau

+δpt δqu a
†
ra

†
sawav − δpt δqv a

†
ra

†
sawau + δpt δqw a

†
ra

†
savau .
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