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We analyze the effect of pairing on particle transport in time-dependent theories based on the
Hartree-Fock-Bogoliubov (HFB) or BCS approximations. The equations of motion for the HFB
density matrices are unique and the theory respects the usual conservation laws defined by com-
mutators of the conserved quantity with the Hamiltonian. In contrast, the theories based on the
BCS approximation are more problematic. In the usual formulation of TDHF+BCS, the equation of
continuity is violated and one sees unphysical oscillations in particle densities. This can be amelio-
rated by freezing the occupation numbers during the evolution in TDHF+BCS, but there are other
problems with the BCS that make it doubtful for reaction dynamics. We also compare different
numerical implementations of the time-dependent HFB equations. The equations of motion for the
U and V Bogoliubov transformations are not unique, but it appears that the usual formulation is
also the most efficient. Finally, we compare the time-dependent HFB solutions with numerically
exact solutions of the two-particle Schrödinger equation. Depending on the treatment of the ini-
tial state, the HFB dynamics produces a particle emission rate at short times similar to that of
the Schrödinger equation. At long times, the total particle emission can be quite different, due to
inherent mean-field approximation of the HFB theory.
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I. INTRODUCTION

Pairing is essential to the global description of nu-
clear ground-state and low excited state properties; the
Hartree-Fock-Bogoliubov (HFB) and Hartree-Fock aug-
mented by BCS (HF+BCS) theories are in common use
to treat the pairing degrees of freedom [1]. Also in nu-
clear reactions, many phenomena are expected to be in-
fluenced by pairing correlations: collective motion, fu-
sion, fission, transfer reactions and nuclear break-up.
The obvious candidate theory to treat these effects is
the Time-Dependent Hartree-Fock Bogoliubov (TDHFB)
theory [2], and there has been much effort in the last
decade to apply it. However, the TDHFB theory turns
out to be much more complicated to implement than
the corresponding time-dependent Hartree-Fock theory,
and the applications have been mainly performed in its
small amplitude limit, the Quasi-particle RPA (QRPA)
[3–10]. However, most of the phenomena quoted above
are far from small amplitude excursions from the ground
state, and transport theories able to treat Large Am-
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plitude Collective Motion (LACM) are mandatory. Re-
cently, several groups have applied the TDHFB [11–13]
to nuclear dynamics. An approximate version of theory,
called TDHF+BCS, has also been considered [14]. We
will discuss its properties as well. Most recent applica-
tions have been to small-amplitude collective motion in
nuclei, where the theory is equivalent to the quasiparticle
random-phase approximation (QRPA). Still, it is impor-
tant to understand and solve the theory here as a first
step towards treating large-amplitude motion.

The aim of the present article is first to present from
a rather general point of view different dynamical theo-
ries that incorporate pairing correlations. We find that
the TDHFB has many good properties, but it is difficult
to find further simplifying approximations. We find that
the TDHF+BCS approximation leads to a break-down
of the continuity equation. This failure might induce se-
rious difficulties in the description of physical processes.
The second aim of the paper is to test various implemen-
tations of the pair theory in a model problem. For this
purpose, we examine a one-dimensional model of parti-
cle evaporation for which we also have a numerical exact
solution.
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II. FORMALISM

The TDHFB theory and the TDHF+BCS approxima-
tions have been recently applied to nuclear physics in
Ref. [11–14]. In this section we will briefly summarize
the main features.

A. The TDHFB theory

The main equations of TDHFB theory, Eq. (5-6) be-
low, can be derived in at least two different ways. One
way is from the general variational principle,

S =

∫ tf

ti

〈Ψ(t)|ih̄∂t −H |Ψ(t)〉dt, (1)

see e.g. Ref. [15]. Here H denotes the Hamiltonian
and |Ψ〉 is a HFB wave function. The equations may
also be derived by demanding that the operators for the

ordinary and anomalous densities, ρ̂ij = a†jai and κ̂ij =
ajai respectively, satisfy Ehrenfest’s theorem:

ih̄∂t〈Ψ|a†jai|Ψ〉 = 〈Ψ|[a†jai, H ]|Ψ〉, (2)

ih̄∂t〈Ψ|ajai|Ψ〉 = 〈Ψ|[ajai, H ]|Ψ〉. (3)

In the following, we will further assume that H is a two-
body hamiltonian,

H =
∑

ij

h0ija
†
iaj +

1

4

∑

ijkl

v̄ijkla
†
ia

†
jalak. (4)

where v̄ denotes the anti-symmetric two-body matrix el-
ements. The derived TDHFB equations are:

ih̄
d

dt
ρ = hρ− ρh+ κ∆∗ −∆κ∗, (5)

ih̄
d

dt
κ = hκ+ κh∗ +∆(1− ρ∗)− ρ∆. (6)

Here ρ, κ, h and ∆ are all matrices of dimension equal to
that of the single-particle space. The matrices h and ∆
are the mean-field and pairing field of the Hamiltonian,
defined as

hij = h0ij +
∑

kl

v̄iljkρkl, ∆ij =
1

2

∑

kl

v̄ijklκkl. (7)

The dynamical equation can be recast in a more com-
pact form by introducing the generalized density matrix
R and generalized single-particle hamiltonian H:

R =

(

ρ κ
−κ∗ 1− ρ∗

)

, H =

(

h ∆
−∆∗ −h∗

)

. (8)

With these definitions the equation of motion be-
comes [15, Eq. 9.61a]

ih̄
d

dt
R = [H,R] . (9)

This generalizes the usual TDHF picture by replacing
the one-body density by R. Similarly to the TDHF case,
the generalized density satisfies R2 = R and has only
eigenvalues equal to zero and one [15, 16].
Going back to ordinary Hartree-Fock theory, it is com-

putational advantageous to factorize the density matrix
and express it as a sum over the contributions from oc-
cupied orbitals to obtain equations of motion for the in-
dividual orbitals. There is no obvious advantage for the
factorization in TDHFB because all of the single-particle
orbitals in Fock space contribute to the generalized den-
sity matrix R. Nevertheless, the factorization is usually
applied to obtain the actual equations to be solved nu-
merically. To write equations in this form, one needs an
explicit form of the Bogoliubov transformation,

βα =
∑

i U
∗
iαai + V ∗

iαa
†
i . (10)

The density matrices are expressed as ρ = V ∗V T and
κ = V ∗UT , and the generalized density matrix is

R =

(

V ∗

U∗

)

(

V T UT
)

. (11)

One can then easily see that Eq. (9) will be satisfied if
we require the {U, V } matrix be a solution of

ih̄
d

dt

(

U
V

)

=

(

h ∆
−∆∗ −h∗

)(

U
V

)

. (12)

The numerical solution of the TDHFB equations are usu-
ally carried out in this representation [12, 13]. However,
it should be remembered that there are redundant vari-
ables in the {U, V } representation corresponding to uni-
tary transformations of the quasiparticle basis, and in
fact Eqs. (12) are not unique.
We may derive another form of the TDHFB equa-

tions as follows. The wave function |Ψ〉 at any time t
is the quasi-particle vacuum associated with the Bogoli-
ubov transformation that transforms the physical vac-
uum to |Ψ(t)〉. In that representation, the Hamiltonian
has zero-, two-, and four-quasiparticle terms that can act
on |Ψ(t)〉 [16]. Neglecting the four-quasiparticle excita-
tion amplitudes, the result is

H |Ψ(t)〉 ≃ H ′(t)|Ψ(t)〉

=



〈H〉+ 1

2

∑

αβ

H20
αββ

†
α(t)β

†
β(t)



 |Ψ(t)〉(13)

with [16, Eq. (E.22)]

H20 = U †hV ∗ − V †hTU∗ + U †∆U∗ − V †∆∗V ∗.(14)

According to the Thouless theorem, any state of the

form (1 +
∑

αβ Zαββ
†
αβ

†
β)|Ψ〉 can be expressed as a new

quasiparticle vacuum [16]. To lowest order in Z, the
Bogoliubov transformation to the new vacuum from the
physical vacuum is given by

(

U ′ V ∗′
)

=
(

U V ∗
)

(

1 Z∗

Z∗ 1

)

(15)
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We can thus derive an equation of motion by demanding
that the changes in U, V just match the two quasiparticle
excitations generated by H . After a lengthy but straight-
forward derivation, it may be shown that the correspond-
ing equations of motion for U and V can be written as:



















ih̄∂tU = ρh†U − κh∗V
− κ∆∗U + ρ∆V

ih̄∂tV = −(1− ρ∗)h∗V − κ∗h†U
− κ∗∆V − (1− ρ∗)∆∗U

. (16)

These equations differ from (12) but nevertheless lead to
the same TDHFB equation for the generalized density.

B. The TDHF+BCS approximation

The TDHF+BCS treatment of pairing dynamics is mo-
tivated by the simple form the wave function has in the
BCS approximation,

|Ψ〉 =
∏

k>0

(

uk + vka
†
ka

†

k̄

)

| 〉. (17)

The TDHF+BCS approximation may be derived from a
variational principle [17] or by an approximate reduction
of the TDHFB equations [14]. For the reduction of the
TDHFB equations, we first note that wave function can
be put into BCS form at any fixed time by transforming
the U, V matrices to the canonical basis. In that basis, ρ
is diagonal and κ matrix is zero except for one element
on each row (or column) representing the pair īi. Assum-
ing that the ∆ matrix has the same structure as κ, Ref.
[14] shows that the TDHFB time evolution preserves the
same canonical structure with orbitals that evolve by the
mean field Hamiltonian,

ih̄∂t|ϕk〉 = h|ϕk〉. (18)

where h has been defined in Eq. (7). The equations of
motion for ρ and κ in this time-dependent basis are1

ih̄
d

dt
nk = ∆kκ

∗
k −∆∗

kκk, (19)

ih̄
d

dt
κk = +∆k(1 − 2nk). (20)

Here nk, κk and ∆k are short-hand notations for ρkk, κkk̄
and ∆kk̄ respectively.
One technical point should be mentioned. When Eq.

(18) is integrated, there is an irrelevant phase factor

exp(−i
∫ t〈ϕk(t

′)|hHF (t
′)|ϕk(t

′)〉dt′) introduced into the

1 Note that these equations slightly differ from those from [14],
due to the definition of κk here.

time-dependent orbitals. For computational reasons the
phase is removed by integrating

ih̄∂t|ϕk〉 = (h[ρ]− ηk)|ϕk〉 (21)

instead of Eq. (18), with ηk(t) = 〈ϕk(t)|hHF |ϕk(t)〉. At
the same time, Eq. (20) is replaced by

ih̄
d

dt
κk = κk(ηk + ηk) + ∆k(1− 2nk). (22)

Finally, we mention that the TDHF+BCS approximation
was found to work well with a separable pairing interac-
tion and in the small amplitude limit [14].

C. Conservation laws and equation of continuity

Since the TDHFB density matrix satisfies Ehrenfest’s
theorem, it is trivial to show that the conservation laws
for one-body observables are respected by the TDHFB
dynamics. It was also shown that conservation laws for
important observables such as particle number are satis-
fied in TDHF-BCS [14]. However, for transport we are
interested in local conservation laws as well. In particu-
lar, if the interaction is local the coordinate-space density
n(x, t) should satisfy the equation of continuity,

dn(x, t)

dt
= −~∇ ·~j(x, t) (23)

where ~j(x) is the particle current. Assuming a local in-
teraction, Eq. (23) may be derived from Ehrenfest’s the-
orem, evaluating the commutator on the right hand side
as

~∇ ·~j(x) = 〈[n̂(x), H ]〉 = − h̄2

2m
〈[n̂(x),∇2]〉. (24)

This is sufficient to guarantee that TDHFB obeys the
equation of continuity under the stated condition. Unfor-
tunately, this is not true for the TDHF+BCS dynamics.
Within TDHF+BCS, the local density is given by

n(x, t) =
∑

i

ni(t)|ϕi(x, t)|2, (25)

and its evolution satisfies

dn(x, t)

dt
=

∑

i

ni(ϕ
∗
i (x, t)∂tϕi(x, t)) + ϕi(x, t)∂tϕ

∗
i (x, t))

+
∑

i

|ϕi(x, t)|2∂tni(t) (26)

The first terms on the left are just the evolution of the
orbitals under a mean-field potential, and so the same
reduction applies as in Eq. (23). The result is

dn(x, t)

dt
= −~∇ ·~j(x, t) +

∑

i

|ϕi(x, t)|2
(

dni(t)

dt

)

.(27)

Thus continuity cannot be guaranteed unless the oc-
cupation numbers are fixed. We will see below that
TDHF+BCS can produce unphysical density oscillations
when the occupations are allowed to vary.
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III. APPLICATION TO PARTICLE

EVAPORATION

Recently two of us (DL and KW) began investigating
the effect of pairing on particle evaporation, and obtained
the results shown in Fig. 1. Skipping over the details, the
number of particles escaping an initially excited nucleus
is shown as a function of time using either the 3D-TDHF
code of Ref. [18–20] or an upgraded version including
pairing using the TDHF+BCS theory proposed in Refs.
[14, 17]. As we can see, the standard mean-field cal-
culation presents the expected long time decay due to
particle evaporation[21]. When pairing is included, the
number of particles in the nucleus first decays and then
starts to oscillate. Clearly, this result is unphysical. It
was this unphysical result that motivated us to under-
take the present more general study. For the present
article, we consider a more simplified Hamiltonian that
permits us to compare a number of approximations with
each other and with a numerically exact solution. In the
present article, we investigate whether the observed prob-
lem is systematic in theories where pairing is included or
if it comes from the specific treatment of pairing in the
TDHF+BCS approximation using zero range interaction.
Our study is also the occasion to benchmark different
theories, TDHF+BCS and TDHFB, to describe particle
emission.

13.85

13.90

13.95

14.00

 0  500  1000  1500

N
(t

)

t [fm/c]

TDHF+BCS
TDHF

FIG. 1: (Color online) Top: Schematic illustration of neutron
evaporation from a nucleus of O22 excited by a monopole
boost at t=0. Bottom: Number of neutron inside a sphere of
size 10 fm around the nucleus as a function of time obtained
with TDHF and TDHF+BCS (from [22]).

A. A one-dimensional model

For comparing the different treatments of pairing dy-
namics, we consider a one-dimensional system composed
of N particles in a box with x in the range −Xmax < x <
Xmax and a Hamiltonian of the form

H =

N
∑

i

{

p2i
2m

+ U(xi)

}

+

N(N−1)/2
∑

i<j

v(xi − xj)[1− Pσiσj
]. (28)

Here, Pσiσj
denotes the spin-exchange operator. The po-

tential U(x) is taken to be a Woods-Saxon well centered
at the origin:

U(x) =
U0

1 + exp[(|x| −X0)/a]
. (29)

The two-body interaction v(x−x′) is taken to be a finite-
range Gaussian

v(x− x′) = v0 exp

(

− (x− x′)2

2σ2
0

)

(30)

In the limit where the range σ0 goes zero, v(x − x′) is a
contact interaction and our model is similar to the model
considered in Ref. [23] to analyse the onset of vortices
in rotating Fermi gas using TDHFB. The advantage of a
finite range is that it does not have to be renormalized
for use in BCS or HFB.
The TDHFB is formulated in a Fock space and the

space has finite dimension in numerical implementations.
Our particle creation and annihilation operators ψ†

σ, ψσ

are defined on a uniform mesh of points {x} with spacing
∆x; σ =↑ or ↓ is the spin label. Then we can write the
quasiparticle transformation as [23]

β†
α = ∆x

∑

x

(

uα(x, t)ψ
†
↑(x) + vα(x, t)ψ↓(x)

)

. (31)

β†
α′ = ∆x

∑

x

(

uα′(x, t)ψ†
↓(x) + vα′(x, t)ψ↑(x)

)

.(32)

In the following, we will use the convention ∆x
∑

x →
∑

x and not distinguish between the quasiparticle sets
α and α′, with the property uα′(x, t) = uα(x, t) and
vα′(x, t) = −vα(x, t). The discretized time-dependent
equations in version Eq. (12) of TDHFB take the ex-
plicit form

ih̄
∂

∂t
uα(x, t) =

{

− h̄2∆
(2)
x

2m(∆x)2
+ U(x) + Γ(x)

}

uα(x, t)

−
∑

x′

∆(x, x′)vα(x
′, t) (33)

and

ih̄
∂

∂t
vα(x, t) = −

{

− h̄2∆
(2)
x

2m(∆x)2
+ U(x) + Γ∗(x)

}

vα(x, t)
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−
∑

x′

∆∗(x, x′)uα(x
′, t). (34)

with

Γ(x) =
∑

x′

v(x − x′)ρ(x′, x′), (35)

∆(x, x′) = v(x− x′)κ(x, x′). (36)

Here ∆
(2)
x is the second-difference operator, ∆(2)φ(i) =

φ(i + 1)− 2φ(i) + φ(i − 1).
The normal and anomalous density matrix are given

by

ρ(x, x) =
∑

α

|vα(x, t)|2 (37)

κ(x, x′) =
∑

α

v∗α(x)uα(x
′). (38)

B. Exact solution for the two particle case

One interesting aspect of the model considered here is
that for two particles it can be solved exactly numerically.
Indeed, assuming that the system is a spin singlet, the
two-body wave-function reads:

Φ(x1, σ1, x2, σ2) =
1√
2
(δσ1↑δσ2↓ − δσ1↓δσ2↑)φ(x1, x2),(39)

where φ(x1, x2) is a symmetric function that satisfies the
Schrödinger equation:

ih̄
d

dt
φ(x1, x2) =

[

h01 + h02 + v(x1 − x2)
]

φ(x1, x2), (40)

Since the discussion here might be applied not only
to nuclear systems but also to other field of physics
like condensed matter or atomic physics, we consider
here reduced units. The length, time-scale and energy
scale given below are respectively written in units of ∆x,
m∆x2/h̄ and h̄2/(m∆x2) where ∆x is the discretiza-
tion mesh step. Accordingly, all quantities below will
be presented without specific units. The parameters of
the central potential are set to a = 2, X0 = 4.5 and
σ0 = 2.5 and the initial harmonic constraint is taken as
λ = 6.173 × 10−4. Three interaction strength v0 equal
to −1.096× 10−2, −3.344× 10−2, and −6.280× 10−2 are
considered. The three cases will be referred respectively
to case (a), (b) and (c) below. In each case, the depth
of the Woods-Saxon potential has been adjusted to get
the same binding energy E = −2.2 × 10−2, leading to
U0 = −2.7× 10−2, −1.929× 10−2 and −7, 716× 10−3 re-
spectively. For cases (a) and (b) the interaction is below
the strength needed for a condensate in the HFB or BCS
theory at a mean particle number of two.
An illustration of the two-body density matrix ob-

tained in different level of approximation for the case
(a) are shown in Fig. 2. Due to the attractive nature

of the two-body interaction used, the two-body density
presents a clear correlation along the axis (x1 + x2)/2
that is completely neglected at the Hartree-Fock level.
Such a correlation is partially recovered when pairing is
included in the HFB or BCS theory.
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FIG. 2: (Color online) S = 0 component of the two body

density matrix ρ(2)(x1 ↑, x2 ↓) in 10−3 (unit of length)−2 at
time t = 0 for the four theories studied here. This figure
correspond to the set of parameters (c) (see text).

C. Some numerical aspects for dynamics with

pairing

It is important to integrate the time-dependent equa-
tions of motion with a high-order method, because wave
function conditions such as normalization and conserved
quantities such as energy can be easy lost. The time scale
for single-particle motion and direct reactions is several
thousand of units of time, and we require numerical accu-
racy up to those times. For most of the results we present
below, we have used the fourth-order Runge-Kutta algo-
rithm (RK4). The calculations in Ref. [13] on the other
hand use a sixth-order Adam-Bashford algorithm, and
we have tested that as well.

Typically, we take a box of dimension Xmax = 500,
giving the HFB matrices a dimension of 4Xmax/∆x =
2000. The single-particle Hamiltonian has a range up to
∼ 2 , which requires a fairly small time step. We take
∆t = 0.263.
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1. Ehrenfest vs Thouless equation of motion

As has been stressed in section IIA, the equation of
motion on the (uα, vα) components are not unique. We
have implemented two of the formulations below, namely
the “Ehrenfest” (Eq. (12)) and the “Thouless” ( Eq.
(16)) equations of motion. The numerical integration
can be carried out very accurately using each version
of the equations. We found that the Thouless equation
has a better precision than the Ehrenfest equation using
RK4 at a fixed time step. However, it turns out that the
Ehrenfest formulation is three or four times faster than
the Thouless one, due to the smaller number of matrix
operation in Eqs. (12) compared to Eqs. (16). Since the
computational time is a crucial aspect of the numerical
treatment, the standard Ehrenfest equation is a better
choice. The density formulation (Eq. (5-6)) would have
a similar number of matrix operations to the Thouless
formulation, but we have not investigated the numerical
performance of this third alternative.

2. Imaginary absorbing potential

Particle loss is monitored by computing the number of
particles having |x| < X0/2. Particles can be reflected
from the edges of the box and obscure this measure of
evaporation, so we have to add an absorbing potential hi
near the edges. As mentioned in Ref. [12], the specific
form of the absorbing potential is not obvious, because it
should decrease the particle number without affecting the
normalization of the wave function. It can be shown that
the following prescription satisfies these requirements,

ih̄
∂

∂t

(

u
v

)

=

(

h− ρhi −∆− κhi
−∆∗ + κ∗hi −h∗ + (1 − ρ∗)hi

)(

u
v

)

.

In particular, the above equation preserves the unitarity
property uu† + v∗vt = 1.
In applications below, the imaginary potential is taken
as

hi(x) = 0 for |x| 〈 (Xmax − xim),

hi(x) = iVim
|x| −Xmax + xim

xim
for |x| 〉 (Xmax − xim)

with Xmax = Lmax/2, Vim = −7.716× 10−3 and xim =
37.5.
We have compared TDHFB evolution in small box in-
cluding the imaginary potential with the corresponding
evolution in very large box to check that the present
method is a practical way to suppress the reflected par-
ticles. We also found that a simplier prescription is also
adequate for our purposes. Namely, one can apply the
imaginary potential to the v amplitudes alone, with the
equation of motion

ih̄
∂

∂t

(

u
v

)

=

(

h −∆
−∆∗ −h∗ + hi

)(

u
v

)

.

This prescription violates unitarity, but the results using
it could not be distinguished from the correct evolution.

D. Particle evaporation

To simulate an evaporating system, we start with a
wave function that is constrained to be largely inside the
potential well U(x). This is achieved by adding a small
harmonic constraining field λr2 to the Hamiltonian and
solving for the HFB ground state. At time t ≥ 0, the
harmonic constraint is removed inducing a monopole os-
cillation of the system that is eventually damped out by
particle evaporation. This is illustrated in Fig. 3, show-
ing snapshots of the density at different times with the
system evolved with the TDHF equations of motion, ie.
without pairing.

0.0
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0.4

-300 0 300 -300 0 300 -300 0 300

ρ

x

t=0

x

t=656

x

t=1313

FIG. 3: (Color online) Evolution of the local one-body den-
sity n(x) of a system of N = 10 particles. The system is
initially confined in a harmonic trap. At t ≥ 0, the external
constrained is relaxed.

1. Comparison between the exact solution and TDHFB

In this section we will compare the particle emission of
TDHFB with that given by the two-particle Schrödinger
equation, solved numerically. One should not expect
close agreement under all conditions for two reasons. The
total emission probability in the final state can be calcu-
lated easily in the Schrödinger dynamics by taking the
overlap of the initial state with the bound solutions. The
TDHFB dynamics on the other hand may have no bind-
ing when the average particle number on the nucleus be-
comes small.
It is also not possible to set the initial conditions for

the HFB wave function to correspond exactly to the two-
particle wave function of the Schrödinger equation; one
sees this already in Fig. 2. As described above, the ini-
tial state for the Schrödinger equation is squeezed ground
state, namely the lowest state of the two-particle system
in the presence of a harmonic external potential. A cor-
responding HFB wave function could be constructed by
using the BCS form of the wave function and requiring
that it have the same one-particle density matrix. This
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turns out to not work well, due to high momentum com-
ponents in the wave function that are not properly con-
trolled by the HFB pairing field. We found that a better
prescription is to make a corresponding squeezed ground
state in the HFB treatment. We use this prescription for
the comparison shown below.
We measure the number of particles inside the system

by the quantity

N(t) =

∫

|x|〈Xbox

2n(x, t)dx, (41)

where Xbox here is taken as 100. Note that the system
is centered at x = 0. The evolution of N(t) for several
cases is shown in Figure 4, comparing the exact results
with the HFB approximation.
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FIG. 4: (Color online) Number of particles evaporated from
an initially compressed system with initially N = 2 as
a function of time obtained with the exact (solid black
line) and TDHF (filled green triangle) and TDHFB (open
blue squares). Results with different two-body interaction
strengths (case (a), (b) and (c)) are respectively shown from
top to bottom (see text).

In the case (a) and (b), TDHF and TDHFB are iden-
tical. Indeed, the minimization of HFB equation to get
the initial state leads to a pure Slater determinant state.
In these case, the TDHF evolution is very close to the ex-
act solution. Note that, in this regime, the evaporation
is dominated by the mean-field contribution and pairing
has a weak effect on particle emission. As the interaction
strength increases, the TDHFB and TDHF results starts
to deviate from each other as well as from the exact evo-
lution. As the interaction strength increases, the role of
pairing and, more generally, correlations on evaporation
becomes more important. The TDHF evolution largely

underestimate the emission in case (c). This stems from
the fact that mean-field is not able to properly describe
the diffusion of the occupation probability around the
Fermi energy in the initial state and the dynamical scat-
tering of single-particles during the evolution induced by
correlations beyond the Hartree-Fock. In bottom panel of
figure 4, the lack of evaporation in TDHF is due to the
fact that all initial occupied states can be decomposed
onto bound states of the corresponding mean-field. A
similar situation occurs for the N = 10 case presented
below.
A precise study of the strongest coupling case (case

(c)), which is the only case above the HFB threshold
for the initial state, shows that the time scale associated
to particle evaporation is properly accounted for in TD-
HFB. This could indeed be seen in bottom part of figure
4 where we see that the time at which N(t) starts to
decrease is the same in the exact and in the TDHFB
case. This shows that the time-scale associated with the
evaporation process is the same in the exact and TD-
HFB case. In the long time limit, TDHFB overestimates
the average number of emitted particles. Accordingly,
it could be anticipated that the internal motion of the
system is more damped in the latter case than in reality.
We indeed have checked that the damping width of the
monopole resonance is larger in TDHFB compared to the
exact solution.
It should be noted that the approximation leading to

TDHFB can only be justified for the short-time evolu-
tion. Indeed, even starting from a quasi-particle state,
correlation beyond TDHFB might built up in time, like
for instance four quasi-particle excitations.

2. Comparison between the exact solution and TDHF+BCS

Here, the results obtained by using the TDHF+BCS
equation of motion discussed in section II B are pre-
sented. In figure 5, an illustration of the result obtained
in the case (c) is shown.
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FIG. 5: (Color online) Number of particles evaporated from
an initially compressed system with initially N = 2 as a func-
tion of time obtained with the exact (solid black line), TDHF
(dashed green line) and TDHF+BCS theory (thin red line) in
the case of parameter set (c).
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Independently of the set of parameters used in the
model case, it is generally observed that the TDHF+BCS
theory leads to unrealistically fast early emission of parti-
cles compared to the exact case. This fast emission seems
to be a generic feature of the BCS approach as illustrated
in Figs. 6 where N = 10 particles are considered.
Independently of the set of parameters used in the

model case, it is generally observed that the TDHF+BCS
theory leads to unrealistically fast early emission of parti-
cles compared to the exact case. This fast emission seems
to be a generic feature of the BCS approach as illustrated
in Figs. 6 where N = 10 particles are considered. This
observed fast emission is very likely connected the prob-
lem of applying BCS when continuum states are present
in the wave functions . The BCS ground state has a un-
physical gas of particles in the continuum rather than an
exponential decay into the vaccum [24]. This was one
of the historical reason why HFB was preferred to BCS
in nuclear structure studies. It is of course possible to
reduce the continuum problem by truncating the num-
ber of single-particle states that contribute to pairing.
However, we do not know any systematic way to carry
this out without reference to more reliable calculational
methods.
In studies dedicated to nuclear structure, this is gen-

erally circumvented by reducing significantly the num-
ber of single-particle states that contribute to pairing.
Then, only states with single-particle energy within a
given range ∆E around the Fermi energy are used, where
∆E is of the order of few MeV. In Figures 4-6, this restric-
tion has not been made and a large set of single-particles
is retained. If the energy window ∆E is reduced, the
time-scale associated to particle evaporation is increased
and eventually becomes more consistent with the exact
dynamics. Conjointly, the asymptotic number of evap-
orated particles is significantly reduced and approaches
the TDHF case as ∆E goes to zero.
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FIG. 6: (Color online) Number of particles evaporated from
an initially compressed system with initially N = 10 as a
function of time obtained with the TDHF (solid line), TDHFB
(dotted line) and TDHF+BCS theory (dashed line).

It should be mentioned that in realistic three-
dimensional calculations, there is no flexibility in the se-
lection of single-particle states contributing to the dy-
namics. Indeed, static calculation are already made with

a specific choice of single-particle space in such a way that
with an effective force in the pairing channel, the gap has
a reasonable value. Accordingly, the dynamics should be
made with the same set of single-particles states has is
already done in Ref. [14].

3. Spurious oscillation in TDHF+BCS theory

In the long time evolution, oscillation of the number
of particles, similar to those displayed in figure 1 are ob-
served in TDHF+BCS, see Figs. 5 and 6. Such oscilla-
tions are absent in the TDHFB theory. From the appli-
cation presented here, we can conclude that the spurious
oscillations is a generic effect in TDHF+BCS. It occurs
even if a finite range interaction is used. Finally, this
problem is solved when TDHFB is used.
To better characterize the oscillation, N(t) can be ex-

pressed in the canonical basis as

N(t) =
∑

i

ni(t)Pi(t), (42)

where ni(t) and Pi(t) denote respectively the occupation
numbers and the probability of the canonical orbital i
inside the box:

Pi(t) =

∫

|x|〈Xbox

|ϕi(x, t)|2dx. (43)

An illustration of N(t) for the two particle case (c) is
given in figure 7. The observed evolution is mainly due to
the evolution of the two closest levels below and above the
particle emission threshold labelled respectively by ”1”
and ”2”. These two levels verify n1(t)+n2(t) ≃ 1. During
time evolution, the unbound level is continuously emitted
while the bound level remains in the box, i.e. P1(t) = 1.
Assuming, that only these two levels contribute to the
particle emission, an estimate N ′(t) of the number of
evaporated particles is given by 2:

N ′(t) = 2 [n1(t)P1(t) + n2(t)P2(t)] . (44)

The evolution of ni(t) and Pi(t) for i = 1, 2, as well as
N ′(t) are shown in Fig. 7 attesting for the validity of the
two-level approximation. As seen in bottom part of this
figure, N ′(t) is very close from its exact value N(t) and
oscillations are due to oscillations in occupation numbers
Such oscillations of occupation numbers are expected

in any theory beyond TDHF, including the TDHFB
and/or exact evolution (see Fig. 8). However, these theo-
ries do not lead to unphysical evolution of particle num-
ber. The difference between TDHF+BCS and the two
other theories stems from the approximation made to get

2 Note that the factor 2 here comes from the initial degeneracy
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FIG. 7: (Color online) Top: Evolution of occupation num-
bers of the two closest states above (state 2, dashed line) and
below (state 1, solid line) the Fermi energy as a function of
time obtained in TDHF+BCS (parameters set (c)). Middle:
Evolution of the corresponding portion of the wave-function
remaining inside the box. Bottom: Evolution of N(t) (thin
line) and of N ′(t) (thick line) as a function of time.

the equation of motions. Indeed, by neglecting the off-
diagonal matrix elements of the pairing field, the single-
particle evolution reduces to self-consistent mean-field
dynamics, similar to the TDHF one. The effect of corre-
lation only enters into the occupation numbers evolution,
and only affects the single-particle evolution through the
density dependence of the self-consistent mean-field.

Usually, correlation is expected to induce a mixing of
single-particle states. Indeed, the evolution of the one-
body density matrix in the presence of correlation is given
by:

ih̄
∂ρ

∂t
= [h(ρ), ρ] + Tr2[v12, C12], (45)

where h(ρ) is the mean-field of the correlated state while
v12 and C12 denotes the two-body interaction and corre-
lation matrix respectively (see Ref. [25] for more details).
In both TDHFB and exact solution, the second term in-
duces an extra mixing of single-particle states that is ne-
glected in TDHF+BCS. It turns out that this mixing is
essential to compensate the possible oscillations in oc-
cupation numbers. This is clearly illustrated in Fig. 8
where the quantity Pi(t) are shown to oscillate coherently
with ni(t) in the exact case (similar behavior is observed
in TDHFB evolution).
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FIG. 8: Top: Evolution of occupation numbers of the three
main single-particle canonical states contributing to the par-
ticle evaporation for the exact dynamics. The corresponding
values of Pi(t) are shown in the bottom part.

4. Link with the break-down of continuity equation in
TDHF+BCS

Starting from the expression (27) derived for
TDHF+BCS, the evolution of particle number inside the
box is given by

dN(t)

dt
= −

∫

|x|〈Xbox

div(j(x, t))dx

+
∑

i

Pi(t)

(

dni(t)

dt

)

. (46)

Introducing two sets of real functions Ri(x, t) and Si(x, t)
for each wave-packet such that:

ϕi(x, t) = Ri(x, t) exp(iSi(x, t)/h̄), (47)

and making use of partial integration technique, the first
term in eq. (46) can be recast as:

∫

|x|〈Xbox

div(j(x, t))dx = 2
∑

i

ni|ϕi(Xbox, t)|2vi(Xbox, t),

where vi denotes the local velocity of the particle defined
through vi(x, t) ≡ ∇Si(x, t)/m.
This term is the expected physical term expected to

appear in any well defined transport theory that relates
the number of particles inside the box to the flow of par-
ticles outgoing at the boundary of the box. However, due
to the presence of the second term in eq. (46), oscilla-
tion of occupation numbers that are not compensated by
oscillation of the probability Pi(t) (see figure 7) lead to
spurious behavior of the particle number. The only way
out to avoid this problem in a TDHF+BCS approach is
to freeze the occupation numbers during the evolution.
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5. TDHF+BCS with frozen occupation numbers

To incorporate pairing in a transport model we are
facing the difficulty that the TDHFB theory is very de-
manding numerically. A possible solution to this diffi-
culty, would be to use the simpler TDHF+BCS approach.
However, in view of preceding sections, the approxima-
tion made to obtain TDHF+BCS leads to unphysical be-
havior especially when continuum plays a significant role:
strange behavior of particle emission, gas problem.
We have seen in section III D 3, that the pathologies

of TDHF+BCS comes from the evolution of occupation
that should normally be accompanied by a consistent
mixing of the single-particle states along the dynamical
path. This approximation does not seem to be critical in
the study of static properties of nuclei and most often,
for not too exotic nuclei, BCS theory provides a fairly
good approximation to HFB.
A simple prescription to avoid non-physical evolution

in TDHF+BCS is to assume that the occupation num-
bers are frozen during the time-evolution, this approxi-
mation is called hereafter frozen occupation approxima-

tion (FOA). An illustration of the FOA effect on particle
evaporation is shown in figure 9 (dashed line). As antici-
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FIG. 9: (Color online) Evolution of the number of particles
evaporated from an initially compressed system of N = 2
particles. The exact result (thick solid line) is compared to the
TDHF+BCS with (dashed line) and without (thin solid line)
the frozen occupation number approximation. The simulation
has been made with the same parameters set as the lower
panel of figure 4.

pated, spurious oscillations of the particle number evap-
oration disappear in the FOA. It turns out, that, for the
specific set of parameters used in the example of figure 4,
the asymptotic number of particle evaporated is in very
good agreement with the exact case, much better than

the TDHFB solution (see figure 4). However, the agree-
ment depends on the parameters that are used and not
systematic conclusion can be drawn. Note that this ap-
proximation has already been used in realistic calculation
for example to study dipole giant resonances [26].

IV. SUMMARY

In this article, different transport theories able to in-
corporate pairing are discussed. One important conclu-
sion is that theories like TDHF+BCS where the conti-
nuity equation is not respected can lead to unphysical
results. More specifically, the effect of pairing on parti-
cle emission has been analyzed here using a simple one-
dimensional Hamiltonian that can be solved exactly for
the case of two particles. From the systematic study we
have made by changing the interaction strength and/or
particle number, pairing does affect significantly the par-
ticle number emission. While the TDHF approach gen-
erally underestimate significantly the number of emit-
ted particles, an enhancement of particle evaporation is
observed when pairing is included. This effect is auto-
matically included in both TDHFB or TDHF+BCS the-
ory. Only TDHFB provides a good description of particle
emission at short time but might deviates from the exact
dynamics at longer time due to accumulated correlation
effects beyond this approach.

While the asymptotic number of emitted particles is
quite reasonable, TDHF+BCS leads to unphysical rapid
emission and spurious oscillations of the number of emit-
ted particles. The direct use of TDHF+BCS, that would
be highly desirable from the practical point of view,
is plagued with unphysical behavior, and, as we have
shown, it is preferable to use a simplified version where
occupation numbers are frozen to their initial value.

In summary, both TDHFB and TDHF+BCS with con-
stant occupation numbers can eventually be used to de-
scribe a physical system while TDHF+BCS with varying
occupation numbers should be avoided. While TDHFB is
expected to have a reacher dynamics, due to its simplic-
ity, the second transport theory remains quite attractive.
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