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The generalized seniority scheme has long been proposed as a means of dramatically reducing
the dimensionality of nuclear shell model calculations, when strong pairing correlations are present.
However, systematic benchmark calculations, comparing results obtained in a model space truncated
according to generalized seniority with those obtained in the full shell model space, are required to
assess the viability of this scheme. Here, a detailed comparison is carried out, for semimagic nuclei
taken in a full major shell and with realistic interactions. The even-mass and odd-mass Ca isotopes
are treated in the generalized seniority scheme, for generalized seniority v < 3. Results for level
energies, orbital occupations, and electromagnetic observables are compared with those obtained in
the full shell model space.

PACS numbers: 21.60.Cs,21.60.Ev

I. INTRODUCTION

The generalized seniority [1, 2] or broken pair [3, 4] framework provides an approximation (or truncation) scheme
for nuclear shell model calculations. If strong pairing correlations are present, the generalized seniority scheme can
represent these correlations in a space of greatly reduced dimensionality relative to the full shell model space. The
approach also serves as the basis for mappings from the shell model to bosonic collective models [5, 6].

The underlying premise of generalized seniority is that the ground state of an even-even nucleus can be well
approximated by a condensate built from collective S pairs, which are defined as a specific linear combination of
pairs of nucleons in the different valence orbitals, each pair coupled to angular momentum zero. (The conventional
seniority approach, in contrast, considers pairs within the different orbitals separately and does not directly address
the correlations between orbitals [7—9].) For a certain very restricted class of interactions [1], generalized seniority
describes an exact scheme for obtaining certain states: the 0T ground state is exactly of the S condensate form,
and the first 27 state involves exactly one broken S pair. However, for generic interactions, the generalized seniority
approach (or, equivalently in this context, the broken pair approach) constitutes a truncation scheme for the shell
model space, in which the ground state and low-lying states are represented in terms of a condensate of collective
S pairs together with a small number v (the generalized seniority) of nucleons not forming part of an S pair. The
generalized seniority scheme is closely related to the BCS scheme with quasiparticle excitations: the S condensate has
the same form as a number-projected BCS ground state, and the model space with generalized seniority v is identical
to the space of number-projected BCS v-quasiparticle states [3, 4]. The essential difference is that in the generalized
seniority scheme diagonalization is carried out on states of definite nucleon number, that is, after projection rather
than before projection.

Although the generalized seniority approach has long been applied in various contexts (e.g., Refs. [1-4, 9-22]), it
has not been systematically benchmarked against calculations carried out in the full shell model space. Only recently
have limited comparisons been made, for certain even-mass light Sn isotopes [23] and even-mass light Ca isotopes [24].
Otherwise, extensive previous studies with generalized seniority bases, as reviewed in Ref. [4], have instead compared
the generalized seniority results with experiment. Such comparisons do not disentangle the question of how accurately
the truncated calculation approximates the full-space calculation from the largely unrelated question of how physically
appropriate the assumed interaction and model space are for description of the particular set of experimental data.
These comparisons were also mostly based on schematic interactions, e.g., pairing plus quadrupole, phenomenologically
adjusted to a small set of experimental observables.

The purpose of the present work is to establish a benchmark comparison of the results obtained in a generalized
seniority truncated model space against those obtained in the full shell model space, for a full major shell and with
realistic interactions. In particular, we consider the Ca isotopes (N = 20-40), in the pf-shell model space, with the
FPD6 [25] and GXPF1 [26] interactions. Both even-mass and odd-mass isotopes are considered, with generalized
seniority v < 3, that is, at most one broken S pair.

Truncation of the model space according to the generalized seniority drastically reduces the dimensionality of the



shell model space. The full system of valence nucleons is effectively replaced by a much smaller system, consisting
of just the unpaired nucleons, either 2 or 3 in the present calculations. Shell model calculations in the full valence
space are now well within computational reach [27, 28] for semimagic nuclei. Therefore, for semimagic nuclei, the
immediate implications of the generalized seniority scheme are conceptual, that is, to the interpretation of the shell
model results in terms of collective pairs, and therefore also indirectly to assessing the plausibility of generalized
seniority as the basis for boson mapping, rather than to extending computational capabilities. However, if one moves
away from semimagic nuclei, to nuclei which simultaneously have large numbers of valence protons and neutrons,
full shell model calculations are still computationally prohibitive. Generalized seniority might therefore be of direct
computational value in making calculations for these nuclei tractable, provided that the seniority-violating nature of
the proton-neutron interaction [29] does not necessitate an impractically large number of broken pairs for an accurate
description of these nuclei.

The construction of the generalized seniority basis and other technical aspects of the calculational method are
outlined in Sec. II. The calculations for the Ca isotopes in the generalized seniority scheme are then described
(Sec. IIT A), and detailed comparisons with the full shell model results are made for the level energies (Sec. IIIB),
orbital occupations (Sec. III C), and electromagnetic observables (Sec. IIID).

II. GENERALIZED SENIORITY CALCULATION SCHEME

In order to define the generalized seniority basis, let us first introduce some basic notation. Let Ol,ma be the
creation operator for a particle in the shell model orbital a = (n4laja), with angular momentum projection quantum
number m,. The angular-momentum coupled pair creation operator is then

Ay =l x e, (1)

ab —

for a pair of angular momentum J. Here we follow standard angular momentum coupling notation for spherical
tensors. The collective S pair of the generalized seniority scheme is defined by

§t =3 LaujaAl, (2)

a

1/2 This operator creates a linear combination of pairs in

where a runs over the active orbitals, and j, = (2j, + 1)
different orbitals a, with respective amplitudes c,.

A basis state within the generalized seniority scheme consists of a “condensate” of collective pairs, together with v
additional nucleons not forming part of a collective S pair. The number v is the generalized seniority of the state. In
the present calculations, we consider semimagic nuclei, so only like valence particles (here, all neutrons) are present.
However, it should be noted that a generalized seniority basis can be defined equally well for nuclei with valence
particles of both types via a proton-neutron scheme, that is, by taking all possible products of proton and neutron
generalized seniority states with generalized seniorities v, and v,. Further discussion of the basis may be found in
Refs. [4, 12, 30]. The notation and methods used in the present work are established in detail in Ref. [31].

For even-mass nuclei, the S condensate state, with v = 0, is defined as [SV) = STV|). This state has n = 2\
valence nucleons (i.e., N is the number of valence pairs) and angular momentum J = 0. It can be shown [3, 4] that
the S-pair condensate state is simply the number-projected BCS ground state, and the amplitudes o, are related to
the standard BCS occupancy parameters u, and v, by ag = vg/t,. The v = 2 model space for angular momentum
J, in turn, is spanned by states of the form [SV=1A7) = St N’lAibTD, that is, with A" — 1 S pairs and one “broken”
collective pair.

For odd-mass nuclei, there must be at least one unpaired nucleon. Adding a single nucleon to the S condensate
yields the v = 1 state |SVC,) = STNCI|), with n = 2N + 1 valence nucleons. A different such state is obtained for
each choice of valence orbital a for the added nucleon, and the resulting state has angular momentum J = j,. In
the context of BCS theory, these states are number-projected one-quasiparticle states [4]. The v = 3 model space is
spanned by states of the form |SN~1(A%,C.)7) = St N_l(AZJ x C1)7]), obtained by breaking one S pair.

Before calculations can be carried out in the generalized seniority model space, an orthonormal basis must be
constructed, and matrix elements of the Hamiltonian must be obtained with respect to this basis. The states used just
above to define the generalized seniority model space are not normalized. Moreover, for v > 2, they are not mutually
orthogonal, and, for v > 3, they are linearly dependent, i.e., constitute an overcomplete set. However, a suitable basis
is obtained by a Gram-Schmidt procedure, which yields orthogonal, normalized, and linearly-independent basis states
as linear combinations of the original basis states, e.g., for v = 2,

Niv=2;Jk) = Z Cab;Jk|SN_lAgb> (3)
ab



TABLE I: Generalized seniority model space dimensions, in the pf shell with one broken pair, for selected angular momenta.

J 0 v22 4 3 3 v=3 2 2
Dimension s 8 6 27 28 25 12
or, for v = 3,

|N§ v=23;Jk) = Z Cabcd;Jk|SN71(AgbCC)J>- (4)

abed

Here k is simply a counting index, labeling the orthonormal states, and the cj; coefficients are determined in the
Gram-Schmidt procedure, from the overlaps of the original nonorthogonal basis states, e.g., (SNflAgd|SN*1A({b> for
v=2or <SN’1(AZf C,y)7|SN=1(A4,C.)7) for v = 3, which are calculated as described below. The size of the resulting
basis is the same as for the shell model problem with only v particles in the same set of orbitals, regardless of the
number of pairs.! The dimensions for the present pf-shell calculations are summarized in Table I.

For a semimagic nucleus, the valence shell contains only like nucleons, and the two-body nuclear Hamiltonian in
this proton space or neutron space may then be expressed as [9, 32]

1 N -
H - Y eana + - 1+ )21+ Ge) 2 ab; J|V]ed; JYALT x  AZ)O (5)

where the ¢, are the single-particle energies, the n, are number operators for the orbitals, the (ab; J|V|cd; J) are like-

nucleon normalized, antisymmetrized two-body matrix elements, and the phase convention ng/[] ) = (=)’ _MTSJA} is
used. To construct the Hamiltonian matrix for diagonalization, matrix elements of the one-body and two-body terms
appearing in the Hamiltonian must be obtained. Several approaches [4, 15, 30, 33] have been developed for evaluating
matrix elements in the generalized seniority basis, together with the overlaps required (as discussed above) for the
orthogonalization process. The present calculations have made use of the recurrence relations derived in Ref. [31].
Matrix elements are first calculated with respect to the original nonorthogonal, unnormalized, and overcomplete
generalized seniority basis. These matrix elements are then transformed to the orthonormal basis via (3) or (4). Note
that the occupations n, in (5) are not diagonal in the generalized seniority basis, so matrix elements must explicitly
be obtained for n, as a one-body operator. After diagonalization, the same set of recurrence relations is used for the
evaluation of matrix elements of elementary multipole operators (C] x C’b)o‘), needed for the calculation of one-body
densities and, from these, observables.

Fundamental to the definition of the generalized seniority model space is the choice of values for the coefficients
a, appearing in the collective pair (2). These coefficients enter into the computation of the overlaps and matrix
elements of the generalized seniority states. For even-mass nuclei, the coefficents are commonly chosen variation-
ally, so as to minimize the energy functional E, = (SV|H|SN)/(SV|SN) [3, 34]. For odd-mass nuclei, prior cal-
culations (e.g., Ref. [21]) have commonly taken the «, values from the neighboring even-mass nuclei. Here, we
have deduced the coefficients for the odd-mass nuclei directly, by variationally minimizing the energy expectation
E, = (SNC,|H|SNC,) /(SN C,|SVC,) for the v = 1 state. The result for the a, parameters may be expected to
depend upon the particular choice of quasiparticle for the v = 1 state, i.c., the orbital for the creation operator C.
Comparisons of these prescriptions for the present pf-shell calculations are given in Sec. ITT A.

III. RESULTS
A. Overview

In the following, we consider the semimagic Ca isotopes, treated as consisting of neutrons in the pf-shell model
space (i.e., the 0f7/2, 0f5/2, 1p3/2, and 1p; /5 orbitals). The calculations cover the entire sequence of isotopes possible

L If N increases to the point where fewer than v vacancies remain among the active orbitals, the dimensionality of the problem is instead
that of the shell model problem defined by the remaining number of holes.



within this set of orbitals, namely, 20 < N < 40 (i.e., *°Ca-5°Ca). The generalized seniority treatment may thus be
traced from the beginning of the shell (filling of the isolated high-j f7/, orbital), across the subshell closure, to the
end of the shell (filling of closely-spaced lower-j orbitals). Both the FPD6 [25] and GXPF1 [26] interactions are used
in the calculations, as representative realistic interactions for the pf shell. The primary interest here is systematic
comparison of calculational results in truncated and full spaces, so the same interactions and model space are used
throughout, even though for the highest-mass isotopes a more physically relevant description would likely require
inclusion of the Ogg/» orbital, as well as modification of the interactions.

The even-mass Ca isotopes are considered in the v = 2 generalized seniority model space, and the odd-mass Ca
isotopes are considered in both the v = 1 and v = 3 model spaces. That is, for both sets of isotopes, at most one
S pair is broken. These results are benchmarked against results obtained in the full shell model space, calculated
using the code NuShellX [35]. Near the beginning and end of the shell, where there are few particles or few holes, the
generalized seniority calculation is strictly equivalent to the full shell model calculation. That is, for the 1-particle or
1-hole nuclei (N = 21 and 39), the v = 1 model space is identical to the full model space; for the 2-particle or 2-hole
nuclei (N = 22 and 38), the v = 2 model space is identical to the full model space; for the 3-particle or 3-hole nuclei
(N =23 and 37), the v = 3 model space is identical to the full model space, etc.

In the following analysis, we consider the level energies (Sec. III B), orbital occupations (Sec. III C), and electromag-
netic observables (Sec. III D). The focus is on the ground state and lowest-lying excited states, as these are expected
to require the fewest broken pairs for their description. Specifically, the lowest J = 0, 2, and 4 states are taken for
the even-mass Ca isotopes, along with the first excited J = 0 state. For the odd-mass Ca isotopes, the lowest states
of J = %, g, %, and % are considered. These correspond to the j-values of the orbitals in the pf shell and thus are
the angular momenta which can arise in the one-quasiparticle (v = 1) description.

The coefficients «, appearing in the collective S pair, as obtained according to the variational procedures described
in Sec. I, are summarized in Fig. 1. The coefficients obtained under the usual procedure, using the v = 0 condensate
for the variation, are shown in Fig. 1(a), while those obtained obtained by minimizing F, for the v = 1 states are
shown in Fig. 1(b-d), for states built by creating a quasiparticle in the f7/5, ps/2, and f5/2 orbitals.? The FPD6
interaction is taken for illustration, but similar results are obtained with GXPF1. Only ratios of a, values are relevant,
since the overall scale is set by the conventional normalization Y, (2j, + 1)a2 = > (2j, + 1) for the S pair [12].
Throughout the shell, the amplitude for the f7/, orbital dominates, followed by that of the p3/, orbital. These are
the orbitals with the lowest single-particle energies,® respectively, so the result is consistent with natural filling order.
Notice that the amplitudes for the orbitals other than f7/, dip sharply at the f7/5 subshell closure (N = 28). The
results may be contrasted with the situation for an ideal generalized seniority conserving interaction, as considered
by Talmi [1], for which the a, values would be constant across the shell.

The results obtained by the different prescriptions in Fig. 1 are not seen to differ from each other in any substantial
qualitative fashion. For the odd-mass Ca isotopes, only the results of calculations carried out using coefficients
obtained from the variation involving the f7,, quasiparticle [as in Fig. 1(b)] will be used in the following discussions.
The other choices lead to differences in the quantitative details but give similar overall results.

B. Energies

Let us begin with the even-mass Ca isotopes, by considering the energy eigenvalue of the J = 0 ground state, shown
in Fig. 2, i.e., the valence shell contribution to the nuclear binding energy. It is worth first noting some properties
of the v = 2 model space for J = 0. This space is spanned by the four states |SV =149 ), where a runs over the
four pf-shell orbitals.* However, when the coefficients o, appearing in the S pair are chosen so as to minimize the
energy of the v = 0 condensate state |SN ), as described in Sec. II, the ground state obtained by diagonalization in
the v = 2 space is still simply this condensate (see Appendix). Thus, as far as the ground state is concerned, the
v = 2 results are identical to those for the v = 0 condensate — or, equivalently, to the results of number-projected
BCS, with variation after projection.

2 Minimizing E,, for the one-quasiparticle state based on the p; /2 orbital does not uniquely determine the aq coefficients (in general, this

is true for any j = % orbital).

For the FPD6 interaction, the single-particle energies are approximately —8.39MeV (f7/2), —6.50 MeV (p3/2), —4.48 MeV (p; /2), and
—1.90MeV (f5/2). For GXPF1, the corresponding values are approximately —8.62MeV (f7/2), —5.67MeV (p3/2), —4.13MeV (p1/2),
and —1.38 MeV (f5/2).

Notice that the generalized seniority v = 2 space, for J = 0, lies entirely within the conventional seniority zero space. The nucleons in
the pair AY, are coupled pairwise to angular momentum zero, and thus carry zero conventional seniority, but these nucleons do not
participate in the collective S pair of (2), so they do still contribute to the the generalized seniority.
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TABLE II: Deviations AE (in MeV) between energy eigenvalues calculated in the generalized seniority model space with one
broken pair (v = 2 or 3) and in the full shell model space. These are root-mean-square averages over the full set of even-mass
or odd-mass Ca isotopes with 21 < N < 39. Values are given for selected states and for the FPD6 and GXPF1 interactions.

J of 2} 4t 05 31 3, 31 21
FPD6 0.31 0.48 0.62 0.88 0.45 0.31 0.30 0.48
GXPF1 0.13 0.25 0.34 0.63 0.13 0.20 0.13 0.21

The ground state energy eigenvalue itself is shown in Fig. 2(a,b), as a function of N, for the FPD6 and GXPF1
interactions. The results obtained in the generalized seniority v = 2 model space and in the full shell model space are
overlaid in these plots. However, the deviations are so small that the results are essentially indistinguishable, when
viewed on the ~ 100 MeV energy scale necessary to accomodate the eigenvalues.

The two-neutron separation energy [Sa,(N) = E(N) — E(N — 2)], shown in Fig. 2(c,d), reveals finer details, in
particular differences between the interactions (comparing the two panels), but the generalized seniority and full shell
model results are still largely indistinguishable at this scale. A distinctive feature of generalized seniority as an ezact
symmetry, in the sense of Talmi [1], is that the ground state energies vary quadratically across the shell, and the
separation energies are therefore strictly linear in N, insensitive to any subshell closures [36]. However, as observed
in Ref. [37], when generalized seniority is simply used as a variational approach, there is no such constraint, and it is
possible to obtain subshell effects. Therefore, it is worth noting the jump in Sa;, at the f7/, subshell closure (N = 28)
in the generalized seniority calculations [Fig. 2(c,d)], in agreement with the full shell model calculations.

To more clearly compare the calculated ground state energy in the generalized seniority v = 2 model space with
that in the full model space, we consider the residual energy difference AFE, obtained by subtracting the full space
result from the generalized seniority result, shown in Fig. 2(e,f). This difference may be considered as the missing
correlation energy, not accounted for in the S-pair condensate description of the ground state. By the variational
principle, the quantity AE must be nonnegative, since the v = 2 space is a subspace of the full model space. The
residual vanishes where the v = 2 and full calculations are equivalent, at N = 22 and 38 (see Sec. IITA). For the
FPDG6 interaction [Fig. 2(e)], the residual energy difference grows more or less smoothly towards mid-shell, where it is
0.48 MeV. For the GXPF1 interaction [Fig. 2(f)], the residual energy differences are generally smaller by a factor of
~ 2, peaking at 0.21 MeV. For both interactions, there is a small (~ 0.1 MeV) dip in the residual at the f7 /o subshell
closure (N = 28). This is consistent, albeit not dramatically, with the hypothesis of Ref. [21], that the generalized
seniority description should improve at subshell closures.

For the energy eigenvalues of the ground state and other low-lying states, the deviations of the generalized seniority
v = 2 model space results from those obtained in the full space are summarized in Table II. The values given are
averages (root-mean-square) of the deviations across the full range of neutron numbers. It may be noted that the
deviations are consistently smaller for the GXPF1 interaction than for the FPD6 interaction.

Excitation energies E, for the first J = 2 and 4 states, calculated relative to the J = 0 ground state, are shown
in Fig. 3. Although the deviations of < 0.5MeV noted above for the eigenvalues (Table IT) are comparatively small
on the ~ 100 MeV scale of these eigenvalues [Fig. 2(a,b)], they are significant on the few-MeV scale of the excitation
energies. The broad features of the evolution of E, across the shell are reproduced within the v = 2 model space. For
instance, for the J = 2 state [Fig. 3(a,b)], spikes are obtained at the f7/, subshell closure (N = 28) and p3/, subshell
closure (N = 32 for FPD6 or ~ 32-34 for GXPF1). Quantitatively, the excitation energy calculated for the J = 2
state deviates from that calculated in the full model space by at most 0.41 MeV for FPDG6 or 0.23 MeV for GXPF1.
For the J = 4 state, the largest deviations obtained are 0.58 MeV for FPD6 or 0.53 MeV for GXPF1. For both states,
the excitation energies calculated in the v = 2 model space are systematically higher than those calculated in the full
model space, even though this direction for the deviation is not guaranteed by any variational principle.

Returning to the J = 0 states, the question arises as to whether or not the first excited J = 0 state can be
reasonably reproduced within the v = 2 space. The calculated excitation energy for this state is shown in Fig. 3(e,f).
The general expectation [14] is that v = 4 or higher contributions should be important for an accurate description.
The description of the excitation energy [Fig. 3(e,f)] within the v = 2 model space is qualitatively reasonable, but it is
also quantitatively less accurate than for the yrast states (see Table II). The calculation within the v = 2 model space
reproduces the main features of the N dependence of the first excited J = 0 energy: roughly constant F, ~ 5MeV
for N < 30, followed by a drop to E, ~ 3MeV at N = 32 for the FPD6 interaction [Fig. 3(e)], or a transient dip
in the case of the GXPF1 interaction [Fig. 3(f)]. The largest deviation is < 1MeV. However, from the occupations
(Sec. ITIT C), it will be seen that physically significant differences arise between the nature of the excited J = 0 state
obtained in the v = 2 model space and in the full model space, in the lower part of the shell. The excitation energy



is, once again, systematically calculated higher in the generalized seniority model space than in the full model space.

For the odd-mass Ca isotopes, the level energies calculated in the generalized seniority v = 1 and v = 3 model
spaces are shown in Fig. 4. Let us begin by examining the energy eigenvalue for the lowest J = % state [Fig. 4(a,b)].
This is the ground state (both calculated and experimental) for 21 < N < 27, where nucleons in the f7/, subshell
dominate the structure. The v = 1 calculation constitutes the most extreme approximation within the generalized
seniority framework — attempting to treat the lowest-energy state as a one-quasiparticle state based upon the f7 /o
orbital. It is seen that the energy obtained in the v = 1 calculation differs from that is the full space very noticeably
(several MeV) for a range of N values above the f7/, subshell closure (N > 31 for FPD6 [Fig. 4(a)] or N > 35 for
FPDG6 [Fig. 4(b)]). The energy obtained in the v = 3 space, however, is indistinguishable from the result in the full
space, on this scale. We therefore again consider residual energy differences [Fig. 4(c,d)]. Similar comments apply to
the energies of the lowest states of J = %, %, and %, calculated in the the v = 1 and v = 3 model spaces, for which the
residuals are shown in Fig. 4(e—j), although the range of N under which the v = 1 approximation deviates most differs
for the different states. For all states, the residual energy difference for the v = 3 calculation identically vanishes at
N = 23 and 37, where the v = 3 and full calculations are equivalent, and similarly for the v = 1 calculation at N = 21
and 39.

The differences between energies calculated in the v = 3 space and the full shell model space are again typically
smaller for the GXPF1 interaction than for the FPD6 interaction. For the J = % state, the residual reaches 0.84 MeV
for the FPDG6 interaction [Fig. 4(c)] but is never larger than 0.28 MeV for the GXPF1 interaction [Fig. 4(d)]. Given
the sharp N-dependences observed in Fig. 4, global averages of the deviations across the shell provide only a very
crude measure of the level of agreement between v = 3 and full space calculations. Nonetheless, the quantitative
results are summarized in Table II.

The range of neutron numbers over which the v = 1 approximation provides a reasonable reproduction of the full
space results, for each different J, can be roughly interpreted in terms of the natural filling order of the orbitals
(see also the discussion of occupations below in Sec. IITC). First, it should be noted that, although the v = 1 state
|SN C,) involves a superposition of different possible occupation numbers for the orbital a, since the ST operator adds
particles in pairs to each orbital, the state will involve contributions only with an odd occupation for the orbital a.
The one-quasiparticle description therefore requires at least one particle in the given orbital a, but also at least one
hole in that orbital.

For instance, for the J = £ state to be one-quasiparticle in nature requires the presence of at least one particle
but also one hole in the f7,5 orbital. This is naturally the situation early in the shell, but retaining a vacancy in
the f7/o orbital becomes increasingly energetically penalized as the shell fills. Once more nucleons are present than
can be accomodated in the f7/, orbital, the one-quasiparticle state is subject to the single-particle energy cost of
promoting at least one nucleon out of the f7/5 orbital, to leave an f7,5 hole. It would thus be natural to expect the
one-quasiparticle state to lie several MeV higher in energy than other configurations. The residual energy difference
between the one-quasiparticle state and the lowest J = % state in the full space does indeed jump to several MeV

after the f7/5 subshell closure [Fig. 4(d)], but only at neutron numbers somewhat larger than N = 28. This may be
understood in terms of the impossibility of generating J = % with nucleons purely in the next available orbital, ps/s.
The configurations competing with the one-quasiparticle state therefore are also subject to a single-particle energy
penalty for promoting nucleons to yet higher orbitals (see Sec. III C for the orbitals actually involved).

Similar interpretations may be given for the v = 1 energies for the other J values. For the J = g state to be one-
quasiparticle in nature requires at least one particle in the f5/; orbital. Since the f5/5 orbital is highest in the shell,
configurations involving a particle in this orbital only become favored by single-particle energy considerations above
N = 34. For both interactions, the v = 1 energy residual is indeed lowest at the very end of the shell [Fig. 4(g,h)],

dropping below ~ 0.5MeV for N > 35. For the J = % state, natural filling of the p3/, orbital occurs midshell, for
29 < N < 31. The v =1 energy residual for the J = % state is lowest in this mid-shell region, although the reduction
is not sharply confined to these particular neutron numbers [Fig. 4(k,1)]. For the J = % state, the interpretation of the
v = 1 energy residual [Fig. 4(k,1)] is less clear. Natural filling would occur in a very limited region just above midshell
(N = 33). On the other hand, it is also relatively difficult to generate energetically favored shell model configurations
with J = 1/2 to compete with the one-quasiparticle configuration. For instance, at the beginning of the shell, no pure
f;l/Q configuration has J = %, so any competing configuration in the full model space will likewise involve promoting
at least one particle out of the f7/, subshell.
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C. Occupations

The occupations of the pf-shell orbitals provide a simple, direct measure of the structure of the shell model eigen-
states. The occupations may also be considered as experimental observables, through their connection to spectroscopic
factors.



TABLE III: Deviations between orbital occupations (n.) calculated in the generalized seniority model space with one broken
pair (v = 2 or 3) and in the full shell model space. These are root-mean-square averages over the full set of even-mass or
odd-mass Ca isotopes with 21 < N < 39, taking all four pf-shell orbitals into account. Values are given for selected states and
for the FPD6 and GXPF1 interactions.

J o 2t 4f 0F (o 5 8- -

21 21 21 21
FPD6 0.03 0.09 0.11 0.29 0.06 0.04 0.05 0.09
GXPF1 0.015 0.03 0.08 0.26 0.015 0.03 0.02 0.14

While the basis states used in traditional shell model calculations have a definite number of nucleons in each
orbital, by construction, the generalized seniority basis states do not. Indeed, the S-pair condensate has a BCS-
like distribution of occupations for the different orbitals. Nonetheless, the orbital occupations for states obtained in
the generalized seniority scheme can readily be calculated much as any other one-body observable (Sec. II), as the
expectation values (n,).

The orbital occupations for the even-mass Ca isotopes are shown in Fig. 5, for the same states as considered in
Sec. III B, calculated both in the generalized seniority v = 2 model space and in the full shell model space. For the
lowest J = 0, 2, and 4 states [Fig. 5(a—f)], the curves obtained in the v = 2 and full spaces are nearly indistinguishable.
For the ground state in particular (recall the v = 2 ground state is just the S-pair condensate), the generalized seniority
approximation reproduces the mean occupation to within 0.1 nucleon for all the orbitals, across the entire shell. The
typical deviations in (n,) for the ground state are in fact even much smaller, ~ 0.03 for the FPDG6 interaction or ~ 0.015
for the GXPF1 interaction. The deviations are only modestly larger for the J = 2 and 4 states, as summarized in
Table III. Qualitatively, the trend appears to be that the generalized seniority calculations smooth the evolution of
the occupations as functions of N, relative to the calculations in the full space. Such is observed if one examines the
difference between the curves obtained in the v = 2 and full spaces for the occupations of, for instance, the ps/, or
f5/2 orbitals at N = 34 for the J = 2 state, under FPD6 [Fig. 5(c)], or for the p3/5 orbital at N = 30 for the J = 4
state, under either interaction [Fig. 5(e,f)].

Inspection of the occupations for the ground state and excited .J = 2 state below the f7/, subshell closure (N = 28)
in Fig. 5(a—d) indicates that these are nearly pure f;l/2 configurations, with just trace occupations of the other p f-shell
orbitals. In the limit of a pure f?/2 configuration, the generalized seniority description reduces to the conventional

seniority description in the f7/5 shell, indeed, a classic domain for application of seniority [32]. That is, the generalized
seniority v = 0 state is just the conventional zero-seniority state, the generalized seniority v = 2 space contains just
the the conventional seniority 2 state of each J, etc. Generalized seniority thus only becomes fully distinct from
conventional seniority when multiple orbitals are simultaneously significantly occupied, above N = 28.

The calculated occupations for the first excited J = 0 state are shown in Fig. 5(e,f). As already noted in Sec. ITI B,
the generalized seniority v = 2 calculation is taking place in a very low-dimensional space. The v = 2 results are seen
to track those obtained in the full space reasonably well across the shell, but with notable differences below the f7 /o
subshell closure (N = 28). In particular, these indicate differing structural interpretations for the excited state in
the v = 2 model space and the full space in the lower part of the shell. In the v = 2 space for J = 0, the nucleons
must couple to zero angular momentum pairwise (recall the |SN =A% ) basis states) and thus occupy orbitals in
even numbers. Therefore, a f;’/_22p§/2 excited state is obtained at N = 24 and 26 [see the p3/, curve for v = 2 in

Fig. 5(e,f)], as the next most energetically favored configuration after the approximately- 7,5 ground state. However,

the structure in the full model space is found to involve promotion of only a single nucleon to the p3/, orbital [see the
p3/2 curve for the full space calculation in Fig. 5(e,f)]. The remaining nucleons in the f7/, orbital must therefore be
inaJ= % configuration, which has conventional seniority 3, so that total J = 0 may be obtained. However, above
the f7,2 subshell closure, agreement of the occupations in the v = 2 and full spaces is much closer.

The occupations of the orbitals in the odd-mass Ca isotopes are shown in Fig. 6, as calculated in the generalized
seniority v = 3 model space and the full shell model space. The lowest J = % and % states are taken for illustration.
The results obtained in the generalized seniority v = 3 model space again closely track those found in the full model
space. The quantitative deviations are again summarized in Table ITI, and again those for the GXPF1 interaction are
smaller than for the FPDG6 interaction.

As discussed in Sec. III B, the v = 1 one-quasiparticle description varies greatly with IV in its success at reproducing
the energy of the lowest state of each J, and this variation may qualitatively be interpreted in terms of the single
particle energy cost of generating a quasiparticle in the relevant orbital. The orbital occupations in Fig. 6 provide
an immediate indication of whether or not a given state might be dominantly one-quasiparticle in nature, if we recall

that the orbital containing the quasiparticle must have odd occupation, and therefore contain at least one particle
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but also one hole. For instance, for the J = % state, recall that the v = 1 result provides a reasonable description of
the energy only for N < 29 for the FPD6 interaction [Fig. 4(c)] or for N < 33 for the GXPF1 interaction [Fig. 4(d)].
Examining the occupation of the f7/, orbital in the J = % state [Fig. 6(a,b)], it is seen that, indeed, the occupation
is only consistent with an f7/,, quasiparticle for N' < 29 for the FPD6 interaction [Fig. 6(a)], after which the f7 /5
orbital completely fills, but that a hole remains in the f7/, orbital for N < 33 for the GXPF1 interaction [Fig. 6(b)].
For the J = 2 state [Fig. 6(c,d)], the situation is less obvious. The calculated occupations admit the possibility of
one-quasiparticle structure for N > 29 for FPD6 [Fig. 6(c)] or N > 33 for FPD6 [Fig. 6(c)], since these are the
ranges over which the f5/o orbital has an occupation of at least one, but recall that the v = 1 calculation provides a
reasonable description of the energy only for N 2 35 [Fig. 4(g,h)]. One may also directly examine the occupations
obtained in the v = 1 calculations (not shown in Fig. 6), and they are found to track the results from the full space
calculations very well over the ranges of N just described and poorly outside of these ranges.

D. Electromagnetic observables

The matrix elements of electromagnetic transition operators (which we will consider in spectroscopic terms, as
electromagnetic moments or transition strengths) probe the extent to which various correlations are preserved when
the nuclear calculation is carried out in a space of restricted generalized seniority. Practically, the accuracy with which
these observables are reproduced is of prime interest if generalized seniority is to be used as a truncation scheme for
shell model calculations.

Matrix elements of the F2 and M1 operators directly follow from the one-body densities calculated in the generalized
seniority scheme (Sec. II) much as in a conventional shell model calculation. It should be noted that the FPD6 and
GXPF1 interactions are defined only in terms of two-body matrix elements between orbitals labeled by quantum
numbers nlj, without reference to any specific form for the radial wave functions. A particular choice must be made
if electromagnetic transition observables are to be computed. We adopt harmonic oscillator wave functions, with the
Blomqvist-Molinari parametrization fiw = (45 MeV)A~1/3 — (25 MeV)A~2/3 [32] for the oscillator energy. Since only
neutrons are present for the Ca isotopes, the overall normalization of the E2 matrix elements is set by the neutron
effective charge, which is taken as e, = 0.5. For the calculation of M1 matrix elements, the free-space neutron
g-factors are used.

For the even-mass Ca isotopes, we consider the electric quadrupole moment Q(2i”), electric quadrupole reduced
transition probability B(E2;2] — 07), and magnetic dipole moment p(2]), as representative electromagnetic ob-
servables for the low-lying states. The values are shown in Fig. 7, calculated both in the v = 2 and full shell model
spaces.

For the quadrupole moment [Fig. 7(a,b)], the calculation in the v = 2 space qualitatively tracks the results for
the full space, in particular, the alternations in sign as a function of neutron number. However, under the FPD6
interaction [Fig. 7(a)], the quadrupole moment obtained in the v = 2 space is consistently much smaller in magnitude
than in the full space, roughly by a factor of two. The difference under the GXPF1 interaction [Fig. 7(b)] is less
marked, but the quantitative agreement is still crude. The quadrupole moment obtained in the v = 2 space is smaller
by ~ 30%, that is the average deviation from the full-space result is 1.2 efm? (taking root-mean-square averages to
better accomodate signed quantities), on quadruople moments averaging 4 efm®. This attenuation of the calculated
quadrupole moment is perhaps not surprising, given that the generalized seniority scheme is expected to be restricted
in its ability to reproduce quadrupole correlations [29].

However, for the B(E2;2] — 0f) strength [Fig. 7(c,d)], which is often taken as a proxy for the quadrupole
deformation, the agreement between the values obtained in the v = 2 model space and in the full shell model space
is much closer than for Q(2]). Here the deviations under FPD6 are ~ 12% [averaging 1.6 e*fm?, on B(E2) values
averaging 13 e2fm?], or for GXPF1 only ~ 6% [averaging 0.5e2fm?, on B(E2) values averaging 9e?*fm®*]. Thus,
intriguingly, generalized seniority seems more capable of incorporating the correlations necessary for reproducing
B(E2;2{ — 07) than for reproducing Q(2]).

The magnetic dipole moment of the first J = 2 state [Fig. 7(e,f)] evolves in a complicated manner with neutron
number, involving multiple reversals in sign, and these are well reproduced by the calculations in the generalized
seniority v = 2 model space. (The most noticeable discrepancy arises for the GXPF1 interaction at N = 26 [Fig. 7(f)],
also the point of largest deviation in the 2% excitation energy [Fig. 3(b)] for this interaction, but unremarkable in
terms of occupations [Fig. 5(d)].) Quantitatively, the deviations are comparable for both interactions, for FPD6 ~ 14%
(averaging 0.10uy, on moments averaging 0.7uy) or for GXPF1 ~ 15% (averaging 0.12ux, on moments averaging
0.8/1,]\/).

For the odd-mass Ca isotopes, let us consider the electromagnetic moments Q( %;) and u(%;) of the first J = Z
state. The values are shown in Fig. 8, calculated in the generalized seniority v = 1 and v = 3 model spaces and in
the full shell model space. For both these moments, the evolution calculated in the v = 3 model space closely tracks



that obtained in the full model space, with isolated discrepancies. For the quadrupole moment [Fig. 8(a,b)], the
deviations for FPD6 are ~ 15% (averaging 0.9 efm?, on moments averaging 6 efm?) or for GXPF1 ~ 4% (averaging
0.19 efm?, on moments averaging 5 efm2). Notice the much better agreement obtained for this quadrupole moment in
the v = 3 space than for Q(2]) in the v = 2 space. For the dipole moment [Fig. 8(c,d)], the deviations for FPD6 are
~ 14% (averaging 0.19 efm?, on moments averaging 1.4 efm?) or for GXPF1 ~ 3% (averaging 0.05 efm?, on moments
averaging 1.5 efm?).

The quadrupole moment Q(Z ") obtained in the one-quasiparticle (v = 1) description [Fig. 8(a,b)] can be understood
in terms of the single particle value for the f7,, orbital and conventional seniority arguments. For the one-quasiparticle
state |SV'C,), only the orbital a can contribute to the quadrupole moment (simply by angular momentum selection),
and this orbital carries a conventional seniority of 1 from the unpaired particle. Conventional seniority in a j"
configuration gives a simple linear variation of the quadrupole moment with n across the j-shell, vanishing midshell
(the quadrupole operator is part of a rank-1 tensor with respect to quasispin [9]). This conventional seniority cannot
be directly applied to the generalized seniority one-quasiparticle state, unless the occupation n, is approximately
sharp in this state. Recall that this is indeed the case for the f7/, orbital, under the present interactions, where
the occupations below N = 28 are, to very good approximation, nz/, = N — 20 [Fig. 6(a,b)]. Thus, across the f7/,
subshell, the quadrupole moment for the J = %, v = 1 state [Fig. 8(a,b)] varies linearly from the f7,, single-particle
value to the f7 /o single-hole value. Then, above the subshell closure, the v = 1 state has, to very good approximation,
n7se = 7, i.e., exactly one hole. Thus, the v = 1 quadrupole moment plateaus at the f7/, single-hole value. The
range of neutron numbers over which the one-quasiparticle calculation provides a reasonable approximation to the
quadrupole moment is N < 25 for the FPDG6 interaction or N < 35 for the GXPF1 interaction, and again for N > 37.
This does not quite correspond to the ranges found in Secs. III B and ITI C from energies and occupations, i.e., N < 29
for the FPD6 interaction or N < 33 for the GXPF1 interaction.

The dipole moment u(%l_) obtained in the one-quasiparticle description [Fig. 8(c,d)] is, more simply, constant (the
dipole operator is scalar with respect to quasispin [9]) and has the single-particle Schmidt value. The departure of
the full space result from the Schmidt value is modest over the range N < 29 for the FPD6 interaction or N < 33 for
the GXPF1 interaction, and consists of a smooth linear evolution with N (increasing from —1.91ux to ~ —1.5un),
before jumping abruptly at the ends of these ranges. This may be interpreted as reflecting the same one-quasiparticle
nature observed in the energies (Secs. III B) and occupations (Sec. III C) over these ranges.

IV. CONCLUSIONS

From the comparisons carried out in this work, it is found that calculations in a highly-truncated, low-dimensional
(Table I) generalized seniority model space, with just one broken pair, can reproduce energy, occupation, and electro-
magnetic observables for low-lying states with varying — but in some cases remarkably high — fidelity to the results
obtained in the full shell model space. These results were obtained for semimagic nuclei in the pf shell, under two
different realistic interactions. Deviations in energies (Table IT) vary from the ~ 150keV range to the 1 MeV range for
the states considered, which, while small compared to the 100 MeV binding energies, is nonnegligible for the evaluation
of few-MeV excitation energies. Nonetheless, the evolution of excitation energies is reasonably well-reproduced across
the shell. For level occupations of the low-lying states (Table III), accuracies in the few-percent range are obtained.
With the notable exception of Q(2f) in the even-mass nuclei, electric quadrupole and magnetic dipole observables
are reproduced to ~ 10% or better (Sec. IIID). Given the distinct improvement of results from the v = 1 space to the
v = 3 space (for the odd-mass nuclei), the most natural extension is to generalized seniority spaces with two broken
pairs (v = 4 for even-mass nuclei and 5 for odd-mass nuclei).

Aside from the conceptual interest of generalized seniority as a means of interpreting shell model results in a BCS
pair-condensate plus quasiparticle framework, real computational benefits will be obtained if generalized seniority can
also be successfully applied as an accurate truncation scheme for nuclei in the interior of the shell, when significant
numbers of both valence protons and neutrons are present. The obvious challenge is the seniority-nonconserving, or
pair-breaking, nature of the proton-neutron interaction [29], since a pair broken in the conventional seniority scheme
also implies breaking of a generalized seniority S pair. The approach is likely to be more advantageous for weakly-
deformed nuclei (in large model spaces) than for strongly-deformed nuclei. Seniority decompositions of shell model
calculations [28, 38] suggest seniorities < 8 should be sufficient for a variety of weakly-deformed nuclei. Such values
are consistent with the possibility of successful calculation in a generalized seniority model space with two broken
pairs for both protons and neutrons.

It was systematically observed that the calculations in the generalized seniority model space more accurately match
those in the full model space for the GXPF1 interaction than for the FPDG6 interaction, typically by a factor of ~ 2. It
would be valuable to have a systematic quantitative understanding of the deviations expected for a given interaction,
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given some appropriate quantitative measures characterizing the interaction. The question has been addressed in
the context of random two-body interactions, in terms of the random ensemble parameters [39, 40]. In particular, it
appears to be important that the energy spacing scale of the single particle energies be large compared to the scale
of the two-body matrix elements [40]. It might therefore be relevant that the spread of the single particle energies
is indeed slightly larger for GXPF1 than for FPD6. Alternatively, since the generalized seniority approach is based
upon the dominance of pairing correlations, it is worth investigating the possibility that the decomposition of realistic
interactions into pairing and non-pairing (e.g., quadrupole) components through the use of spectral distribution theory,
as carried out in Ref. [41], could yield relevant measures.
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Appendix

In this appendix, a simple demonstration is provided to establish the property noted in Sec. III B, that the J = 0
ground state obtained in the v = 2 model space is simply the v = 0 condensate state, provided the «, coeflicients
have been chosen according to the variational prescription described in Sec. II. It is convenient to first modify the
normalization convention on the a, coefficients, from that given in Sec. IITA, so as to instead give the state |SV)
unit normalization. Then the energy functional in the variational prescription simplifies to E, = (SV|H|SV) and
is subject to the constraint (SV[SN) = 1. Since (8/0,)|SN) = Nja|SN=1AY ), the Lagrange equations for the
extremization problem are of the form (SV=1A9, |H|SN) — A(SV=1A9,|SV) = 0, with a separate equation obtained
for each orbital a. Since the states | SV 1A% ) span the v = 2 space, this is simply the condition that H|SV) = A|SV)
within the v = 2 space. That is, |SN> is an eigenstate of the Hamiltonian, and, in practice, it is the ground state.
Note that this result also establishes the equivalence of the “iterative diagonalization” prescription for determining the
a, coefficients, proposed in Ref. [42], to the variational prescription, since the iterative diagonalization prescription
determines the «, coefficients so as to decouple the S condensate from the rest of the v = 2 space, exactly as found
above for the variational prescription.
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FIG. 1: Pair amplitudes «, for the collective S-pair (2), as determined variationally by minimization of FE, for the various
possible minimal-seniority states: (a) the v = 0 state (J = 0), for the even-mass Ca isotopes, or the v = 1 state based upon a
quasiparticle in (b) the f7/5 orbital (J = 1), (c) the p3/» orbital (J = 2), or (d) the f5/» orbital (J = 2), for the odd-mass Ca
isotopes. Calculations are shown for the FPD6 interaction.



12

@) FPDG6 | (b) GXPF1
~20
— O+ —o—p=2
> —40f 1 —— Full
o
= —60
M g0
~100

20t (€) (d)

>
5
Z 1
S
o
0

0gl © )

AE (MeV)
(e}
B~

20 24 28 32 36 40 20 24 28 32 36 40
N N

FIG. 2: Energy eigenvalue of the J = 0 ground-state, for the even-mass Ca isotopes, calculated in the generalized seniority
v = 2 model space (circles) or full shell model space (crosses). The energies are considered directly as eigenvalues (top), as
two-neutron separation energies Sz, (middle), or as the residual difference AE of the generalized seniority result relative to
the full shell model result (bottom). Calculations are shown for the FPD6 (left) and GXPF1 (right) interactions.
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FIG. 3: Excitation energies E, of the lowest J = 2 state (top), lowest J = 4 state (middle), and first excited J = 0
state (bottom) of the even-mass Ca isotopes, calculated in the generalized seniority v = 2 model space (circles) or full shell
model space (crosses). Calculations are shown for the FPD6 (left) and GXPF1 (right) interactions.
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FIG. 4: (a—b) Energy eigenvalue of the lowest J = % state, for the odd-mass Ca isotopes, calculated in the generalized seniority

v = 1 model space (open circles), generalized seniority v = 3 model space (filled circles), or full shell model space (crosses).
(c—j) Residual differences AFE of the generalized seniority result relative to the full shell model result, for the energy eigenvalues
of the lowest J = %7 %7 %7 and % states (top to bottom, respectively). Calculations are shown for the FPD6 (left) and

GXPF1 (right) interactions.
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FIG. 5: Orbital occupations (ng) of the pf-shell orbitals, for the lowest J = 0, 2, and 4 states and first excited J = 0 state (top
to bottom, respectively) of the even-mass Ca isotopes, calculated in the generalized seniority v = 2 model space (circles) or full
shell model space (crosses). Calculations are shown for the FPD6 (left) and GXPF1 (right) interactions.
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FIG. 6: Orbital occupations (n,) of the pf-shell orbitals, for the lowest J = I (top) and J = 2 (bottom) states of the odd-mass
Ca isotopes, calculated in the generalized seniority v = 3 model space (circles) or full shell model space (crosses). Calculations

are shown for the FPDG6 (left) and GXPF1 (right) interactions.
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FIG. 7: Electromagnetic observables for the even-mass Ca isotopes: Q(2]) (top), B(E2;2] — 0F) (middle), and u(2) (bot-
tom), calculated in the generalized seniority v = 2 model space (circles) or full shell model space (crosses). Calculations are
shown for the FPD6 (left) and GXPF1 (right) interactions.
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FIG. 8: Electromagnetic observables for the odd-mass Ca isotopes: Q(%;) (top) and u(%;) (bottom), calculated in the
generalized seniority v = 1 model space (open circles), generalized seniority v = 3 model space (filled circles), or full shell model
space (crosses). Calculations are shown for the FPDG6 (left) and GXPF1 (right) interactions.
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