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Background: Phase-equivalent transformations (PETs) are well-known in quantum scattering and inverse scat-
tering theory. PETs do not affect scattering phase shifts and bound state energies of two-body system but are
conventionally supposed to modify two-body bound state observables such as the rms radius and electromagnetic
moments.

Purpose: In order to preserve all bound state observables, we propose a new particular case of PETs, a deuteron-
equivalent transformation (DET-PET), which leaves unchanged not only scattering phase shifts and bound state
(deuteron) binding energy but also the bound state wave function.

Methods: The construction of DET-PET is discussed; equations defining the simplest DET-PETs are derived.
We apply these simplest DET-PETs to the JISP16 NN interaction and use the transformed NN interactions
in calculations of 3H and 4He binding energies in the No-core Full Configuration (NCFC) approach based on
extrapolations of the No-core Shell Model (NCSM) basis space results to the infinite basis space.

Results: We demonstrate the DET-PET modification of the np scattering wave functions and study the DET-
PET manifestation in the binding energies of 3H and 4He nuclei and their correlation (Tjon line).

Conclusions: It is shown that some DET-PETs generate modifications of the central component while the others
modify the tensor component of the NN interaction. DET-PETs are able to modify significantly the np scattering
wave functions and hence the off-shell properties of theNN interaction. DET-PETs give rise to significant changes
in the binding energies of 3H (in the range of approximately 1.5 MeV) and 4He (in the range of more than 9
MeV) and are able to modify the correlation patterns of binding energies of these nuclei.

PACS numbers: 03.65.Nk, 21.30.-x, 21.10.Dr, 21.45.Bc, 21.45.-v, 21.60.De

I. INTRODUCTION

Phase-equivalent transformations (PETs) of two-body
interactions are well-known in quantum scattering theory
[1]. PETs play an important role in the inverse scattering
theory giving rise to ambiguities in the derived potentials.
Currently, there is intensive research on supersymmetric
transformations (see reviews [2, 3]) which are a particu-
lar case of PETs [4] associated with removing or adding
bound states to the system.

More traditional PETs which do not change the on-
shell properties of the two-body interaction, i. e. two-
body scattering phase shifts and the energies of the two-
body discrete spectrum states, but modify the interaction
off-shell, were used to study manifestations of off-shell
properties of two-nucleon interactions in many-nucleon
systems. For example, a correlation between the nuclear
matter binding energy and its equilibrium density (the
so-called Coester line) was studied with phase-equivalent
NN interactions in Ref. [5]. PETs were used to modify

the nucleon-cluster interaction in order to obtain a cor-
rect description of the nuclear binding energies in cluster
model studies of Ref. [6, 7]. Various versions of the real-
istic JISP NN interaction (JISP6 [8] and JISP16 [9, 10])
were obtained by means of PETs applied to the initial
ISTP NN interaction [11] obtained in the J-matrix in-
verse scattering approach with the aim of improving the
description of binding energies of many-nucleon systems.
The interaction JISP16 [9, 10] provides an accurate de-
scription of light nuclei [9, 12–21] and was used to pre-
dict the binding energy and spectrum of the exotic 14F
nucleus [22] which were confirmed later in the first ex-
perimental observation of this isotope [23].

We propose here a new type of PET, a deuteron-
equivalent transformation (DET-PET). Contrary to con-
ventional PETs resulting in the modification of bound
state and scattering wave functions [1, 4, 5, 11], DET-
PET guarantees that the transformed interaction gener-
ates not only the same scattering phase shifts and two-
body binding energy (or, more generally, bound state
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energies) but also the same bound state (deuteron) wave
function as the initial untransformed interaction. The
same method easily generalizes to preserve a set of bound
state wave functions. DET-PET has the advantage of
preserving the deuteron ground state observables. On
the other hand, DET-PET, as well as any PET, modi-
fies a two-body interaction off-shell, and hence manifests
itself in many-body systems.
One may naturally inquire whether PETs may lead to

a better understanding of the appropriate off-shell be-
havior for the NN interaction. We note that what is ap-
propriate depends on the adopted theoretical framework
for the NN interaction. Since the interaction is not an
observable, all approaches (meson exchange, EFT, lattice
gauge, inverse scattering, ...) build in model assumptions
(e. g., form factors, regulators, cutoffs, ...). Given those
model assumptions, there are additional unexplored off-
shell freedoms and we will show below how to explore
those freedoms with constraints tied to NN bound state
observables.
After introducing the formulas defining DET-PET, we

apply DET-PET to the JISP16NN interaction and illus-
trate various versions of DET-PET by respective modifi-
cations of scattering wave functions at a few values of the
DET-PET continuous parameter. A DET-PET manifes-
tation in many-body systems is illustrated by the study
of binding energies of 3H and 4He binding energies and
their correlation (the so-called Tjon line [24]).
It is known [25] that when any PET, DET-PET in par-

ticular, is applied to NN interaction, the binding energy
of a three-body (or heavier) system can be restored by
additional three-nucleon NNN (or higher-order) inter-
action(s). Our initial 3H applications reveal the residual
role of the NNN interaction for the ground state energy
and how that role changes with the DET-PET selected.
Similarly, our initial 4He applications reveal the residual
roles for the combined NNN and NNNN interactions
on the ground state energy. Given the numerical chal-
lenges of treating NNN , NNNN , etc., interactions in
many-body applications, it is natural to try to minimize
their effects. In this context, DET-PETs are a poten-
tially useful tool in future searches for an NN interaction
consistent with many-body data.

II. DET-PET TRANSFORMATION

Two types of PETs are known in scattering theory:
local PETs [1] that transform a local potential into an-
other local potential and nonlocal PETs [5] which gen-
erate nonlocal potential terms. The local PETs always
result in some modification of bound state wave functions
[1, 4]. Therefore we focus the discussion here on nonlocal
PETs.
The Schrödinger equation

H |ΨE〉 = E |ΨE〉 (1)

describes a relative motion in two-body quantum system.

The state |ΨE〉 can be expanded in infinite series of L 2

states |an〉,

|ΨE〉 =

∞
∑

n=0

cn(E) |an〉 (2)

The states |an〉 are supposed to form a complete or-
thonormalized basis,

〈ai|aj〉 = δij . (3)

Using expansion (2) we obtain an infinite set of algebraic
equations defining the expansion coefficients cn(E),

∞
∑

n′=0

(Hnn′ − δnn′E) cn′(E) = 0, (4)

where Hnn′ = 〈an|H |an′〉 are the Hamiltonian matrix
elements.
A Hamiltonian H̃ phase-equivalent to H can be de-

fined through its matrix [H̃ ] in the basis {|an〉}. This

matrix [H̃ ] can be obtained from [H ], the matrix of the
Hamiltonian H in the basis {|an〉}, by means of a unitary
transformation,

[H̃ ] = [U ][H ][U †], (5)

The infinite unitary matrix [U ] is supposed to be of the
form

[U ] = [U0]⊕ [I] =

[

[U0] 0
0 [I]

]

, (6)

where [I] is an infinite unit matrix and [U0], a non-trivial
submatrix of [U ], is a finite matrix mixing only a few se-
lected basis functions. It is clear that Hamiltonians H
and H̃ have identical eigenvalue spectra. Their eigen-
states |Ψ̃E〉 and |ΨE〉, differ by a linear combination of a
finite number of L 2 basis states. Any superposition of a
finite number of L 2 functions must decrease at large dis-
tances. Therefore at positive energy E associated with
scattering, the oscillating asymptotics of wave functions
〈~r|Ψ̃E〉 and 〈~r|ΨE〉 at large distances are the same. In
other words, the scattering phase shifts defined through
asymptotic behavior of functions 〈~r|Ψ̃E〉 and 〈~r|ΨE〉 are

also the same, i. e. the Hamiltonians H and H̃ are phase-
equivalent.
The unitary operator U0 can be written as

U0 =
∑

i,j6N

|ai〉U
0
ij〈aj |. (7)

The transformation (5)–(7) leaves the bound state |d〉
unchanged, i. e. becomes a DET-PET, when each of the
L

2 vectors |ai〉 entering the non-trivial submatrix [U0]
of the infinite unitary matrix [U ] through Eq. (7), is or-
thogonal to |d〉,

〈ai|d〉 = 0, i ≤ N. (8)
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At this stage, we assert that we have obtained our
DET-PET defined through the unitary transformation
(5)–(7) with vectors |ai〉 fitting the conditions (3) and

(8). In order to obtain a nonlocal interaction Ṽ deuteron-
equivalent and phase-equivalent to the initial interaction
V , we add to V the two-body relative kinetic energy op-
erator T to obtain the Hamiltonian H ,

H = T + V, (9)

calculate its matrix [H ] in the basis {|an〉}, obtain the

matrix [H̃ ] by means of DET-PET unitary transforma-
tion, and obtain the matrix

[Ṽ ] = [H̃ ]− [T ]. (10)

Here [T ] is the infinite kinetic energy matrix in the basis

{|an〉}. The interaction Ṽ is defined through its matrix

[Ṽ ] in the basis {|an〉}.
The simplest DET-PET is obtained with arbitrary uni-

tary matrix [U0] of the rank 2. In this case, [U0] is
associated either with a rotation by the angle β when
detU0 = +1 or with a rotation by the angle β combined
with reflection when detU0 = −1. We also need to define
the L

2 vectors |a1〉 and |a2〉 in Eq. (7).
We define here the vectors |a1〉 and |a2〉 as linear com-

binations of oscillator states |ϕi〉,

|ai〉 =
∑

i′6N ′

αi′

i |ϕi′〉, (11)

which fit the orthonormality condition (3). We expand
the deuteron eigenstate |d〉 in an infinite series of oscilla-
tor states,

|d〉 =
∞
∑

i=0

di|ϕi〉, (12)

where, generally, all the coefficients di are non-zero,

di 6= 0. (13)

Since the vectors |a1〉 and |a2〉 should fit Eq. (8), the
expansion (11) of each of them involves at least two dif-
ferent basis states |ϕi〉 due to Eq. (12)-(13). In this
simplest case we have

|a1〉 = an1 |ϕn〉+ am1 |ϕm〉, (14a)

|a2〉 = ak2 |ϕk〉+ al2 |ϕl〉. (14b)

The normalization of these vectors requires

(an1 )
2
+ (am1 )

2
= 1, (15a)

(

ak2
)2

+
(

al2
)2

= 1, (15b)

while the orthogonality of the vectors |a1〉 and |a2〉,

〈a2|a1〉 = 0, (16)

is guaranteed when these vectors are constructed from
different basis states, i. e. all the basis states |ϕn〉, |ϕm〉,
|ϕk〉, |ϕl〉 entering Eqs. (14) are different. Using expan-
sions (11) and (12) we obtain

an1 dn + am1 dm = 0, (17a)

ak2 dk + al2 dl = 0. (17b)

The solutions of Eqs. (15), (17) are

an1 =
dm

√

d2n + d2m
, (18a)

am1 = −
dn

√

d2n + d2m
, (18b)

ak2 =
dl

√

d2k + d2l
, (18c)

al2 = −
dk

√

d2k + d2l
, (18d)

To define completely the simplest DET-PET discussed
above we need to fix the rotation angle β, the sign of
detU0 and the set of 4 oscillator states used to build the
states |a1〉 and |a2〉. To distinguish various DET-PET
types we use notations like 0s2s1s2d±. In this example,
the state |a1〉 is a linear combination of the oscillator
states 0s and 2s, the vector |a2〉 is a linear combination
of the oscillator states 1s and 2d, and the index ± corre-
sponds to the sign of detU0 = ±1.

III. DET-PET PROPERTIES AND

MANIFESTATION IN FEW-NUCLEON SYSTEMS

In this section, we study modifications of the JISP16
NN interaction [9] induced by various DET-PETs. The
modifications of a nonlocal interaction can be illustrated
by modifications of its wave functions. The deuteron
wave function is unaffected by DET-PET. Therefore we
present below the DET-PET induced transformation of
the JISP16 np scattering wave function in the sd coupled
partial wave.
It is interesting to explore a DET-PET which acts only

in a single channel, say, in the s channel, and compare it
with DET-PETs mixing components of the s and d chan-
nels in different ways. Therefore vectors |a1〉 and |a2〉 [see
Eqs. (14)] were constructed as various superpositions of
two low-lying oscillator states of the np relative motion
0s, 1s, 2s, 3s, 0d and 1d with ~Ω = 40 MeV. For each
type of the DET-PET we investigate the transforma-
tions associated with both pure rotation and a rotation-
reflection combination.
Plots of the JISP16 np scattering wave functions in

the sd coupled partial wave at laboratory energy Elab =
10 MeV and plots for their 0s2s1s3s±, 0s1s0d1d± and
1s0d0s1d± DET-PET partners are given in Figs. 1, 2
and 3 respectively. We use the K-matrix formalism (see
Ref. [11] for details and nomenclature adopted here). The
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FIG. 1. (Color online) Large (a) and small (b) components of the np scattering wave function at the laboratory energy
Elab = 10 MeV in the sd coupled partial wave in the K-matrix formalism (see Ref. [11] for details and nomenclature) generated
by JISP16 and NN interactions obtained from JISP16 by means of DET-PET 0s2s1s3s±. The sign of detU0 is given in the
legends in parenthesis after the value of rotation angle β.
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FIG. 2. (Color online) Same as Fig. 1 but for DET-PET 0s1s0d1d±.

advantage of the K-matrix formalism is that the radial
wave functions in the scattering domain defined accord-
ing to their standing wave asymptotics are real contrary
to the more conventional S-matrix formalism with com-
plex radial wave functions which are asymptotically a
superposition of ingoing and outgoing spherical waves.

The DET-PET 0s2s1s3s± mixes various s wave com-
ponents of the wave function that is equivalent to modifi-
cation of the central part of the JISP16 interaction in the
s wave. This results in significant changes of the large s
wave component as is seen in Fig. 1. The modification of
the small s wave component is less pronounced. The d
wave components, as expected, are nearly unaffected by
0s2s1s3s±.

The DET-PET 0s1s0d1d± explicitly mixes s and d

waves; the DET-PET 1s0d0s1d±also mixes s and d waves
but in a different manner. This corresponds to an essen-
tial modification of the tensor component of the JISP16
NN interaction. As a result, we observe an essential
modification of small scattering wave function compo-
nents which are generated by the tensor NN interaction
as is seen in Figs. 2 and 3. Modifications of the large
wave function components are much less pronounced.

We see that DET-PET generates essential modifica-
tions of scattering wave functions without any change of
scattering phase shifts and scattering observables (cross
sections, polarization observables, etc.). It is worth not-
ing here that the deuteron wave function and deuteron
observables (rms radius, quadrupole moment, etc.) are
unaffected by DET-PET due to the nature of this trans-
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FIG. 3. (Color online) Same as Fig. 1 but for DET-PET 1s0d0s1d±.

formation. The alteration of scattering wave functions is
an indicator for the variation of the off-shell properties
of the interaction arising from DET-PET. The modifica-
tion of the the NN interaction off-shell should manifest
itself in properties of many-nucleon systems. Therefore,
we investigate the DET-PET-induced changes of the 3H
and 4He binding energies.

We calculate 3H and 4He in the ab initio No-core Full
Configuration (NCFC) [17] approach. Within the NCFC
approach, we start with the No-core Shell Model [26, 27]
calculations using the code MFDn [28–31] with a few
values of the oscillator frequency ~Ω and in a few basis
spaces characterized by the maximum oscillator quanta
Nmax allowed in the many-body basis above the minimal
configuration. Next, we extrapolate the sequence of finite
basis space results to the infinite basis space limit. This
makes it possible to obtain basis space independent re-
sults for binding energies and to evaluate their numerical
uncertainties. NCFC suggests two extrapolation meth-
ods: a global extrapolation based on the calculations
in four successive basis spaces and five ~Ω values in a
10 MeV interval (extrapolation A), and extrapolation B
based on the calculations at various fixed ~Ω values in
three successive basis spaces and defining the most re-
liable ~Ω value for the extrapolation. We present here
only the extrapolation A results based on the NCSM cal-
culations with basis spaces up through Nmax = 16. The
extrapolations A and B usually provide consistent results
[17], and we checked this consistency for our results in a
number of cases. The evaluated uncertainties of results
for binding energies presented here are less then 10 keV
in most cases; in a few cases, we performed the NCSM
calculations up to Nmax = 18 to obtain the binding en-
ergies with uncertainty of about 10 keV.

The binding energies of 3H nucleus Et and of 4He
nucleus Eα were calculated with JISP16 interaction
modified by DET-PETs 0s2s1s3s±, 0s1s0d1d± and
1s0d0s1d± varying angle β from 0◦ through 360◦ in steps

of 60◦. We observe variations of Et and Eα due to DET-
PETs. In some cases, when the 3H and 4He binding
energies were close to their maximal or minimal values
for a given DET-PET type, we decreased the step of β
to investigate the behavior of Et and Eα around their
extremal values in more detail.

The ranges of 3H and 4He binding energy variations
for each DET-PET type are shown in Table I. We see
that DET-PETs can cause essential modification of both
3H and 4He binding energies. For example, in the case of
the 4He nucleus, Eα can be varied by DET-PETs on the
interval from 21.25 through 30.41 MeV, i. e., the DET-
PETNN interaction can changeEα by more than 7 MeV
from its original value provided by the original JISP16
interaction. In the case of 3H, the range of the DET-PET
binding energy variation is 7.21 ≤ Et ≤ 8.67 MeV, i. e.,
the binding energy can be shifted by more than 1 MeV
from its original JISP16 value.

We study also a correlation of the 3H and 4He bind-
ing energies, the so-called Tjon line [24]. The Tjon line

TABLE I. Ranges of 3H and 4He binding energy variations
(in MeV) caused by various types of DET-PET in compari-
son with the binding energies obtained with JISP16 and their
experimental values.

3H 4He 3H 4He

0s2s1s3s+ 0s2s1s3s−

7.21—8.37 21.25—28.49 7.25—8.35 21.46—28.59

0s1s0d1d+ 0s1s0d1d−

7.67—8.41 23.50—28.83 7.68—8.39 23.46—28.91

1s0d0s1d+ 1s0d0s1d−

7.98—8.64 25.79—30.36 8.05—8.67 26.18—30.41

JISP16 Experiment

8.369(1) 28.299(1) 8.482 28.296
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NN and NN +NNN interaction models from Refs. [32, 34,
35].

is usually studied using results obtained with different
NN interactions and different combinations of NN and
NNN interactions (see, e. g., Ref. [32]). We note here
also an investigation of Jurgenson et al [33] where the 3H
and 4He binding energy correlation was studied with NN
interactions SRG evolved to various values of momen-
tum parameter λ. An interesting observation mentioned
by various authors (see, e. g., Ref. [24, 32]) is that these
results obtained with different interaction models form
nearly a straight line on the plot Eα vs Et. Here we study
the Et–Eα correlation using families of NN potentials
generated by various DET-PET types from the JISP16
interaction, i. e., all NN interactions provide not only
algebraically identical NN phase shifts but also identical
deuteron wave functions that should give rise to specific
np correlations in three- and four-nucleon systems.
We begin the discussion of the Tjon lines from the

results obtained with the 1s0d0s1d± DET-PET pre-
sented in Fig. 4 where we show also the results from
Refs. [32, 34, 35] obtained with various modern NN
and NN +NNN interaction models. It is seen that the
DET-PET Et–Eα correlation generally follows the trend
suggested by other interactions: our results are concen-
trated close to the Tjon line connecting the points ex-
tracted from Refs. [32, 34, 35] and extend it to larger
3H and 4He bindings. We recall here that the 1s0d0s1d±

DET-PET is associated with modification of the tensor
component of NN interaction.
Another DET-PET modifying the tensor component of

the JISP16 NN interaction, is the DET-PET 0s1s0d1d±.
This DET-PET results in a very different range of Et

and Eα variations (see Table I). The DET-PET 3H and
4He binding energies are also correlated along a nearly
straight line (see Fig. 5). However this line has a slope
very different from the slope of the Tjon line obtained
with other interaction models. Around the maximal 3H
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FIG. 5. (Color online) Same as Fig. 4 but for DET-PET
0s1s0d1d±.

7.2 7.4 7.6 7.8 8 8.2 8.4
E

t
 (MeV)

22

24

26

28

30

E
α (

M
eV

)

0s2s1s3s
+

0s2s1s3s
-

Experiment
JISP16
NN+NNN interactions
NN interactions

FIG. 6. (Color online) Same as Fig. 4 but for DET-PET
0s2s1s3s±.

and 4He binding energies accessible by this DET-PET, it
suggests correlations consistent with those derived using
modern NN + NNN interaction models. However, for
smaller binding energies, this DET-PET suggests much
less bound 4He at the same 3H bindings as provided by
modern purely two-nucleon interactions.

The DET-PET 0s2s1s3s± modifies the central s-wave
component of the NN interaction. It results in the 3H
and 4He binding energy correlation shown in Fig. 6. We
see that in this case the results do not concentrate as
tightly around some straight line. That is, they are more
spread out on the Et–Eα plane. The DET-PET Tjon
lines transform into closed-loop curves surrounding elon-
gated areas. In the case of the DET-PET 0s2s1s3s−, the
Tjon curve surrounds many points obtained with various
NN interactions. The DET-PET 0s2s1s3s+ generates
the Tjon curve shifted down from the Tjon line suggested
by other interactions. Both 0s2s1s3s+ and 0s2s1s3s−
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DET-PETs essentially extend the range of the 3H and
4He binding energy variations to smaller bindings.

IV. CONCLUSIONS

We have introduced a new type of phase-equivalent
transformations, DET-PET, preserving the deuteron
wave function. The suggested theory of DET-PET can
be easily reformulated to preserve scattering wave func-
tions at a given energy instead of the bound state wave
function. We investigated transformations of the JISP16
NN interaction induced by DET-PETs mixing oscilla-
tor components in various combinations. One of these
DET-PETs generates modifications of the central com-
ponent of the NN interaction, the others modify the ten-
sor NN interaction component. We demonstrated that
DET-PETs are able to modify significantly the np scat-
tering wave functions and hence the off-shell properties of
the NN interaction while the on-shell interaction prop-
erties are preserved.

DET-PETs impact the binding energies of many-
nucleon systems. We found that the 3H and 4He binding
energies can be significantly changed by DET-PETs. The
investigated DET-PETs modifying tensor NN interac-
tion, correlate the 3H and 4He bindings along some lines
that may differ in slope from the Tjon line obtained with
modern NN and NNN interactions. The DET-PET
0s2s1s3s± modifying the central s wave NN interaction,
weakens the Et–Eα correlation spreading the results on
the Et–Eα plane.

It would be interesting to study DET-PET manifesta-
tions in binding energies and other observables of heavier
nuclei. We speculate that DET-PET can be helpful in the
further development of JISP-like NN interactions.
DET-PETs can be also used to design an interesting

approach to effective interactions. In particular, DET-
PETs can be applied to a modern NN realistic interac-
tion to reduce their high momentum components (and
hence to improve the convergence of ab initio calcula-
tions). At the same time, we are preserving the deuteron
wave function andNN correlations in other partial waves
at some energy by using the extension of DET-PET to
preserve the scattering wave function. Such an effective
interaction can be very interesting for many-body nuclear
applications.
It is also possible to extend the DET-PET concept to

NNN interactions. The corresponding set of transfor-
mations would then involve changing the interior part of
the NNN wave function in such a manner as to preserve
the NNN ground state wave function and to preserve
the asymptotic NNN wave function. This could provide
a useful tool to explore the off-shell freedoms available in
NNN interactions without requiring repeated fits to the
NNN bound state properties.
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