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Abstract
We describe systems of two and three nucleons trapped in a harmonic-oscillator potential with

interactions from the pionless effective field theory up to next-to-leading order (NLO). We construct

the two-nucleon interaction using two-nucleon scattering information. We calculate the trapped

levels in the three-nucleon system with isospin T = 1/2 and determine the three-nucleon force

needed for stability of the triton. We extract neutron-deuteron phase shifts, and show that the

quartet scattering length is in good agreement with experimental data.
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I. INTRODUCTION

A major goal of nuclear physics is to derive nuclear structure “ab initio”, that is, starting
from inter-nucleon interactions consistent with QCD. This requires a many-body technique
that provides a numerical solution to the Schrödinger equation for a system of A interacting
particles within a restricted space, which is sufficiently small to be handled by accessible
computers. The no-core shell model (NCSM) [1] is such a many-body technique, where the
restricted space is generated by harmonic-oscillator (HO) wavefunctions. In the traditional
NCSM, effective inter-nucleon interactions adapted to the restricted space are derived from
a given potential.

The inter-nucleon potential is not directly observable; it is merely an intermediate step
to obtain measurable quantities. Its very definition requires the choice of a restricted space,
and care is needed to make sure that measurable quantities are independent of this choice,
that is, are renormalization-group (RG) invariant. The framework to accomplish this is
effective field theory (EFT). A potential constructed in EFT is improvable in a systematic
expansion, and can be used as input in many-body problems. Some of current ab initio
calculations do, indeed, start with a potential inspired by EFT, but they suffer from limited
(or no) RG invariance. Alternatively, we can construct manifestly RG-invariant observables
starting from inter-particle interactions defined directly within the restricted space of the
many-body technique using the general principles of EFTs [2, 3]. In Ref. [2], we have
demonstrated this idea for a NCSM-type restricted space in leading order (LO) of the so-
called pionless EFT.

At low energies, the physics of two- and few-body systems is insensitive to the details of
the interaction at short distances. Thus, in the case of an interaction of finite range R, short-
range details are irrelevant for the description of processes involving momenta k <∼ 1/R. The
pionless, or contact, EFT [4] uses this separation of scales to construct the potential as a sum
of delta functions and their derivatives, which for observables translates into expansions in
powers of kR. A particularly interesting class of systems is that where the two-body S-wave
scattering length a2 is large, a2 ≫ R, because then the LO potential solved exactly produces
a real or virtual bound state at k ≃ i/a2. This EFT has been applied to nuclear physics
[5–8], where a2 ≫ 1/mπ, the inverse of the pion mass. At larger momentum, k ∼ mπ, pions
need to be taken into account, and the more sophisticated pionful, or chiral, EFT [4] is
needed where, in addition to delta functions, pion exchange is explicitly included.

The definition of the delta functions themselves is tied to the restricted space. Their
strengths depend on the size of the space. Fitting the strengths of the two- and three-nucleon
contact interactions that appear at LO in the pionless EFT to reproduce the deuteron, triton
and 4He ground-state binding energies, the energies of other 4He and 6Li states were found in
Ref. [2] to agree with experiment within the expected errors for a LO calculation (∼ 30%).

In order to demonstrate systematic improvement, one needs to calculate corrections be-
yond LO. However, beyond LO the number of couplings in the EFT expansion increases
significantly, making the fit to few-body binding energies impractical. Hence, we have de-
veloped an approach that requires only information from the two-nucleon system in order to
fix the two-nucleon interactions. This can be done by considering the two-body system in
a HO potential and relating the energy levels to the scattering parameters. In Refs. [9, 10]
we have constructed the two-body interaction up to next-to-next-to-leading order (NNLO),
which reproduces the lowest energy levels obtained from given scattering parameters. We
have used it to calculate the spectra of trapped systems of a few two-state fermions [9, 11],
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while systems of bosons were addressed in Ref. [12].
We have also suggested [3] that the same method can be used for nucleons. Here we

implement this approach. In fact, one of the goals of this paper is to show that meaningful
results can be obtained for nuclear physics by trapping the nuclear system. This is not
surprising, since in the middle of the trap the wavefunction has no knowledge of the trap’s
existence [10]. However, while in atomic systems the trap is physical and dominates the
long-range behavior, for nuclear systems the trap is just an artifact introduced in order to
define the interaction. We therefore need an extra step at the end, that of making the trap
large, in order to extrapolate energies to the “continuum” limit. The discrete states in the
trap approach the untrapped spectrum of a few bound states and a continuum of scattering
states. Following the procedure devised in Ref. [11] for the atom-dimer system, we extract
the neutron-deuteron scattering length from the trapped-system levels at NLO. This extends
to the three-nucleon system the “inverse” connection between trapped levels and scattering
stressed at the two-body level in Refs. [10, 13].

A significant complication of the nuclear case, compared to the two-state-fermion case, is
the role of three-body forces. In the absence of the trap, a three-nucleon force is needed in
the pionless EFT at LO in order to achieve RG invariance [7]. The same is true for bosons
[14], and it has been shown in Ref. [12] that this feature is not affected by the presence of the
trap, as expected from the short-distance character of renormalization. We show here that
the same holds for nucleons in the presence of the trap, and determine the three-nucleon
force needed for cutoff independence up to NLO.

The paper is organized as follows. After we set up our framework in Sec. II, we construct
in Sec. III the two-nucleon interaction up to NLO using the two-nucleon scattering data
as input. In Sec. IV we apply the formalism to three nucleons in two different channels
described by total isospin T = 1/2 and total angular momentum/parity: (i) Jπ = 3/2+,
which is similar to the system of three two-component fermions and does not involve a
three-body force up to NLO; and (ii) Jπ = 1/2+, which requires a contact three-body force
already in LO. In the first channel, we calculate the quartet scattering length for deuteron-
nucleon scattering, obtaining the same accuracy as similar continuum calculations, while
for the second channel we demonstrate the collapse of the system, as in free space. We
summarize and conclude in Sec. V.

II. PRELIMINARIES

We consider a non-relativistic system of A nucleons of massmN trapped in a HO potential
of frequency ω, or alternatively of length

b =

√

2

mNω
. (1)

The HO potential can be decomposed into two pieces, one acting on the center of mass (CM)
of the particles and one on their relative coordinates. We denote by ~ri (~pi) the position
(momentum) of particle i with respect to the origin of the HO potential. The Hamiltonian
describing the relative motion of the particles is given by

H = H0 +
∑

i<j

Vij +
∑

i<j<k

Vijk + . . . , (2)
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with

H0 =
ω

2A

∑

i<j

[

b2

2
(~pi − ~pj)

2 +
2

b2
(~ri − ~rj)

2

]

. (3)

Here Vij and Vijk denote the two-nucleon and three-nucleon potentials, respectively, more-
body interactions being lumped into “. . .”.

In pionless EFT, the inter-nucleon potential is expanded in derivatives of delta functions,
or powers of momenta in momentum space. An important task in EFT is to provide a
power counting for observables. One can show [5–8] that in pionless EFT observables can
be written as expansions in Q/Mhi, where Q denotes the generic external momenta of the
process under consideration and Mhi ∼ mπ is the scale at which pion effects need to be
accounted for explicitly. At any order of truncation, errors scale as Q/Mhi to the power
of the most important neglected order. Of course, as in any theory one has to carry out
renormalization. Delta functions are singular and require an ultraviolet (UV) momentum
cutoff ΛA in order for them to be well defined. Observables are (nearly) independent of the
arbitrary cutoff as long as the coefficients of the delta functions depend on the UV cutoff
appropriately —and as long as there are enough interactions at the given order, which is a
non-trivial consistency check on the power counting. The truncation generates an error due
to the cutoff that grows as Q/ΛA, so cutoff errors are minimized as ΛA increases. However,
one should keep in mind that there are always errors that grow as Q/Mhi, which cannot be
minimized by increasing the cutoff.

For convenience we diagonalize H using HO wavefunctions. We can work with Jacobi
coordinates defined in terms of differences between the CM positions of sub-clusters within
the A-body system, e.g.,

~ξ1 =

√

1

2
(~r1 − ~r2) ,

~ξ2 =

√

2

3

[

1

2
(~r1 + ~r2)− ~r3

]

,

...

~ξA−1 =

√

A− 1

A

[

1

A− 1
(~r1 + ~r2 + · · ·+ ~rA−1)− ~rA

]

. (4)

In terms of them, the HO Hamiltonian (3) becomes a collection of A− 1 HOs,

H0 =
ω

2

A−1
∑

ρ=1







(

b~pξρ√
2

)2

+





√
2~ξρ
b





2




 , (5)

where ~pξρ is the momentum canonically conjugated to ~ξρ. We use a basis made out of properly
antisymmetrized combinations of A − 1 eigenfunctions φnili of H0, which are characterized
by the radial quantum numbers ni and the angular momenta li. The energy of a basis state
can be written as [NA + 3(A− 1)/2]ω, with NA an integer,

NA =
A−1
∑

i=1

(2ni + li) . (6)
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A numerical calculation can only be carried out with a finite number of basis elements,
which span the “model space”. We include in the model space all states up to a maximum
integer Nmax

A , which provides a natural momentum cutoff [2]

ΛA =
1

b

√

2Nmax
A + 3(A− 1). (7)

Since there is a minimum step in energy supplied by ω, one can think of the model space as
containing also an infrared (IR) cutoff [2]

λ =
1

b
. (8)

Within the low energies where the EFT applies, the errors introduced by the limited size of
the model space should decrease as λ decreases, as well as ΛA increases. This is the simple
requirement that the HO oscillator be wide enough to accommodate the nuclear states we
are interested in.

As the trap is made larger, the states after diagonalization will approach their untrapped
counterparts. The lowest states become the free-nucleus bound states, while states higher
up in energy coalesce into a continuum of scattering states. Conversely, sufficiently near
the center of a given trap wavefunctions resemble those of the untrapped system. Yet, they
must also depend on the corresponding energy. Thus, there is a connection between the
energy levels in the trap and the parameters that characterize the untrapped wavefunctions.
The latter are related to the the scattering, or T , matrix, and thus to phase shifts, which
at sufficiently low energies can be described by effective-range expansion (ERE) parameters
[15]. Thus, there is a relation between trap levels and phase shifts, which we can explore in
two ways. First, we can use the scattering data as input to determine the levels inside the
trap, and use a subset of the latter to fix the coefficients of the inter-nucleon interactions
[9, 10]. Other levels, at the same A or not, can then be predicted. Second, the predicted
levels can be used to calculate scattering phase shifts [10, 11].

In the remainder of the paper we carry out this method explicitly to NLO in the pionless
EFT for A = 2, 3. We use the known two-nucleon ERE parameters to determine the two-
nucleon interaction, and then extract neutron-deuteron scattering information. In this first
approach we do not include electromagnetic interactions nor isospin-breaking effects, which
are of higher order. The same method to deal with nuclear systems can in the future be
carried out with the pionful EFT [4], where Mhi is higher and, consequently, denser systems
can be handled.

III. TWO NUCLEONS IN A HARMONIC TRAP

We construct a two-body potential based on the ideas of EFT to describe the interaction
between the two nucleons. The method is described in more detail for a single channel in
Ref. [10].

The two-nucleon interaction can be expanded as

V (~ξ1) =
C0

2
√
2
δ(~ξ1)−

C2

4
√
2

[(

∇2δ(~ξ1)
)

+ δ(~ξ1)∇2
]

+ . . . , (9)

where C0 and C2 are parameters, and “. . . ” denote terms of higher orders. At LO, the
Schrödinger equation of the trapped two-nucleon system is solved exactly with the potential
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given by the first term in the expression (9). For a given ultraviolet cutoff Λ2, the low-
energy constant C0(Λ2) is adjusted such that one energy level of the two-nucleon system,
which we take to be the lowest, is reproduced for all values of Λ2. Corrections beyond
leading orders should be calculated in increasing orders in perturbation theory. At NLO,
in particular, corrections are obtained by considering the second term in Eq. (9) in first-
order perturbation theory, with C0(Λ2) and C2(Λ2) adjusted to reproduce two two-nucleon
levels, here the lowest two. Because the second term contributes to the ground state, the Λ2

dependence of C0 changes. It is convenient to write C0(Λ2) = C
(0)
0 (Λ2) +C

(1)
0 (Λ2) + . . . and

C2(Λ2) = C
(1)
2 (Λ2) + . . ., where the superscript (n) corresponds to the Λ2 dependence fixed

at N(n)LO. Only the C
(0)
0 (Λ2) piece of the interaction is iterated to all orders.

The interactions up to NLO affect only S waves, higher waves coming at NNLO and
beyond. Differently from the case of two-component fermions, in the case of two nucleons
there are two L = 0 channels to consider, where the nucleons couple to total spin S = 0, 1.
For a relative momentum k ≪ mπ the interaction in free space, i.e. when there is no trap,
gives rise [5] to a phase shift δ2(k) given by the ERE [15],

k cot δ2(k) = − 1

a2
+

r2
2
k2 + . . . , (10)

where a2, r2, . . . are, respectively, the scattering length, effective range, and higher ERE
parameters not shown explicitly. The ERE parameters can be directly related [5] to the
parameters in Eq. (9). At LO, we obtain only the scattering-length term, while at NLO the
effective-range term appears as well. In the following, we use the empirical values a2t = 5.425
fm and r2t = 1.749 fm in the triplet channel, and a2s = −18.7 fm and r2s = 2.75 fm in the
singlet channel [16]. Bound states can be obtained by calculating the position of the pole of
the T matrix in each channel,

k cot δ2(k) = −ik. (11)

In the triplet (singlet) channel the positive (negative) scattering length signals a real (virtual)

bound state. At NLO in free space the deuteron energy is Efree
d = −2.213 MeV.

When two nucleons are confined within the harmonic trap, we diagonalize the Hamilto-

nian (2) for A = 2 with the potential (9) in the basis of HO wavefunctions φnl(~ξ1). The
unperturbed levels are characterized by N2 = 2n + l. Since to NLO the inter-nucleon po-
tential is purely S-wave, levels with l ≥ 1 are unaffected by it. The S-wave energies E2;n,
on the other hand, depend on the EFT parameters and thus on the phase shifts. These
energies are solutions of the transcendental equation

Γ(3/4− E2;n/2ω)

Γ(1/4− E2;n/2ω)
= −

√

E2;n/2ω cot δ2
(√

mNE2;n

)

, (12)

where δ2(k) is given by Eq. (10). Equation (12) was first obtained [17] by solving the
Schrödinger equation using a pseudopotential [18], but it can be derived directly within the
EFT framework [10] (see also Ref. [19]). As in the absence of the trap, at LO the right-hand
side contains only the scattering-length term, while at NLO the effective-range term appears
as well.

As an illustration, we consider the “deuteron in the trap”, that is, the lowest state in
the trap which goes into the deuteron as b ≫ a2t. Figure 1 shows the lowest energy Ed of
two nucleons in the triplet configuration as a function of the frequency ω. The energy Ed is
obtained by solving Eq. (12). At NLO, Ed = −2.123 MeV for ω = 1 MeV, and Ed = −2.212
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FIG. 1: Ground-state energy of the trapped two-nucleon system in the 3S1 channel (deuteron in

the trap) as a function of the frequency ω. The energy at LO (NLO) is given by the dashed (solid)

line. For small values of ω, the energy converges to the value in free space, which is, at NLO,

indicated by the dotted line.

MeV for ω = 0.1 MeV, in good agreement with the energy of the bound state in free space.
Such a good agreement is not surprising, as for small ω the corrections to the energy due to
the trap scale in LO with (a2t/b)

4 [13].
We use this and other energy levels given by Eq. (12) to determine the parameters C0, C2,

etc. In the triplet channel, C
(0)
0 (Λ2) is found by demanding that it produces the LO deuteron

in the trap. In Fig. 2 we show the running of the triplet coupling constant Λ2C
(0)
0 (Λ2)mN

as a function of the cutoff Λ2, for ω = 1 MeV. For large Λ2, C
(0)
0 (Λ2) → −2π2(mNΛ2)

−1. At

NLO, C
(1)
0 (Λ2) and C

(1)
2 (Λ2) are obtained from the NLO deuteron in the trap and the first

excited-state solution of Eq. (12) considering both the scattering length a2t and the effective

range r2t. In Fig. 3 we show the running of the triplet coupling constants C
(1)
0 (Λ2)mN/r2t

and Λ2
2C

(1)
2 (Λ2)mN/r2t as a function of the cutoff Λ2, again for ω = 1 MeV. For large enough

Λ2, C
(1)
0 (Λ2) becomes constant and C

(1)
2 (Λ2) ∝ Λ−2

2 [10]. The running of coupling constants
is qualitatively similar for other frequencies. In the singlet channel we obtain analogous
results using as input the corresponding scattering parameters.

Once the EFT couplings are determined from a couple of levels, the other levels can be
calculated. They do not agree exactly with the levels of Eq. (12) at finite Λ2, but approach
them as Λ2 → ∞. In Fig. 4 we show the first excited state at LO and the second excited
state at NLO as a function of the size of the model space characterized by Nmax

2 . As Nmax
2

increases the energies in the finite model space converge to the exact energies of Eq. (12). It
is clear that convergence is sped up when the correction to the potential at NLO is included:
the first excited state is now simply fitted, and the second excited state is very close to the
exact value even at relatively small Nmax

2 .
As discussed in Ref. [10], with the calculated levels input to the left-hand side of Eq.

(12) we can invert the procedure and obtain scattering phase shifts for a given cutoff. In
Fig. 5, we plot the phase shifts for both triplet and singlet configurations, for ω = 1 MeV
and Nmax = 20. Also displayed are the corresponding ERE phase shifts and the Nijmegen
neutron-proton (np) phase-shift analysis (PSA) [20]. (The discrepancy observed in the 1S0
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FIG. 2: LO two-nucleon coupling constant Λ2C
(0)
0 (Λ2)mN in the 3S1 channel as a function of the

cutoff Λ2, for ω = 1 MeV.
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FIG. 3: NLO two-nucleon coupling constants in the 3S1 channel as a function of the cutoff Λ2, for

ω = 1 MeV: (a) C
(1)
0 (Λ2)mN/r2t; (b) Λ

2
2C

(1)
2 mN/r2t.

channel between ERE and PSA phase shifts appears because the ERE is calculated with
neutron-neutron scattering length and effective range. The difference is an isospin-breaking
effect of higher order than what is considered here.) At low energies, as expected, one obtains
good agreement with the ERE and with the Nijmegen PSA. Agreement worsens as one goes
to higher and higher energies, since the higher energy levels show more effect of the finite
cutoff, which effectively induces higher-order ERE terms. Better agreement with ERE is
obtained as the cutoff increases, and, for a given cutoff, agreement improves systematically
order by order, as long as the momentum of the state is well below the cutoff imposed by
the model space (see Fig. 5 of Ref. [10]).

One can look at the phase shifts as predictions of the theory, but there are easier ways to
carry out this two-nucleon calculation (see for example Ref. [5]). The motivation to use the
HO basis comes from wanting to study larger systems. We now turn to the simplest such
cases, the three-nucleon system.
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FIG. 4: (Color online) Energies of the first (circle) and second (square) excited states of the two-

nucleon system in the 3S1 channel at LO and NLO, respectively, as function of Nmax
2 , for ω = 1

MeV. The dashed lines correspond to the exact solution given by Eq. (12).
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FIG. 5: Phase shifts for the two-nucleon system at ω = 1 MeV and Nmax = 20 as a function of the

relative energy: (a) 3S1; (b)
1S0. EFT results at LO (NLO) are marked by empty (filled) squares;

the ERE up to the effective range is indicated by a dashed line; and the Nijmegen np PSA [20] by

a solid line.

IV. THREE NUCLEONS IN A HARMONIC TRAP

We now consider a system of three nucleons trapped within an HO potential. The sit-
uation here involves elements encountered before in both the two-state-fermion [9, 11] and
boson [12] cases.

Since no symmetry forbids a three-nucleon potential, we have to consider this additional
element. In pionless EFT, the three-nucleon potential is also expressed in terms of delta
functions,

V (~ξ1, ~ξ2) = D0 δ(~ξ1) δ(~ξ2) + . . . , (13)

where D0 is a parameter and derivatives terms are buried in “. . . ”. Just as the two-body
parameters, D0 and other three-body parameters depend on the cutoff. In Ref. [7] it has
been shown that in free space the non-derivative three-body force is needed for RG invariance
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already at LO, while derivative corrections appear at NNLO and higher. The non-derivative
D0 interaction contributes only when we place three nucleons at the origin in a relative S
wave, that is, when the total isospin is T = 1/2 and the total angular momentum and parity
is Jπ = 1/2+. To NLO, we thus need information about one three-nucleon observable, such
as the ground-state energy.

In the trap, we use the basis states

A
{

[

φn1l1(
~ξ1)⊗ φn2l2(

~ξ2)
]

L
|(1
2

1

2
)s2

1

2
;S〉|(1

2

1

2
)t2

1

2
;T 〉

}

, (14)

which have the spatial part constructed using HO wavefunctions in ~ξ1 and ~ξ2 with quantum
numbers n1, l1 and n2, l2, respectively, with the angular momentum coupled to L, while the
spin (isospin) part is constructed by coupling first two spins (isospins) s = 1/2 (t = 1/2)
into spin (isospin) s2 (t2) and then a third spin (isospin) s = 1/2 (t = 1/2) to total spin S
(isospin T ). In Eq. (14), A stands for the operator that antisymmetrizes the three-particle
wavefunction. Details on the construction of a fully antisymmetrized basis can be found in
Ref. [21]. The basis states thus constructed are eigenstates of the unperturbed Hamiltonian
H0 with N3 = 2(n1 + n2) + l1 + l2.

In the conventional NCSM approach, it is customary to choose the truncation in the two-
body system so that the many-body space is the minimal required to include completely the
two-body space. For example, if we consider just S-wave interactions, Nmax

2 = Nmax
3 when

one describes positive-parity states. However, one has to consider that the renormalization
of the two-body system means that states lying above the cutoff Nmax

2 have been “integrated
out” rather than simply discarded. Their effects are, thus, included implicitly in the effective
two-body interaction. When these two interacting particles are embedded in a system with
a larger number of particles, the spectators will carry energies associated with the HO levels
they occupy. For example, of the (N3 + 3)ω total energy of one of the basis states (14),
(2n2 + l2 + 3/2)ω is carried by the relative motion of the spectator. As a consequence,
the maximum energy available to the two-body subsystem is smaller than that allowed by
the three-body cutoff Nmax

3 and some of the states removed by the truncation will not be
accounted for by the renormalization. In order to account for all the two-body physics
beyond our cutoff, we simply decouple the cutoff of the many-body problem from that of
the subcluster defining any interaction. Each of our calculations is characterized by two
cutoff parameters: Nmax

2 for the two-body subsystem, and Nmax
3 for the three-body system.

For fixed Nmax
2 and Nmax

3 , we calculate the three-body energies E3;n. We first increase
Nmax

3 till convergence, which to a good approximation happens already when Nmax
3 is a

couple of units larger than Nmax
2 , and we then increase Nmax

2 . We have shown in a previous
publication [11] that proceeding this way greatly improves the convergence of the energies
of a two-state-fermion system.

In the rest of this paper, we illustrate the application of our formalism to nucleons in
the two channels with T = 1/2: Jπ = 1/2+, 3/2+. These are the most interesting channels,
since they are accessible in nucleon-deuteron scattering.

The energy in the trap should approach the energy of the untrapped system when the HO
trap is weak, i.e., for small values of ω. The ground state in the T = 1/2, Jπ = 1/2+ channel
becomes the triton (3H) at an energy Et = −8.482 MeV [22], while all other states coalesce
into the continuum states. Some of these states correspond to the S-wave scattering of a
neutron on the deuteron, which can form inside the trap in the T = 1/2 channels. We can
then extract the nd phase shifts from the three-nucleon energies above the deuteron ground
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state, E3;n − Ed, with a relation similar to Eq. (12),

Γ(3/4− (E3;n −Ed)/2ω)

Γ(1/4− (E3;n −Ed)/2ω)
= −

√

(E3;n −Ed) /2ω cot δ3

(

√

2µnd (E3;n − Ed)
)

, (15)

where µnd is the neutron-deuteron reduced mass, and the phase shift δ3(k) is given by an
ERE expansion,

k cot δ3(k) = − 1

a3
+

r3
2
k2 + . . . (16)

in terms of nd ERE parameters a3, r3, etc. In the S = 3/2 and S = 1/2 channels the
experimental values [23] of the scattering lengths are a3q = 6.35 ± 0.02 fm and a3d =
0.65± 0.04 fm, respectively.

It is important to note that Eq. (15) holds as long as the range of the nd interaction
is much smaller than the effective trapping length b′ = 1/

√
µndω. This makes high-cutoff

calculations challenging since the nd size is rather large, of the order of the triplet two-
nucleon scattering length. In the two-state fermion case we did succeed in extracting the
atom-dimer scattering length using this method [11].

A. The channel T = 1/2, Jπ = 3/2+

We first consider the case of three nucleons with T = 1/2 coupled to Jπ = 3/2+. In
this channel the three-nucleon force appears only in higher orders than included here, so
the properties of the three-nucleon system are determined by the two-nucleon input. This
situation is the same as for three two-state fermions [9, 11].

We start by discussing the convergence of the energy levels. For illustration, we take
the ground state at a relatively large frequency ω = 3 MeV, but qualitative features are
the same for other states and frequencies. We show LO and NLO results in Fig. 6 for
various values of the two-body model space size Nmax

2 . For each Nmax
2 , the three-body

model-space size defined by Nmax
3 is increased. There is a sharp decrease of the energy

as Nmax
3 = Nmax

2 + 2 and, as Nmax
3 increases further, the ground-state energy reaches a

converged value. More precisely, as Nmax
3 increases, the energy changes by less than 0.1

keV for the values considered here. Thus faster convergence is obtained for a given Nmax
2

by increasing Nmax
3 beyond Nmax

2 , as observed before in the case of two-state fermions [11].
This can be seen for instance by comparing the LO energy obtained for Nmax

2 = 8 and
Nmax

3 = 10, which is ELO
3 = 7.058 MeV, and the LO energy for Nmax

2 = Nmax
3 = 12, which

is ELO
3 = 7.173 MeV and further away from the extrapolated value ELO

3 (∞) obtained from
Eq. (17) below.

Figure 7 shows the convergence with respect to Nmax
2 . Clearly the energy converges to a

finite value as the two-body cutoff increases. We can thus confirm that, as in the free-space
case [6], no three-nucleon force is needed at these orders to renormalize the three-nucleon
system. We can fit the cutoff dependence of the energy with

E3(N
max
2 ) = E3(∞) +

ǫ1
(Nmax

2 + 3/2)1/2
+

ǫ3
(Nmax

2 + 3/2)3/2
, (17)

where E3(∞) is the asymptotic value and ǫ1,3 give the rate of convergence. The fits are
performed for Nmax

2 ≥ 12. At LO we obtain ǫLO1 = 2.270 MeV, ǫLO3 = 1.676 MeV, and
ELO

3 (∞) = 6.241 MeV, which is ∼ 500 keV below the value obtained with the largest
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FIG. 6: (Color online) Ground-state energy of the trapped three-nucleon system coupled to T =

1/2, Jπ = 3/2+ as function of the three-body model-space size Nmax
3 , for ω = 3 MeV: (a) LO; (b)

NLO. Results are shown for different values of the two-body model-space size Nmax
2 .
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FIG. 7: (Color online) Ground-state energy of the trapped three-nucleon system coupled to T =

1/2, Jπ = 3/2+ as a function of Nmax
2 , for ω = 3 MeV: LO (circles) and NLO (squares).

considered cutoff, Nmax
2 = 22. At NLO, one obtains instead ǫNLO

1 = 0.3 MeV, ǫNLO
3 = −2.99

MeV, and ENLO
3 (∞) = 6.417 MeV, which is only ∼ 40 keV above the value obtained at

Nmax
2 = 22. The convergence at NLO is faster than that at LO, as can be seen in Fig. 7

and in the decrease of the coefficient ǫ1 of the leading cutoff error. Although the specific
numbers above depend strongly on ω, the convergence pattern is qualitatively the same for
other values of ω.

For ω = 1 MeV, the first few eigenstates characterized by Jπ = 3/2+ and T = 1/2 are
shown in Fig. 8. Since there is no free-space three-nucleon bound state in this channel, the
lowest eigenstates of Eq. (2) for a weak trap correspond to “discretized” nd scattering states
confined within the trap. For nd scattering in a S wave, we can select the lowest eigenstates
with the configuration of orbital angular momentum L = 0 and spin S = 3/2, where the
two-nucleon interaction in the 1S0 channel does not play any role.

From the lowest energies of the eigenstates of the Hamiltonian (2) in the L = 0, S = 3/2
configuration we extract the S-wave nd phase shifts using Eq. (15). In Fig. 9 we show

12



4 8 12 16 20
N

2

max

0

0.5

1

1.5

2

2.5

3

3.5

4

E
 [

M
eV

]

(a)

5 10 15 20
N

2

max

0

0.5

1

1.5

2

2.5

3

3.5

4

E
 [

M
eV

]

(b)

FIG. 8: (Color online) Lowest energies of the trapped three-nucleon system with T = 1/2, Jπ =

3/2+ as a function of Nmax
2 , for ω = 1 MeV: (a) LO; (b) NLO. The ground state and the third

excited state (full lines) correspond to neutron-deuteron scattering within the trap in the L = 0,

S = 3/2 channel, whereas the other states shown correspond to different L, S configurations.
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FIG. 9: k cot δ3(k) in the T = 1/2, L = 0, S = 3/2 channel obtained from the lowest energies at

LO (circles) and NLO (squares) as a function of k2, for ω = 1 MeV and Nmax
2 = 18. The dashed

(full) line corresponds to a LO (NLO) linear fit to the two lowest energies.

k cot δ3(k) for ω = 1 MeV and Nmax
2 = 18. We extract the value of the quartet scattering

length a3q using Eq. (16). From the two lowest energies we obtain: aLO3q = 7.71 fm and

aNLO
3q = 6.30 fm. Note that by considering the second and third phase-shift points in Fig. 9

we would get instead: aLO3q = 6.29 fm and aNLO
3q = 4.92 fm, which shows that higher-order

ERE terms are more important at higher energy.
We now consider the procedure to extract a3q for different values of the two-body cutoff

and HO frequency. Extracted values of a3q at LO and NLO as a function of the two-body
cutoff are shown in Fig. 10 for ω = 1 MeV. At a fixed ω, the scattering length a3q should
converge as the two-body cutoff is increased (since the energies of the three-nucleon system
converge). For each ω, we perform extrapolations to obtain the value a3q(∞) which would
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FIG. 10: Scattering length a3q extracted from the spectrum of the trapped three-nucleon system

in the channel T = 1/2, L = 0, S = 3/2 as function of the cutoff Λ2, for ω = 1 MeV: LO (circles)

and NLO (squares).

correspond to Λ2 → ∞. We use for this purpose the trial function

1

a3q
=

1

a3q(∞)
+

α1

Λp1
2

+
α2

Λp2
2

, (18)

where p1,2 and α1,2 are parameters, which we fit to the six values of the scattering length
obtained at the largest cutoffs.

Results of the extrapolation can be seen in Fig. 11, where a3q(∞) is plotted as a function
of ω. For HO frequencies from about 0.4 MeV to about 2 MeV the scattering length is such
that 7.30 fm ≤ aLO3q (∞) ≤ 7.53 fm and 6.08 fm ≤ aNLO

3q (∞) ≤ 6.16 fm for the trial function
(18). Had we used a different trial function with fewer parameters, such as for instance
the function (18) with α2 = 0, we would have obtained 7.71 fm ≤ aLO3q (∞) ≤ 7.88 fm and

6.20 fm ≤ aNLO
3q (∞) ≤ 6.24 fm. While for larger traps we are closer to the continuum limit,

our error in the scattering length increases. First, as ω gets smaller, the imprecision on
the value of a3q stemming from the imprecision of the energy (i.e., the difference between
the values for finite Nmax

2 and Nmax
2 → ∞) are enhanced. This can be understood by

noticing that in Eq. (15) the energy appears with ω in the denominator. Second, numerical
imprecision also arises as ω gets smaller since the extrapolation to a3q(∞) is performed in
these cases from data at lower Λ2. Nevertheless we see a kind of plateau in the value of
a3q(∞) for small ω. With all imprecisions taken into account we can conclude that the
results at NLO are in good agreement with the experimental value a3q = 6.35± 0.02 fm [23]
and with previous EFT calculations [6].

It might seem more natural to extract the scattering length directly from the extrapolated
energies E3(∞) obtained in the fit (17). After having tried this method, we concluded that
it could not give meaningful results: the behavior of a3q as a function of ω looked completely
random. We believe that this is due to the fact that the extrapolated energies are not precise
enough, because a3q is strongly dependent on the input energies.
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FIG. 11: (Color online) Extrapolated values a3q(∞) of the quartet scattering length for different

values of ω: LO (circles) and NLO (squares). The error bars correspond to the standard error

obtained using the software Gnuplot. The horizontal dotted line marks the experimental value

[23].

B. The channel T = 1/2, Jπ = 1/2+

We now consider the case of three nucleons with T = 1/2 and orbital angular momentum
and spins coupled to total angular momentum Jπ = 1/2+, the triton channel. The calcula-
tion proceeds along the same lines discussed in detail in the previous subsection, except for
the role played by the three-body force, which is similar to that for three bosons [12].

The non-derivative three-nucleon potential (13) contributes in this channel and is known
to be necessary for RG invariance at LO, at least in free space [7]. Since renormalization
concerns UV momenta, it is not expected to be affected by the trap. We have confirmed this
fact by examining the ground state of the three-nucleon system at various values of ω in a
calculation at LO but without a three-nucleon force. As before, for a fixed two-body cutoff
Λ2 we increase the three-body model space until convergence is reached. Figure 12 shows
the ground-state energy as a function of Λ2

2/mN . We can clearly see that as Λ2 increases, the
ground-state energy decreases roughly linearly. Results for different values of ω but the same
two-body cutoff Λ2 are close to each other, which is a sign of the fact that the short-range
two-nucleon interaction is much stronger than the long-range HO potential. This illustrates
the collapse of the three-nucleon system in this channel when only a two-nucleon force is
included in the pionless EFT [7].

Such a dramatic cutoff dependence shows that short-distance physics has not been ac-
counted for properly. Renormalization can be achieved by including the non-derivative
three-nucleon potential in Eq. (13) already at LO. We choose to determine the coefficient
D0 so that the lowest energy of the three nucleons in the trap is fixed at the experimental
value of the triton binding energy, Et = −8.482 MeV. It is convenient to introduce a cutoff
N cut

3 above which the three-nucleon force is switched off. This means that the three-body
force does not play a role for configurations with N3 > N cut

3 . Nevertheless, D0 depends on
both N cut

3 and Nmax
3 just as the energy obtained with only the two-nucleon force depends

on Nmax
3 before convergence is reached. We take N cut

3 = Nmax
2 , and for each Nmax

2 , D0 is
adjusted to the triton binding energy. For large enough Nmax

3 , the three-body force becomes
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FIG. 13: (Color online) Three-nucleon coupling constants as function of Λ2
2/mN , for different values

of ω: D
(0)
0 Λ2

2/mN (left panel) and D
(1)
0 /rt (right panel).

independent on Nmax
3 ,

D0(N
cut
3 , Nmax

3 ) → D0(N
cut
3 ). (19)

We again split the running of D0(N
max
2 ) into the various orders, D0(Λ2) = D

(0)
0 (Λ2) +

D
(1)
0 (Λ2) + . . . The running of D

(0)
0 (Λ2) and D

(1)
0 (Λ2) are shown in Fig. 13 for different

values of ω. The LO three-nucleon force becomes repulsive for Λ2
>∼ 220 MeV. We expect to

see a limit cycle [7] in the behavior of the coupling D
(0)
0 Λ2

2 as a function of Λ2. However, the
maximum cutoff we were able to consider here (Λ2

2/mN ∼ 230 MeV) is only approximately
half the value where the second branch of the limit cycle appears [7].

Figure 14 shows the LO and NLO energies of the first three states in a trap with ω = 5
MeV. While the ground state is fixed at the experimental value of the triton binding energy,
the other states converge to positive energy values, as befits continuum states in free space.
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FIG. 14: (Color online) Energies of the ground state and first two excited states for the three-

nucleon system coupled to T = 1/2, Jπ = 1/2+ as a function of the two-body model-space size

Nmax
2 , for ω = 5 MeV: LO (left panel) and NLO (right panel). The three-body force is adjusted

such that the ground state is fixed at the experimental value of the triton binding energy [22].

Again, results are similar for other HO frequencies.
From the scattering states we can again attempt to extract the S-wave nd phase shifts

using Eq. (15). The result is shown in Fig. 15 for ω = 1 MeV and Nmax
2 = 18. By fitting

the k cot δ3(k) with a first-degree polynomial in k2, as in Sec. IVA, we can extract the
doublet scattering length a3d using the two lowest energies. We then obtain aLO3d = 3.66 fm
and aNLO

3d = 2.66 fm. This is far larger than the experimental value a3d = 0.65 ± 0.04 fm
[23] and results obtained with pionless EFT in the continuum [7]. On the other hand, using
the second and third values of the phase shift gives much smaller values for the scattering
length, aLO3d = 0.319 fm and aNLO

3d = 0.281 fm. Contrary to the quartet channel, the values
for a3d depend strongly on which energies they are extracted from. Possibly the energies
considered here are not small enough to prevent higher-order ERE terms from spoiling the
extraction of a3d. This would explain why the third values of the phase shift in Fig. 15
is far away, at both LO and NLO, from the fit of k cot δ3(k) obtained from the two lowest
energies. A solution to overcome this problem would be to use larger computer resources
to perform calculations at very low values of ω but large values of Nmax

2 , and thus obtain
better converged results at small enough energies.

V. CONCLUSIONS AND OUTLOOK

We have presented an extension to nucleons of the work in Refs. [3, 9–12], in which
the inter-particle interactions in a harmonic-oscillator basis are constructed within an EFT
framework, by trapping the system in a HO potential. This approach is designed to improve
upon the work of Ref. [2] by using a procedure to fix the two-body parameters from the two-
body data, and thus more efficiently going beyond leading order. We considered explicitly
here interactions up to NLO.

We have illustrated in the two-nucleon system the renormalization procedure developed
in Refs. [3, 9–12]. We noted that the scattering properties can be recovered from the
discrete spectra, as long as the trap length parameter b is much larger than the range of the
interaction. As in the continuum, we were able to demonstrate systematic improvement of

17



0 0.05 0.1 0.15 0.2

k
2
 [fm

-2
]

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

k 
co

t δ
 [f

m
-1

]

FIG. 15: k cot δ3(k) in the L = 0, S = 1/2 channel obtained from the lowest energies at LO (circles)

and NLO (squares) as a function of k2, for ω = 1 MeV and Nmax
2 = 18. The dashed (full) line

corresponds to a LO (NLO) linear fit to the two lowest energies.

observables order by order.
In the three-nucleon system, we showed the extent to which scattering information can

be recovered from the discrete levels of the trap. We have presented results for the T = 1/2,
Jπ = 3/2+ channel, where we have shown that, as in free space, no three-nucleon interac-
tion is needed to renormalize the system at LO and NLO. We have estimated the quartet
scattering length for nucleon-deuteron scattering. Results at NLO are in good agreement
with the experimental value and previous EFT calculations. We also showed the collapse
of the system in the T = 1/2, Jπ = 1/2+ channel when no three-nucleon force is included.
This work opens the door for further development in describing scattering processes from
bound-state physics, providing an alternative to other methods under development [24].

For the future, we plan to extend this work to 4He and 6Li, in order to test whether the
reasonable agreement with experiment found in Ref. [2] was accidental or can be improved
at NLO, thus testing the limits of the pionless EFT with increasing the number of nucleons.
There is evidence [8], obtained with other methods, that the pionless EFT can, surprisingly,
describe more tightly bound nuclei, like 4He, with parameters determined in the two- and
three-nucleon systems. If this is indeed the case, this EFT could serve as the basis for more
extensive nuclear-structure calculations. In addition, we intend to apply our method to the
EFT in which the pion degrees of freedom are introduced explicitly, which should increase
the reach of nuclear EFT.
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