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We calculate the equation of state of neutron matter with realistic two- and three-nucleon inter-
actions using Quantum Monte Carlo techniques, and illustrate that the short-range three-neutron
interaction determines the correlation between neutron matter energy at nuclear saturation density
and higher densities relevant to neutron stars. Our model also makes an experimentally testable
prediction for the correlation between the nuclear symmetry energy and its density dependence -
determined solely by the strength of the short-range terms in the three neutron force. The same
force provides a significant constraint on the maximum mass and radius of neutron stars.
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Since their discovery, neutron stars have remained our
sole laboratory to study matter at supra-nuclear density
and relatively low temperature. The equation of state
(EoS) of matter at these densities is largely unknown,
but uniquely determines the structure of neutron stars
and the relation between their mass (M) and radius (R).
Matter that can support large pressure for a given en-
ergy density (typically called a stiff EoS), will favor large
neutron star radii for a given mass. Such EoS also pre-
dict large values for the maximum mass of a neutron star
stable with respect gravitational collapse to a black hole.
Conversely, a high density phase that predicts a smaller
pressure will result in more compact neutron stars and
smaller maximum masses.

The recent accurate measurement of a large neutron
star mass M= 1.97 ± 0.04 Msolar in the system called
J1614-2230 provides strong evidence that the high den-
sity equation of state is stiff [1]. Interestingly, attempts
to infer neutron star radii have favored relatively small
values ranging from 9−12 km [2–4]. Although the radius
inference depends on specific model assumptions, these
smaller radii imply a soft EoS in the vicinity of nuclear
saturation density. Taken together, they indicate that
the EoS of dense matter makes a transition from soft to
stiff at supra-nuclear density. In this article we show that
the 3-neutron force (3n) is the key microscopic ingredient
that determines the nature of this transition.

The importance of 3 body forces in nuclear physics
is well known, and Quantum Monte Carlo (QMC) cal-
culations of light nuclei have clarified its structure and
strength. However, in these systems the dominant 3 body
force acts between two neutrons and proton or between
two protons and a neutron. While the force between
3 neutrons (3n) is important in light neutron-rich nu-
clei, the short distance behavior is not easily accessible
[5]. Properties of large neutron-rich nuclei are potentially
sensitive to this interaction, especially if the symmetry
energy provides a reliable measure of the energy differ-
ence between pure neutron matter and symmetric nuclear
matter at saturation density. There has been much re-
cent progress in both theory and experiments to measure
the symmetry energy and its density dependence as re-
viewed in Ref. [6, 7]. The symmetry energy is expected to

be in the range 32± 2 MeV. We explore this experimen-
tally suggested range for the nuclear symmetry energy
and show that a more precise determination is needed to
adequately constrain the 3n interaction.

In this work we solve the non-perturbative many-body
nuclear Hamiltonian using the Auxiliary Field Diffusion
Monte Carlo [8] method. Its accuracy in studying nu-
clear systems has been tested in light nuclei [9]. The ex-
tension to include three-body forces in pure neutron rich
systems is straightforward with no additional approxima-
tions within the AFDMC technique [10], and a compari-
son with the Green’s function Monte Carlo (GFMC) has
been extensively tested in neutron drops [11]. We present
results for the EoS of neutron matter using phenomeno-
logical 2-neutron (2n) potentials which provide an ac-
curate description of nucleon-nucleon scattering data up
to high energies, and study the role of the poorly con-
strained 3n interaction.

In earlier work it has been established that the EoS
in the density regime 1 − 3 ρ0 plays an essential role in
determining the neutron star radius [12]. In this density
regime, the 3n interaction plays a critical role because
of a large cancellation between the attractive and repul-
sive parts of the 2n interaction arising from the long and
short distance behavior, respectively. Consequently, we
find that the neutron star radius for a canonical mass
of 1.4 Msolar is especially sensitive to the 3n interaction.
Although matter in the neutron star will contain a small
admixture of protons, here we calculate the EoS of pure
neutron matter for the following reasons. First, the struc-
ture of the interactions between neutrons is simpler than
those between neutron and protons. Second, these sim-
pler interactions are amenable to QMC methods to solve
the many-body problem as it is devoid of the complexities
of the isospin dependent spin-orbit and three-nucleon po-
tentials, and clustering effects likely in systems with pro-
tons. Third, the fraction of protons required to ensure
stability is small and is typically less than 10%. Finally,
since generically neutron matter has higher pressure than
matter containing any fraction of protons or strangeness
in the form of hyperons or kaons, our results provide
stringent upper bounds on the neutron maximum mass
and radius.
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To compute the EoS for neutron stars it is necessary
to describe the nucleon-nucleon interactions at short-
distances or large relative momenta up to p ' 2pFn '
660 MeV(ρ/ρ0)1/3 where pFn is the Fermi momentum,
ρ is density in the typical density in the neutron star
core and ρ0 = 0.16 fm−3 is the nuclear saturation den-
sity. Relative momenta up to pFn are required in even
a mean-field (Fermi gas) description, and the nn interac-
tion scatters nucleons to larger momenta up to of order
1.5 to 2 pFn at saturation density. Descriptions of higher
density neutron matter with softer interactions if they are
consistently evolved to lower scales, including induced 3n
(and potentially 4n) interactions.

Phenomenological two nucleon potentials such as the
Argonne potential have been constructed to describe
scattering data up to relative momenta ' 600 MeV with
high accuracy [13]. Despite the fact that the Argonne
potential has been fit up to lab energies of 350 MeV, it
very well reproduces scattering date up to much larger
energies [14] The AV8’ interaction we employ in this
study is identical to the full AV18 interaction in s− and
p−waves, and includes the dominant one-pion interac-
tion in higher partial waves. Chiral interactions also re-
produce the scattering data very well below 350 MeV
lab energy, but fail rapidly above because of the cutoff
in presently-available interactions. At larger momentum
transfer, the potentials cannot describe inelasticities but
in scattering channels where inelasticities are known to be
small they have been shown to provide a good descrip-
tion. They also provide good predictions [15] of high-
momentum components of nuclear wave functions as ob-
served in nucleon [16, 17] and electron scattering[18, 19].
These high momentum observables provide a test of the
assumed short-distance features. In the low-energy high-
momentum region relevant to neutron stars the inelastic-
ities in 2n scattering must be absorbed into many-body
forces (3n, 4n, ...) intimately connected to the short-
distance behavior of the 2n interaction.

The nuclear Hamiltonians we consider contain the non-
relativistic kinetic energy, and the 2n and 3n interactions:

H = −∇
2

2m
+ V2n + V3n . (1)

For the 2n potential, we use the Argonne AV8’ model [20]
and the form of the 3n interaction is inspired by both
the Urbana IX and the Illinois models [5]. We consider
a range of 3n interactions that contain long-distance s-
and p-wave 2π exchange contributions, an intermediate
range (3π loops) contribution, and a spin-independent
short-range repulsive term. Explicitly,

V3N = APW2π O2π,PW +ASW2π O2π,SW +A3πO3π +AROR .
(2)

This form of interaction includes all the terms present in
low order chiral interaction, plus selected terms found to
be important in studies of light nuclei and nuclear matter
using the Argonne interactions.

The structure of the operators O appearing above are
defined in Ref. [5]. The relative contributions of these

four components of the 3n force depends on the 2n in-
teraction. We find that for the Argonne potential, the
2n interactions suppress the long-distance (2π) contribu-
tion of the 3n force in the ground state. This suppres-
sion is a result of the pion-range correlations induced
by the 2n force, we find it also occurs for the Super-
Soft Core NN interaction [21]. For typical range of val-
ues of the strength parameter APW2π and ASW2π considered
in Ref. [5] we find the contribution of these operators
to the ground state energy is repulsive but very small
at all densities studied. In contrast, this interaction
is large and attractive in light nuclei where both neu-
trons and protons contribute. The intermediate-range
(3π) 3n interaction was introduced to fit the properties
of weakly-bound neutron-rich nuclei like 8He[5]. Ear-
lier calculations [10] have shown that this interaction is
strong and attractive in neutron matter for typical val-
ues of A3π quoted in Ref. [5]. In this work, we explored
a range of values for A3π ranging from zero to that in
the Illinois-7 3n interaction[22] because the structure of
this term is still not fully understood or constrained.
We use a phenomenological short-range repulsive term
as in the Urbana and Illinois three-body forces, with
VR = AROR = AR

∑
cyc T

2(mπrij)T
2(mπrjk), where

the function T (x) is defined in Ref. [5]. We have also
considered a different form V Rµ = AR

∑
cyc v(rij)v(rjk)

with and v(r) = exp(−2µr); other different forms of VR
have been explored, giving very similar results.

The 3n interaction we employ is not intended to be a
microscopic treatment of the complete 3n interaction. It
assumes that for the neutron matter equation of state
the effects of more complicated spin-dependent short-
distance 3n interactions, relativistic effects, and potential
4n interactions can be mimicked with simplified three-
neutron interactions with a wide range of spatial depen-
dence. This assumption has been tested in the case of
relativistic corrections, where Ref. [23] find that the den-
sity dependence of the relativistic effects are similar to
the 3n interaction. Further tests of the density depen-
dence of specific higher-order terms in the chiral inter-
action are valuable. The different forms of VR we have
explored span a wide range of density dependence for the
3n interaction, as shown below.

For the 3n interaction we vary both A3π and µ to study
the sensitivity to short-range physics. The strength of
the short-range 3n interaction AR is taken to be a free
parameter adjusted to yield the experimentally accessi-
ble nuclear symmetry energy. Although not proven, we
make the following reasonable assumptions: 1) relativis-
tic effects in neutron matter show a similar density de-
pendence to the short-range three-nucleon interaction as
carefully studied in Ref. [23], 2) the density dependence
of additional spin-dependent short-range 3n interactions
(for example higher-order terms in chiral expansions) in
the equation of state of neutron matter can be described
in a spin-independent model, and 3) four-nucleon force
contributions with different density dependence are sup-
pressed relative to the 3n force for densities up to 2 − 3



3

0 0.1 0.2 0.3 0.4 0.5

Neutron Density (fm
-3

)

0

20

40

60

80

100
E

n
e
rg

y
 p

e
r 

N
e

u
tr

o
n
 (

M
e
V

)

30 32 34 36
E

sym
 (MeV)

30

40

50

60

70

L
 (

M
e
V

) 35.1

33.7

32

E
sym

= 30.5 MeV (NN)

Fermi-gas

FIG. 1. (Color online) The energy per particle of neutron
matter for different values of the nuclear symmetry energy
(Esym). For each value of Esym the corresponding band shows
the effect of different spatial and spin structures of the three-
neutron interaction. The inset shows the linear correlation
between Esym and its density derivative L.

ρ0. This assumption can be justified at nuclear density
by the high precision fits to light-nuclei obtained with
only 3n forces [24], at higher density this model assump-
tion can be tested by its predicted correlation between
properties of neutron-rich nuclei and neutron stars.

We assume that Esym = Eneutron(ρ0) − Enuclear(ρ0)
and using experimental values of Esym = 32 ± 2 MeV
[25] and Enuclear(ρ0) = −16.0 ± 0.1 MeV from nuclear
masses models [26] obtain an empirical constraint for
neutron matter energy Eneutron(ρ0) = 16 ± 2 MeV. Po-
tential higher-order corrections to the quadratic nuclear
symmetry energy, for which there is some theoretical mo-
tivation but no clear experimental evidence, may affect
the extraction of the neutron matter energy and increase
the associated error. In this work we ignore these poorly
known corrections and tune AR to reproduce the neu-
tron matter energy in the range 16± 2 MeV. Our results
are shown in Fig. 1, where the green and blue points
are QMC results for different choices of AR correspond-
ing to Eneutron(ρ0) = 16 MeV ( Esym = 32 MeV) and
Eneutron(ρ0) = 17.7 MeV ( Esym = 33.7 MeV), respec-
tively. The results are compared to those obtained using
a 2n force without 3n (Esym = 30.5 MeV), and 2n com-
bined with the Urbana IX 3n (Esym = 35.1 MeV). The
bands depict the sensitivity to short-distance spin and
spatial structure of the 3n interaction and are obtained
by varying the range of the 3n short-distance force and
A3π.

In the vicinity of nuclear density, Eneutron(ρ) =
Eneutron(ρ0) + L/3 (ρ− ρ0)/ρ0 where L is related to the
derivative of the nuclear symmetry energy. The inset in
Fig. 1 shows the correlation between Esym and L. This
correlation is insensitive to the large variations in the
range of the short-range 3n force µ and the strength of
the 3π term A3π. This is in sharp contrast to the pre-

dictions of mean field theories where the slope was found
to be very sensitive to the choice of effective interactions
[27]. Previous calculations of neutron matter up to ρ0[28]
use a chiral 2n interaction fit to lab energies of 350 MeV
plus the two-pion exchange three-nucleon interaction to
calculate the neutron matter equation of state using per-
turbation theory. In contrast to our results, they find a
significant repulsion from the 2π exchange long range 3n
interaction. Since this force is better constrained by light
nuclei, they can make a prediction for the neutron matter
energy independent of the phenomenological short-range
interaction that plays an important role in our calcula-
tion. To understand this basic difference further tests
of the convergence of perturbation theory and the chi-
ral expansion in the diagrammatic calculations, a survey
of other two-body interactions in the AFDMC, and the
incorporation of chiral interactions in non-perturbative
methods such as lattice and suitable extension of QMC
would be necessary.

Current determinations of L have relied on analysis
of neutron-skins, surface contributions to the symme-
try energy of neutron-rich nuclei, and isospin diffusion
in heavy-ion reactions. These studies have been useful,
but not very constraining as acceptable values are in the
range L = 40 − 100 MeV[25]. However, a better deter-
mination of L even with modest reduction in the error
would test our model for 2n and 3n interactions.

The predictions of QMC can be accurately fit using

E(ρ) = a

(
ρ

ρ0

)α
+ b

(
ρ

ρ0

)β
, (3)

where the coefficients a and α are sensitive to the low
density behavior of the EoS, while b and β are sensitive
to the high density physics [29]. We find that the 3n
force plays a key role in determining the coefficient b and
the variation of the other EoS parameters is compara-
tively small. Numerical values for these parameters are
reported in Tab. I for selected Hamiltonians.

3N force Esym L a α b β

(MeV) (MeV) (MeV) (MeV)

none 30.5 31.3 12.7 0.49 1.78 2.26

V PW2π + V Rµ=150 32.1 40.8 12.7 0.48 3.45 2.12

V PW2π + V Rµ=300 32.0 40.6 12.8 0.488 3.19 2.20

V3π + VR 32.0 44.0 13.0 0.49 3.21 2.47

V PW2π + V Rµ=150 33.7 51.5 12.6 0.475 5.16 2.12

V3π + VR 33.8 56.2 13.0 0.50 4.71 2.49

UIX 35.1 63.6 13.4 0.514 5.62 2.436

TABLE I. Fitting parameters for the neutron matter EoS de-
fined in Eq. 3 for selected different Hamiltonians.

To calculate the mass and radius of neutron stars we
solve the Tolman-Oppenheimer-Volkoff (TOV) equations
for the hydrostatic structure of a spherical non-rotating
star using the QMC equation of state for neutron matter
[30, 31]. The QMC EoS is used for ρ ≥ ρcrust = 0.08
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FIG. 2. (Color online) Mass-Radius relation for the EoS with
three-neutron interactions corresponding to the bands for dif-
ferent Esym shown in Fig. 1. The intersection with the orange
lines roughly indicate central densities realized in these stars.

fm−3. Below this density we use the EoS of the crust
obtained in earlier works in Ref. [32] and [33].

The neutron star mass-radius predictions are obtained
by varying the 3n force and shown in Fig. 2. The striking
feature is the estimated error in the neutron star radius
with a canonical mass of 1.4 Msolar. The uncertainty in
the measured symmetry energy of ±2 MeV leads to an
uncertainty of about 3 km for the radius, while the un-
certainties in the short-distance structure of the 3n force
predicts a radius uncertainty of <∼ 1 km. The different
bands of Fig. 2 correspond to EoS of Fig. 1 with the
same colors, giving different values of Esym.
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FIG. 3. (Color online) Bounds on the maximum mass and
radius for different equations of state as a function of the
critical density ρc. The left panel shows the maximum mass,
the right top and bottom panels shows the maximum possible
radius for any neutron star with mass grater than 1.2 Msolar

and for a neutron star with M= 1.4 Msolar, respectively.

The central density of stars M>∼ 1.5 Msolar are larger
than 3ρ0. At these higher densities, the effects such as
relativistic corrections to the kinetic energy, retardation
effects in the potential, and 4- and higher body forces
become important. Consequently, non-relativistic mod-
els violate causality and predict a sound speed cs =

√
∂p/∂ε>∼ c for ρ ' 4 − 5ρ0. To overcome this defi-

ciency we adopt the strategy suggested in Ref. [34] and
replace the EoS above a critical density ρc by the maxi-
mally stiff or causal EoS given by p(ε) = c2ε− εc, where
p is the pressure, ε is the energy density, c is the speed
of light and εc is a constant. This EoS is maximally stiff
and predicts the most rapid increase of pressure with en-
ergy density without violating causality. The constant
εc is the parameter that determines the discontinuity in
energy density between the low and high density EoS’s.
Our choice of εc ensures that the energy density is con-
tinuous and provides an upper bound on both the radius
and the maximum mass of the neutron star.

Fig. 3 shows how the bound on the maximum radius
and mass of the neutron star vary with our choice of the
critical density ρc. It also illustrates that the bounds pro-
vide useful constraints only when the EoS is known up to
2− 3 ρ0. In Ref. [35] bounds on the radius were derived
by using an EoS of neutron matter calculated up to ρ0
with specific assumptions about polytropic equations of
state at higher densities. Our upperbounds are model
independent and show that the radius of 1.4 Msolar can
be as large as 16 km if ρc = ρ0. To obtain a tighter
bound the equation of state between 1 − 2ρ0 is impor-
tant. The red, green, blue and black curves are pre-
dictions corresponding to the 3n interaction strength fit
to Esym = 30.5, 32.0, 33.7 and 35.1 MeV, respectively.
We also note that these bounds do not change much for
ρc>∼ 4ρ0 because the QMC EoS is already close to being
maximally stiff in this region. These upper bounds pro-
vide a direct relation between the experimentally measur-
able nuclear symmetry energy and the maximum possible
mass and radius of neutron stars.

To summarize, we predict that the correlation between
the symmetry energy and its derivative at nuclear den-
sity is nearly independent of the detailed short-range 3n
force once its strength is tuned to give a particular value
of Esym. Consequently, in our model one short-distance
parameter AR completely determines the behavior of the
EoS. At higher density, the sensitivity to short-distance
behavior of the 3n interaction translate to an uncertainty
of about 1 km for the neutron star radius with mass
M= 1.4 Msolar. While the uncertainty at high density
due to a poorly constrained symmetry energy is larger
' 3 km. Within our model we predict that neutron star
radii are in the 10−13 km for nuclear symmetry energy in
the range 32−34 MeV. If nuclear experiments can deter-
mine that Esym ≤ 32 MeV, QMC predicts that L <∼ 45
MeV at nuclear density, and for neutron stars it predicts
Mmax < 2.2 Msolar and R < 12 km for a neutron star with
M= 1.4 Msolar . The relationship between the symmetry
energy and its density dependence is experimentally rele-
vant, and its implications on the neutron star mass radius
relationship are subject to clear observational tests.
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