
This is the accepted manuscript made available via CHORUS. The article has been
published as:

β decay of ^{32}Cl: Precision γ-ray spectroscopy and a
measurement of isospin-symmetry breaking

D. Melconian, S. Triambak, C. Bordeanu, A. García, J. C. Hardy, V. E. Iacob, N. Nica, H. I.
Park, G. Tabacaru, L. Trache, I. S. Towner, R. E. Tribble, and Y. Zhai

Phys. Rev. C 85, 025501 — Published  9 February 2012
DOI: 10.1103/PhysRevC.85.025501

http://dx.doi.org/10.1103/PhysRevC.85.025501


CM10277

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

The β Decay of 32Cl: Precision γ-Ray Spectroscopy and a Measurement of

Isospin-Symmetry Breaking

D. Melconian,1, 2, 3, ∗ S. Triambak,3, 4 C. Bordeanu,3, † A. Garćıa,3 J.C. Hardy,1, 2 V.E. Iacob,2
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Background: Models to calculate small isospin-symmetry-breaking effects in superallowed Fermi decays have
been placed under scrutiny in recent years. A stringent test of these models is to measure transitions for which
the correction is predicted to be large. The decay of 32Cl decay provides such a test case.

Purpose: To improve the γ yields following the β decay of 32Cl and to determine the ft values of the the β

branches, particularly the one to the isobaric-analogue state in 32S.

Method: Reaction-produced and recoil-spectrometer-separated 32Cl is collected in a tape and transported to a
counting location where β − γ coincidences are measured with a precisely-calibrated HPGe detector.

Results: The precision on the γ yields for most of the known β branches has been improved by about an order of
magnitude, and many new transitions have been observed. We have determined 32Cl-decay transition strengths
extending up to Ex ∼ 11 MeV. The ft value for the decay to the isobaric-analogue state in 32S has been measured.
A comparison to a shell-model calculation shows good agreement.

Conclusions: We have experimentally determined the isospin-symmetry-breaking correction to the superallowed
transition of this decay to be (δC − δNS)exp = 5.4(9)%, significantly larger than for any other known superallowed
Fermi transition. This correction agrees with a shell-model calculation, which yields δC − δNS = 4.8(5)%. Our
results also provide a way to improve the measured ft values for the β decay of 32Ar.

PACS numbers: 23.40.Bw, 24.80.+y, 29.30.Kv, 23.20.Lv

I. MOTIVATION

The comparative half-lives of superallowed Fermi β
decays between 0+ isobaric analogue states have been
the focus of intense research activity for many years and
presently represents one of the most stringent tests of
the Standard Model of the electroweak interaction [1].
The high precision of both experimental measurements
and theoretical calculations of their ft values set strin-
gent limits on scalar and right-handed currents, verify
conservation of the vector current to ∼ 10−4, and de-
termine the up-down element of the Cabibbo-Kobayashi-
Maskawa (CKM) quark-mixing matrix, Vud [1–3]. Exper-
imentally, the ft value of thirteen cases have been mea-
sured to . 0.3%; this places a demanding requirement on
theory to attain similar precision. Although these tran-
sitions are intrinsically simpler to describe theoretically
than most β decays because they are relatively insensi-
tive to nuclear-structure effects, small (∼ 1%) corrections
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must be applied to account for the fact that the decay
occurs within the nuclear medium. Recently, emphasis
has been placed on scrutinizing the nuclear-structure-
dependent isospin-symmetry-breaking (ISB) corrections,
δC [4–8], which characterizes the degree to which the
Fermi matrix element, MF , deviates from M0, its value
in the limit of strict isospin symmetry:

|MF |
2 = |M0|

2(1− δC). (1)

The 13 most precisely-measured cases mentioned pre-
viously are all isospin T = 1 to T = 1 transitions in
A = 4n + 2 nuclei. Shell-model calculations for these
cases yield values of order δC ∼ 0.5% for A < 56 [1] and
values of order δC ∼ 1.5% for A > 56 [1, 9]. If attention
is switched to A = 4n nuclei, even larger values of δC
are predicted, which if experimentally extracted, would
provide an even more demanding test of such ISB calcu-
lations. The reason larger values are expected in A = 4n
nuclei is that the daughter analog state sits among many
states of lower isospin, T − 1. Some of these states have
the same spin as the analog state and sizable isospin mix-
ing can occur.
In this work, we will expand on a recent Letter [10]

which discusses an extraction of the isospin-symmetry
breaking correction in the decay of 1+, T = 1 32Cl. Its
Fermi decay branch feeds a 1+, T =1 state in 32S, whose
position in the spectrum at 7001-keV excitation [11] is
very close to a known 1+, T = 0 state at 7190 keV [12].
As discussed below, a calculation of δC for this case yields
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δC = 4.8(5)%, a significantly larger value than those
found in A = 4n+ 2 nuclei.
Another motivation for this work is related to the re-

cently measured T = 2 decay of 32Ar [13]. Here calcu-
lations predict δC = 1.8% [14]. The ISB correction for
this case extracted from the experimental ft values was
found to be δexpC = (2.1 ± 0.8)% [13] and later corrected
to δexpC = (1.8 ± 0.8)% in Ref. [15], where an improved
value for the end-point energy was deduced. A poten-
tially large source of systematic uncertainty arising from
the need to detect γ rays in this measurement may be
minimized using the γ branches of 32Cl. This is because β
decay of 32Ar is followed by the β decay of 32Cl 64.4(2)%
of the time [13]. Thus, 32Cl provides an in situ efficiency
calibration which is useful to extract isospin-breaking in-
formation from 32Ar. The present work opens the possi-
bility for significant improvements in the precision with
which δC can be determined in the decay of 32Ar.

II. EXPERIMENTAL PROCEDURE

The experiment was carried out at the Cyclotron In-
stitute, Texas A&M University. A primary beam of 32S
was produced by an ECR ion source and injected into
the K500 superconducting cyclotron to accelerate it to
≈ 24.8 MeV/nucleon. The ≈ 400 nA 32S beam ex-
ited the cyclotron and was directed towards the target
chamber of the Momentum Achromatic Recoil Separa-
tor (MARS) [16]. A 20 MeV/nucleon secondary beam
of 32Cl was produced via the inverse kinematic transfer
reaction, 1H(32S, n)32Cl on a LN2 cooled, hydrogen gas
target at ≈ 1.4 atm. MARS was used to spatially sepa-
rate the reaction products, resulting in a 32Cl beam with
an intensity of ∼ 2×105 ions/s. Beam contamination was
identified using a position-sensitive Si-strip (∆E) detec-
tor followed by a silicon (E) detector which were placed
just downstream of the MARS focal plane. For data col-
lection, the Si detectors were removed and the beam ex-
ited the MARS beamline through a 50 µm-thick Kapton
window. The beam then passed through a 0.3 mm thick
BC404 scintillator to count the number of ions. Prior
to being implanted into a 76 µm-thick aluminized-Mylar
tape which is part of a fast tape-transport system, the
beam was passed through a set of Al degraders. The
thickness of the degraders was chosen to ensure that the
activity was deposited mid-way through the tape. The
different ranges of the contaminants compared to 32Cl al-
lowed further purification; however, since we were search-
ing for small branches and wanted to maximize the yields,
we allowed greater contamination than usual of the de-
posited activity, accepting 91% as our final purity of 32Cl.
The 32Cl atoms were collected in an ≈ 1 cm diame-

ter spot on the tape for 0.8 s, after which the beam was
interrupted and the tape-transport system was triggered
to move the activity to a shielded counting station 90 cm
away. The latter was accomplished in ≈ 180 ms. The set-
up is shown schematically in Fig. 1. Once transported to
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FIG. 1. Schematic diagram of the end of MARS and the fast
tape-transport system as well as a timing diagram for the
experiment. The counting time for decays was generally 1 sec
as indicated, but times of 2 and 4 sec were also used for the
diagnosis of longer-lived contaminants.

the shielded area, β − γ coincident data were acquired
for typically 1 sec (83% of the total data set). In a few
of the runs (corresponding to 11% and 6% of the data
respectively) we used count times of 2 secs and 4 secs to
check for long-lived contaminants. The data were regis-
tered event-by-event by recording all β − γ coincidences
between a 1-mm-thick BC404 plastic scintillator and a
70% HPGe detector. The 1.5 inch diameter scintillator
∆E detector had a threshold of 40 keV and was placed
5 mm behind the tape subtending ≈ 32% of the total
solid angle for the βs. The γ detector was placed much
farther away: 15.1 cm from the tape to reduce the effects
of coincidence summing. The γ-ray energy, the ∆E of
the β, the coincidence time between them, and the time
of the event relative to the beginning of the cycle were all
recorded. The typical tape cycle, outlined in Fig. 1, was
repeated continuously throughout the experiment. The
total number of β singles events and the total number of
heavy ions (HIs) from MARS (detected by the first scin-
tillator) for each cycle were determined from scalers and
recorded. The ratio of β singles to HIs was used to veto
bad cycles where, for example, the tape transport did not
place the activity exactly in the correct location. Of the
≈ 36 000 cycles made over the course of the experiment,
92.5% survived the β/HI ratio cut.
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FIG. 2. Top: the adopted absolute photopeak efficiency curve
of the HPGe used in this work. The solid line is the mea-
sured efficiency up to 3.5 MeV from Refs. [17–19], while the
dashed line above 3.5 MeV represents an extrapolation based
on Cyltran calculations. Bottom: percent difference of a
Penelope simulation minus the adopted curve (dotted line)
and the assigned uncertainties to the efficiency curve used in
the present analysis (hatched region).

A. γ Efficiencies

The extremely precise absolute photopeak efficiency
calibration of the HPGe detector is a critical compo-
nent of this experiment. This efficiency has been care-
fully studied up to energies of 3.5 MeV as discussed
in Refs. [17–19]. Over the range of 50 − 1400 keV,
Ref. [18] discusses how the absolute efficiency has been
calibrated to ±0.2%, and Ref. [19] uses a combination of
measurements and calculations using the Cyltran [20]
Monte Carlo code to extend the efficiency curve from
1.4 − 3.5 MeV to ±0.4% precision. For this work, the
highest energy γ rays observed are at 7.2 MeV, requiring
us to further extend the photopeak efficiency curve. Our
adopted curve and its extrapolation, shown in the top
panel of Fig. 2, is calculated using the the same Cyl-

tran program used in Refs. [17–19]. We additionally
checked this extrapolation against an independent calcu-
lation based on the Monte Carlo radiation transport code
Penelope [21]. As can be seen in the bottom panel of
Fig. 2, there is excellent agreement between the two cal-
culated photopeak efficiencies over the range of energies
observed in this work. As the figure also indicates, we in-
crease the uncertainties in the efficiency curve, adopting
conservative uncertainties of ±1% from 3.5–5 MeV, and
±5% above 5 MeV. The differences between the Cyl-

tran and Penelope extrapolated efficiency curves are
well within these uncertainty ranges.

We have investigated the effects of summing in the
HPGe detector using our Monte Carlo simulations. A
small but non-negligible factor arises from Compton sum-

ming of γ rays that scatter off various volumes. This
makes knowing the total efficiency for γ detection nec-
essary, although the precision does not need to be very
stringent because this summing with photopeak events
is a small correction. However, accurately quantifying
the effects of summing is difficult due to the large vol-
ume needed for tracking photons that may scatter from
any of the surrounding elements. Our simulations where
the geometry contained only detailed descriptions of the
detectors and Mylar tape (i.e. neglecting the table, the
floor, the walls, etc.) underestimates this summing ef-
fect. Rather than attempting to include the many po-
tentially important scattering surfaces, we chose to per-
form Penelope simulations with our geometry encased
by an Aluminum cylinder knowing that this surely over-
estimates the effect. The result of simulations using these
two geometries is shown in Fig. 3 where differences as
large as a factor of two arise at lower energies. We take
the total efficiency to be halfway between these two simu-
lated curves, with an uncertainty that spanned the results
of both. This results in a large uncertainty in the total
efficiency but since the Compton summing with photo-
peaks is a small correction, this conservative estimate
does not limit our determination of the γ branches.
We also investigated the possible effects of γ-ray an-

gular correlations, which may affect the probability of a
photopeak event summing with the photopeak from an-
other cascade γ. The only cases that would result in a
non-zero γ-γ correlation are 1+→ 2+→ 0+ cascades; we
tested both E2 and M1 transition types and found that
independent of the transition type, γ-γ angular corre-
lations do not lead to any additional summing in our
geometry.

B. QEC and the β Efficiency

The mass excess of 32Cl is obtained from our averaging
Refs. [15, 22, 23] to get ME(32Cl) = −13334.60(57) keV,
and ME(32S) = −26015.535(2) keV is taken from
Ref. [24]. Taken together, the decay energy is QEC =
12680.9(6) keV. Although the fraction of events below
the finite Eβ threshold of 40 keV in the plastic scintil-
lator is expected to have a weak dependence on the β
end-point energy, in principle the β efficiency depends
on Qβ. To investigate this effect, Penelope simulations
were used to determine the β efficiency of the plastic
scintillator. A linear fit of the mean β efficiency for the
entire β spectrum versus β end-point energy yielded an
efficiency that was consistent with being flat over the
4 − 12-MeV range of end-points relevant for this decay:
η(Qβ) = [32.32(41)− 0.022(45)Qβ]%.

III. DATA ANALYSIS

Figure 4 shows the spectrum from the resistive-readout
position-sensitive Silicon detector at the focal plane of
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FIG. 3. Total efficiency of the HPGe as simulated by Pene-

lope. The filled circles represent the simulated points with
our basic geometry (detectors and Mylar tape) while the open
circles show the results when our basic geometry is encased in
an Aluminum cylinder. The dashed lines going through each
is a 4th order polynomial fit, and the solid central line is the
average of the two which we take to be our total efficiency
curve. We assign an uncertainty that spans the result of both
simulations. We used these curves to determine systematic
uncertainties associated with summing in our detectors.

MARS. This logarithmic 2D plot shows that the most
significant contaminations in the beam prior to our clos-
ing the purifying slits were 30S and 31S, with 32Cl making
up ≈ 86% of the beam at the focal plane of MARS. The
31S contamination was minimized by closing the vertical
slits at the focal plane of MARS as indicated in the fig-
ure, reducing it from ≈ 3% to ≈ 0.4%. The slits had
little effect at removing the 30S contamination, however,
as it lies in the same vertical band as the 32Cl. The pu-
rity of the beam at the focal plane of MARS with the
vertical slits in place was ≈ 89%. As mentioned previ-
ously, the 30,31S contaminations were further reduced by
the degraders, which were chosen to maximize the im-
plantation of 32Cl in the centre of the Mylar tape. The
purity of the beam implanted in the tape was improved
by another couple of percent to ≈ 91% 32Cl with 30S the
largest contaminant at ≈ 7.5%. Note that we could have
obtained a higher purity at the cost of reducing the rate;
however, since the γ energies of the contaminants do not
overlap the 32Cl lines, we chose to maximize the rate.

The plot in Fig. 5 shows the time difference between β
particles detected in the scintillator and γ-rays observed
in the HPGe detector plotted against the γ energy. One
clearly sees a strong peak at tβ−tγ ≈ 475 ns. In addition
to the expected walk at low γ energies (below 511 keV),
a smaller 2nd peak around 600 ns in the timing is visible;
although the source of this peak is not fully understood,
the γ spectra gated on this “echo” peak and the main
peak are identical, proving that these are good events.
We therefore included it in the analysis and defined a
time gate between 430 and 800 ns to select real coinci-
dences (the dashed horizontal lines in Fig. 5). The rest

FIG. 4. Identification of the ion beam at the focal plane
of MARS, before the purifying slits in the vertical position
were moved to the closed positions (indicated by the hatched
areas). The region labeled 32Cl represents 86% of all events
in the spectrum, which was increased to 89% once the slits
were in place. The tails in the vertical position are a result
of incomplete charge collection in the resistive-readout Silicon
∆E detector.

of the timing spectrum defines another window which se-
lects accidental coincidences. The Eγ projection of Fig. 5
shows two curves: the top one represents the projection
of the real-coincidence window, and the lower one repre-
sents the accidental coincidences. The lower one, prop-
erly normalized, was then used as a background spectrum
to be included in our fitting function as described below.
The real-coincidence window position and size were var-
ied significantly to check for potential systematic errors.
This procedure yielded results with no significant sensi-
tivity to the particular window used, as long as it covered
the range containing all of the real coincidences.
Figure 6 shows the γ spectrum observed in the HPGe

detector in hardware coincidence with a β signal in the
scintillator. This is the same as the upper projection of
Fig. 5 but with finer binning. Except for a strong peak at
677 keV from the decay of 30S nearly every statistically
significant peak is associated with the decay of 32Cl. One
exception is at 2776 keV where 360± 50 counts are seen
which could not be identified based on the known levels
in 32S [12] nor with any contaminants. If this was, in fact,
a product of the decay of 32Cl, it would only represent a
0.1% γ-ray yield.
A reassuring check of the cleanliness of our data and

identification of the 30S contamination is shown in Fig. 7.
This shows a comparison of the lifetime of the two most
intense peaks in the 32Cl spectrum (2230 and 4771 keV)
as well as the main peak (677 keV) from 30S. Dead time
and pile-up effects were assumed to be negligible cor-
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FIG. 5. Logarithmic 2D plot of the γ energy versus the
timing between the β and γ. Accidental coincident events
were defined to have tβγ ≤ 430 ns or tβγ ≥ 800 ns. The
lower curve of the projection of the HPGe energy repre-
sents these background events (scaled according to the cut-
window size). The upper projection is the good events with
430 ns < tβγ < 800 ns.

rections and are not included in these half-life curves.
The fit was from 0.060 to 0.985 s after the activity was
transferred to the counting station. The fit lifetime of
2230-keV γ events is 0.3012(13) s which is consistent with
the 0.300(5) s lifetime fit from 4771-keV events. Both of
these results are in agreement with the accepted half-life
of 0.298(1) s of Ref. [25]. For the 667-keV line from 30S
events, the Compton tail from higher-energy γs from the
shorter-lived 32Cl represent a contamination to the 30S
curve. In order to remove their effect, the minimum time
included in the fit range for 30S was 1 sec, over three
32Cl half-lives. The fit yielded the half-life in this case
to be 1.169(34) s, in good agreement with the accepted
value of 1.1786(45) s from Ref. [26]. Other 32Cl peaks
did not have enough statistics to be able to confirm the
consistency of their t1/2 decay curves.

A. The γ Peak Areas

In order to extract peak areas we used a fitting function
consisting of four terms: a Gaussian, G, representing the
main γ photopeak; a low-energy tail corresponding to in-
complete charge collection of good photopeak events, T ;
a constant background, Bbkgd; and the background his-
togram from the accidental coincidences in β− γ timing,
Baccid, as described previously.

We combined and normalized the terms so that our
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FIG. 6. The γ spectrum observed by the HPGe detector in
coincidence with a β. Peaks are labeled with their energy,
the symbol * or the symbol **, referring to the full energy,
single-escape and double-escape peaks, respectively. Peaks
not associated with 32Cl have in addition a label indicat-
ing the parent nucleus. Decays from the 7001-keV isobaric
analogue state are highlighted with boxed values. The only
significant background peak is at 677 keV from the 30S con-
tamination.

final fitting function was:

Ffit = a2γ
[

(1− a2tail)G+ a2tailT
]

+ Bbkgd +Baccid, (2)

where the total number of γ photopeak events is given
by Nγ = a2γ . Note that by defining the fitting function
in this way, our statistical uncertainty, ∆Nγ = 2aγ∆aγ ,
includes any correlations with other parameters of the
fit.
The γ energies investigated included any transitions

between states such that Eγ > 400 keV. The background
from the Compton edge of the 511 keV peak compro-
mised the sensitivity of searching for peaks below this
energy. All fits were made using a FORTRAN code based
on the Marquardt algorithm [27] for χ2 minimization.
The program assumes Poisson statistics in the data, and
thus properly handles bins with very few counts. The
data were divided into small blocks with equal number
of total counts and analyzed individually. This procedure
minimized the effects of gain variations since each data
set was acquired over a limited range of time rather than
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FIG. 7. Number of counts as a function of time after the activ-
ity was transferred by the fast tape-transport system (points)
and lifetime fits (solid lines). These decay spectra are gated
on the two most prominent 32Cl lines (2230 and 4771 keV)
as well as the dominant contaminant, 30S at 677 keV. The
32Cl peaks were fit to runs where events were counted for 1 s
following transfer, and the longer-lived 30S peak used runs
where the count time was 4 s.

over the whole run. Gain variations determined by the
change in the fit centroid value were always below 0.05%;
so in the end, the effects due to gain variations were neg-
ligible. The number of blocks of data varied for each peak
depending on its intensity; for example, while fitting the
high-statistics 2230-keV peak the data were divided into
170 blocks, while the much weaker 7189-keV peak had
all of the data summed together into one histogram be-
fore fitting. When the data were divided into blocks for
fitting, the areas were summed and uncertainties propa-
gated to get the total number of counts. We note that
this number is in statistical agreement with the result
obtained when fitting the summed histogram, although
in the latter case the χ2 was worse due to small drifts in
the gain.
Figure 8 shows a typical fit to the 2230-keV peak. In

general the fits were excellent, with very few converging
with a confidence level (CL) far from the ideal 50%; the
distribution of confidence levels has a mean of 30.8% and
a standard deviation of 24.2%.

The energy calibration of the energy of our HPGe
detector was made using: (a) the two most precisely
known and strongest γ de-excitations from levels in 32S
(2230.49(15) and 4281.51(26) keV from Ref. [28]); and
(b) the three independent γ-rays from our main contam-
inant 30S (667.01(3), 708.70(3) and 2342.2(1) keV [12]).

B. The β and γ Branches

Another FORTRAN code, also based on the Marquardt
algorithm, was used to fit β and γ branches to the ob-

FIG. 8. (Color online) The top panel shows a typical fit, in
this case to the 2230-keV peak, using the fitting function of
Eq. (2). The dashed line is the tail from incomplete charge
collection; the dotted is the accidental coincidences; the dash-
dot line is a flat background; and the solid histogram is the
total fitting function. The bottom panel shows the residual
of the fit in terms of σ.

served number of γ events, Nγ
i,j , where j represents the

state to which the ith state γ decays. Letting βi repre-
sent the probability for the β decay to proceed to state
i, we normalize the β branches such that

∑

βi = 1, (3)

where i is summed over all of the states considered in
the analysis (see below). Similarly, we normalize the γ
branch probabilities, γi,j , from a given 32S excited state
i to lower state j as

∑

j<i

γi,j = 1. (4)

In terms of these branches, to first order the number
of observed γ rays is given by:

Nγ
i,j = Ntot

[

βiηi +
∑

k>i

βkηkγk,i

]

γi,jǫi,j , (5)

where the first term in the brackets arises from the β
transition directly to state i, and the second term repre-
sents the feeding from β transitions to higher levels that
γ decay to state i. Here Ntot is the total number of de-
cays (a free parameter in the fits since the total number
of β’s was not precisely measured), ǫi,j is the photopeak
efficiency of the HPGe detector at an energy Ei,j , and
ηi is the efficiency of the plastic scintillator to observe
a β with an end-point energy Qi. Small corrections to
Eq. (5) (included in the analysis but omitted here for
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clarity) are required to account for (a) summing with
cascade γs from above and below (which requires the to-

tal efficiency of the HPGe), and (b) summing with the
511 annihilation radiation since this is a β+ decay.

The nine lowest (0, 1, 2)+ states observed by Détraz et
al. [29] and Anderson et al. [30] along with the (1.0+0.2

−0.5)%
ground state branch from Armini et al. [25] represent
most of the β yield; however little is known above
7.2 MeV of excitation energy. Some β-delayed proton
and alpha decays have been observed [31] to states above
8.7 MeV with particle energies as low as 762(5) keV, but
this still leaves a 1.5 MeV window of Q-value in which
no β transitions have been identified. This suggests that
there is no appreciable β feeding in this energy region;
however, it does not rule out the possibility of a large
number of weak β transitions. Each of these transitions
may be too small to be detected individually, but could
cumulatively contribute a total β strength of up to a few
per cent. This “Pandemonium effect,” originally pointed
out in Ref. [32], was raised again recently [33] with regard
to superallowed β decay in p, f -shell nuclei. Following the
approach advocated in these references, we use a shell-
model calculation to compute the weak β branches and
include its predicted strength in the analysis. The model
space used is the full s, d shell with the effective inter-
actions USD of Wildenthal [34] and the two more recent
updates USD-A and USD-B of Brown and Richter [35].

We include in our analysis of the branches and yields a
total of 51 excited states in 32S. Our shell-model calcula-
tion correctly predicts all of the 9 lowest (0, 1, 2)+ states
with Ex < 7.2 MeV reported in Détraz et al. [29]. We
find that the RMS deviations of the shell-model calcula-
tion from the known excitation energies [12] are quite
good: 120 keV (USD), 209 keV (USD-A) and 172 keV
(USD-B). This is a gratifying indication that the shell
model is performing well in this s, d-shell nucleus. Even
though selection rules prohibit β decays to the six lowest
(3, 4)± states, they are included in the analysis when ac-
counting for γ-ray de-excitations. The shell-model calcu-
lations identify approximately 40 β transitions to states
whose excitation energies in 32S lies between 7.485 and
≈ 11.8 MeV. Unfortunately, the high density of states
in this energy range makes a state-by-state comparison
difficult, especially for the 2+ states. Based on the good
correspondence of excitation energies and γ de-excitation
branches, we are able to identify 6 of the shell-model
states in this region with ones in the ENSDF Data Ta-
bles. None of the other 30 shell-model states individu-
ally has a β-transition strength greater than 0.3%, but
cumulatively they sum to 0.50% in the USD, 0.69% in the
USD-A, and 0.55% in the USD-B calculations. We include
these weak β strengths and de-excitation γ rays predicted
by the shell model in our overall analysis.

In the analysis, a β branch could be deduced as long as
there is at least one decay γ ray lying within the 7.35 MeV
energy range of our HPGe. The ground-state branch and
higher excitation-energy shell-model-state branches that
were not observed in this experiment were included in

the analysis as missing strength. For the ground state,
we take the branch to be (1.0+0.2

−0.5)% as determined by
Armini et al. [25], and the combination of all the unseen
shell-model states at energies above 7.2 MeV is taken
to be the average of the USD, USD-A and USD-B cal-
culations with an uncertainty that spans the variation:
(0.60±0.10)%. The α-particle and proton-emitting states
in the 8.7 to 11.1 MeV excitation energy range reported
by Honkanen et al. [31] are not separately included be-
cause their summed β strength of (0.080 ± 0.005)% is
significantly less than and no doubt already included in
the missing strength predicted by the shell model.

IV. RESULTS

A. Experimental Results

The excitation energies in 32S, the β-decay branches
and the log ft values determined in this work are shown
in Table I. The states up to 7.2 MeV each have multi-
ple γ rays which were observed in this work. Thus the
γ branches in these cases could be fit using the proce-
dure described earlier. Furthermore, the fitting routine
allowed us to treat the excitation energies of these states
as free parameters, and fit the observed lines such that
the Ex values minimized the χ2 of the calculated γ ener-
gies. For the highest three energy levels listed in Table I,
only one de-excitation γ ray was observed; therefore, in
these cases the γ branches had to be taken from previous
work [12], and the excitation energy had to be calculated
solely on the one calibrated γ ray that was observed.
In Table II we list the γ branches for the states which

have multiple γ rays within our 7.35 MeV energy range.
The γ energy in this table is calculated by first averaging
the ENSDF [12] Ex’s with our own (the first two columns
of Table I) and then calculating the Doppler-correctedEγ

based on the new excitation energies.
Figure 9 graphically depicts the results listed in Ta-

bles I and II. The figure also includes within it the refer-
ences to previous results which were used in the analysis.
For example, the γ ray from the 1+5 state at 9206 keV
was outside the energy range of our HPGe, so we took
its γ de-excitation branching ratio from the ENSDF Data
Tables in order to fit the β branch based on the observed
γ ray to the 2+1 first excited state.
In both Tables I and II, the first uncertainty in the

branches is statistical and the second is systematic. The
sources of systematic error considered include: the cuts
made on the data (the β/HI ratio, the β–γ timing
windows for real versus accidental coincidences, inclu-
sion/exclusion of the “echo” peak in the β–γ timing, and
the start/stop of the counting time following transfer of
the activity); the uncertainty in the γ photopeak areas
and total efficiencies; the β efficiency; the effective inter-
action of the shell model used for weakly-fed states above
7.2 MeV; including/excluding the ENSDF γ branches for
higher levels (and varying them by their uncertainties
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TABLE I. Excitation energies in 32S, deduced β branches and the comparative half-lives of the decay of 32Cl. The 0+ spin
assignment of the 7637- and 7921-keV levels are determined from a comparison with our shell-model calculation. Not listed
are the weakly-fed states between 7.4 − 11.8 MeV predicted by the shell-model to have a total branch of (0.60 ± 0.10)%.

Ex in 32S [keV] β branch [%] log ft
Jπ
n , T

ENSDFa This work Average Détraz et al.b This work Détraz et al.b This work

9207.55±0.71 9204.7±1.7 9207.1 ±0.7 1+
5 , 1 – 0.22 ±0.04+0.02

−0.09 – 4.3+0.4
−0.1

8125.40±0.20 – 8125.40±0.20 1+
4 , 1 – < 0.19 – > 5.0

7921.0 ±1.0 7924.3±1.8 7921.8 ±0.9 0+
5 , 0 – 0.033±0.012+0.010

−0.004 – 5.9+0.3
−0.1

7637.0 ±1.0 – 7637.0 ±1.0 0+
4 , 0 – < 0.026 – > 6.2

7535.7 ±1.0 7535.3±1.8 7535.6 ±0.9 0+
3 , 1 – 0.185±0.017+0.019

−0.003 – 5.34+0.04
−0.05

7190.1 ±1.5 7190.5±1.6 7190.3 ±1.1 1+
3 , 0 0.9±0.1 0.62 ±0.05±0.01 4.90±0.10 4.98+0.04

−0.03

7115.3 ±1.0 7114.7±1.5 7115.1 ±0.8 2+
5 , 1 0.5±0.2 0.62 ±0.04+0.00

−0.02 5.1 ±0.2 5.01±0.03

7001.4 ±0.4 7001.0±1.3 7001.4 ±0.4 1+
2 , 1 20.5±2.0 22.47 ±0.13+0.16

−0.12 3.52±0.04 3.500±0.004

6666.1 ±1.0 6665.4±1.4 6665.9 ±0.8 2+
4 , 0 1.8±0.5 2.09 ±0.07+0.01

−0.03 4.72±0.12 4.671+0.016
−0.014

5548.5 ±1.0 5548.3±1.1 5548.4 ±0.8 2+
3 , 0 4.1±0.5 3.83 ±0.07±0.09 4.77±0.06 4.816+0.014

−0.012

4695.3 ±0.4 4695.5±0.9 4695.3 ±0.4 1+
1 , 0 6.8±0.8 6.10 ±0.08+0.03

−0.04 4.81±0.05 4.880+0.007
−0.006

4281.8 ±0.3 4281.9±0.8 4281.81±0.28 2+
2 , 0 3.1±0.4 2.18 ±0.08±0.02 5.45±0.07 5.444+0.016

−0.015

3778.4 ±1.0 3778.1±0.9 3778.3 ±0.7 0+
2 , 0 2.6±0.8 0.95 ±0.07+0.01

−0.05 5.48±0.13 5.94+0.04
−0.03

2230.57±0.15 2230.4±0.5 2230.56±0.14 2+
1 , 0 60 ±4 59.08 ±0.18+0.39

−0.26 4.49±0.04 4.516+0.002
−0.003

ground state 0+
1 , 0 not measuredc not measuredd

aRef. [12].
bRef. [29].
cFixed to 1.0+0.2

−0.5% from Armini, et al. [25].
dCalculated to be 6.7+0.2

−0.1.

TABLE II. γ-decay branches, in percent, for excited states in 32S and comparison to the currently accepted values in ENSDF [12].
The 2230.48(14) keV 2+

1 transition to the 0+
1 ground state is assumed to be 100% since there are no other known levels to

which the 2+
1 state may decay. The energies of the γ rays are calculated based on the adopted energy levels, i.e. the average

of our work and ENSDF, the third column in Table I and shown in Fig. 9.

Transition Eγ [keV] ENSDF Present work Transition Eγ [keV] ENSDF Present work

1+
3 → 2+

3 1641.8 ± 1.3 < 6.7 2+
4 → 2+

3 1117.4 ± 1.1 < 1.1
1+
1 2494.9 ± 1.1 < 42 2.6±2.1+0.1

−0.7 1+
1 1970.5 ± 0.9 14±2 7.3±1.8+0.0

−0.2

2+
2 2908.4 ± 1.1 < 35 < 3.4 2+

2 2384.0 ± 0.9 < 7 3.7±0.9+0.0
−0.3

0+
2 3411.9 ± 1.3 < 55 19.5±2.7+0.2

−1.1 0+
2 2887.5 ± 1.0 49±5 46.7±1.6+0.7

−0.2

2+
1 4959.3 ± 1.1 59±12 50.8±3.8+0.8

−1.4 2+
1 4435.0 ± 0.8 37±4 39.6±1.6+0.4

−0.7

0+
1 7189.4 ± 1.1 41±12 27.1±2.9+2.0

−0.8 0+
1 6665.1 ± 0.8 < 3 2.3±0.8+0.3

−0.4

2+
3 → 1+

1 853.1 ± 0.8 0.65±0.20±0.03
2+
2 1266.6 ± 0.8 < 1 0.86±0.30+0.12

−0.02

2+
5 → 2+

3 1566.6 ± 1.1 < 4.6 0+
2 1770.1 ± 1.0 < 1 3.3±0.6±0.1

1+
1 2419.7 ± 0.9 9±1 9.0±2.0+0.1

−1.0 2+
1 3317.7 ± 0.8 60.0±1.5 59.2±0.8+1.1

−0.9

2+
2 2833.2 ± 0.9 3±1 3.0±2.0+0.6

−0.4 0+
1 5547.9 ± 0.7 40.0±1.5 36.1±0.7+1.0

−1.1

0+
2 3336.7 ± 1.1 3±2 5.8±2.2+0.0

−0.3

2+
1 4884.1 ± 0.8 83±2 79.3±3.9+1.2

−0.5 1+
1 → 2+

2 413.5 ± 0.5 < 0.6 < 0.28
0+
1 7114.3 ± 0.8 2.9±0.5 < 4.6 0+

2 917.1 ± 0.8 < 0.4 0.50±0.14+0.01
−0.04

2+
1 2464.7 ± 0.4 61.0±1.0 63.3±0.5+0.2

−0.1

0+
1 4695.0 ± 0.4 39.0±1.0 36.2±0.5+0.1

−0.2

1+
2 → 2+

3 1452.9 ± 0.8 1.23±0.08±0.01 2+
2 → 0+

2 503.5 ± 0.7 < 0.3 < 1.5
1+
1 2305.9 ± 0.5 < 1 0.61±0.10±0.03 2+

1 2051.2 ± 0.3 13.0±0.5 16.1±0.9+0.1
−0.4

2+
2 2719.4 ± 0.5 < 2 2.37±0.08+0.01

−0.07 0+
1 4281.5 ± 0.3 87.0±0.5 83.5±1.1+0.3

−0.1

0+
2 3222.9 ± 0.8 9±5 3.92±0.12+0.05

−0.02

2+
1 4770.4 ± 0.4 91 91.63±0.19+0.06

−0.04 0+
2 → 2+

1 1547.7 ± 0.7 99.965 98.6±0.8+0.2
−0.0

0+
1 7000.5 ± 0.4 < 2 0.25±0.07±0.01 0+

1 3778.0 ± 0.7 0.035±0.006 1.4±0.8+0.0
−0.2



9

1
.4

(8
)

1
0
0

[E
N

S
D

F
]

1
0
0

[E
N

S
D

F
]

1
0
0

[E
N

S
D

F
]

1
0
0

[E
N

S
D

F
]

6
3
.3

(5
)

5
9
.2

(1
2
)

9
1
.6

(2
)

1
0
0

9
8
.6

(8
)

7
9
(4

)

8
3
.5

(1
1
)

32S

83+0.11
−0.123.

95+0.07
−0.090.

0+0.2
−0.51.

12680.9(6) 1+

β+32Cl
t1/2 = 298(1) ms

1+
3

(including the observed β-delayed

protons and α particles

of Honkanen et al.)

with 7.4 < Ex < 11.8 MeV

2
7
(3

)

3
6
.1

(1
2
)

3
6
.2

(5
)

1+
5

0+
3

2+
51+

27001.4(4)

6665.9(8) 2+
4

2+
35548.4(8)

4281.81(28) 2+
2

0+
2

2+
12230.56(14)

9207.1(7)

8125.4(2) [ENSDF]

7921.8(9)

7637(1) [ENSDF]

7535.6(9)

7190.3(11)

7115.1(8)

22+0.04
−0.100.

19<0.

033+0.016
−0.0130.

<0.026

185+0.026
−0.0170.

0.62±0.05

62+0.04
−0.050.

09±0.072.

6.10±0.09

1+
40+

5
0+

4

2
.3

(8
)

0
.2

5
(7

)

0 keV 0+
1

unobserved states 0.60±0.10 (shell model)

3778.3(7)

5
1
(4

)

6
1
(3

6
)

[E
N

S
D

F
]

08+0.43
−0.3259.

47+0.21
−0.1822.

18±0.072.

1+
14695.3(4)

[Armini et al.]

0
.6

(2
)

3
(2

)

6
(2

)
3
(2

)
9
(2

)

3
.9

2
(1

2
)

2
.3

7
(9

)
0
.6

1
(1

0
)

1
.2

3
(8

)

7
(2

)
3
.7

(9
)

4
7
(2

)

3
.3

(6
)

0
.9

(3
)

1
6
.1

(1
0
)

3
9
(1

7
)

[E
N

S
D

F
]2
0
(3

)

4
0
(2

)0
.5

0
(1

4
)

FIG. 9. β+ decay scheme for 32Cl, summarizing the γ and β branches in Tables I and II determined from this work. All
branches are expressed in percent. The excitation energies are the weighted average of the present work and the accepted
values from ENSDF (third column of Table I). Any branches not determined in this work are explicitly labeled (ENSDF is
Ref. [12], Armini et al. is Ref. [25] and Honkanen et al. is Ref. [31]).
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when included); and the +0.2
−0.5% uncertainty in the ground

state branch. For the γ branches in Table II, the sum
of the quoted probabilities for decay from a given ex-
cited state in 32S is not necessarily 100%, i.e. contrary to
Eq. (4), it may seem that

∑

j<i γi,j ≤ 1; this is because
of possible–but not statistically significant–peaks where
the data only allows us to place limits on the branch. As
with the γ yields discussed below, a branch is quoted only
if the area of a γ-ray peak in the HPGe was larger than
its total uncertainty. If this condition is not satisfied, we
instead quote an upper limit on the branch at the 90%
C.L. For example, the 2+5 state at 7115 keV has four
statistically significant branches which have a combined
probability of only 97.1 ± 5.3+1.3

−1.2%. For the other two
branches, the fit converged to results that were consis-
tent with zero and for which only upper limits may be
quoted: 1.2±2.3+0

−0.5% (2+3 ) and 1.7±2.0+0.6
−0.1% (0+1 ). All

together, including these statistically insignificant transi-
tion strengths, the total probability is 100%; the “miss-
ing” 2.9% in Table II for the decay from the 2+5 state
is potentially within transitions which are below our de-
tection sensitivity. Note, however, that the 1-σ upper
limit on the sum of the statistically significant branches
includes 100%.

With the β and γ branches established, we are able to
calculate the γ yields. The reason we present the yields
after the discussion of the branches is because of the small
summing corrections which depend on the branching ra-
tios. The results are listed in Table III where we again
compare the excitation energies to ENSDF [12] and the
yields to the work of Détraz et al. [29].

There is generally good agreement with the results of
Détraz et al., although we find significantly less strength
in the β branches to the 3.78 and 4.28 MeV levels.
We attribute this discrepancy to the fact that many of
the higher levels not considered in Ref. [29] γ de-excite
through these levels; thus though our γ-ray yields for
these states are in good agreement, our γ-ray feeding
from higher levels results in a smaller deduced β branch
for these states. Another difference from Détraz et al. is
seen with the 7190 keV 1+3 level where we see less than
half as much γ yield, and find a β branch that is 30%
smaller. It is difficult to comment on this discrepancy
since an efficiency curve is not provided in Ref. [29].

The shell-model predictions of the β branches for
the five highest energy levels of Table I are: 0.22(4)%
(7536 keV); 0.05(4)% (7637 keV); 0.10(3)% (7921 keV);
0.06(1)% (8125 keV); and 0.06(1)% (9208 keV). The
agreement is quite reasonable, where the only signifi-
cant difference (> 2σ) seen is in the branch to the 8125-
keV level; here the shell model calculation predicts ≈ 3×
more strength than our limits allow for the branch to the
8125-keV state. Note that the sum of these branches
in the shell model, 0.49(7)%, is in perfect agreement
with the corresponding sum of the observed branches:
(0.51+0.10

−0.14)%. Given the high density of states in this
energy range, it is a testament to the quality of the shell-
model in this case that these branches are reproduced

so well. It further justifies our use of the shell model to
account for the Pandemonium effect as discussed earlier.
In addition to reducing the uncertainties in all of the

branches/yields by approximately an order of magnitude,
we have observed 22 more γ branches and three new β
branches compared to Détraz et al. [29]. For the ten γ
and two β transitions where we did not observe a statis-
tically significant branch, a 90% CL limit is quoted.

B. Comparison to Shell-Model Calculations

Shell-model calculations have been performed for the
states involved in the β-decay of 32Cl, which has a spin-
parity of 1+. For transitions to 0+ and 2+ states in
32S, the strength is pure Gamow-Teller whereas for the
isobaric analogue transition, the decay is almost pure
Fermi. Decays to non-analogue 1+ states can also in-
clude a Fermi component (via isospin mixing) and so for
an experimental branch to one of these states, we can
proceed in one of two ways:

1. make some assumptions about the Fermi contribu-
tion and deduce |M(GT)|.

2. make some assumptions about the Gamow-Teller
contribution and deduce |M(F)|.

In the next section we discuss Gamow-Teller matrix
elements after making some minimal assumptions about
the Fermi contribution. We will compare our experimen-
tal M(GT) values with shell-model computations to say
something about the quality of the USD wave functions.
Following this, we take the other approach by assuming
that the USD values for B(GT) are correct allowing us to
deduce B(F). In turn we can calculate an experimental
value for the isospin-mixing parameter, δC1, which we
compare with theoretical calculations.

1. Gamow-Teller matrix elements

Here we present a comparison of calculated versus ex-
perimental B(GT)’s. Because several of the transitions
are quite retarded, with log ft values exceeding 5 (see Ta-
ble I), the spectrum shape may depart significantly from
the allowed shape. To proceed, we use a shell-model cal-
culation to compute the shape correction function C(W )
as described in the appendix of Ref. [3]. We define an
“exact” statistical rate function as

fexact =

W0
∫

1

pW (W0 −W )2 F (Z,W )C(W ) dW, (6)

where W = Ee/me is the electron total energy in elec-
tron rest-mass units, W0 is the maximum value of W ,
p = (W 2 − 1)1/2 is the electron momentum, Z is the
charge of the daughter nucleus, and F (Z,W ) is the Fermi
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TABLE III. Yields of γ-rays following the β decay of 32Cl. All values are in percent, and limits correspond to the 90%
confidence level. The overall normalization is fixed such that the transition to the ground state is consistent with 1.0+0.2

−0.5% as
reported by Armini, et al. [25] and includes the (0.60 ± 0.10)% unobserved, weakly-fed shell-model states in the energy range
of 7.4 − 11.8 MeV.

Eγ [keV] γ yield [%]
Transition

ENSDFa This work Détraz et al.b This work

7189.2 ±1.5 7189.8±1.2 1+
3 (7190) → 0+

1 (g.s.) 0.41±0.10 0.169+0.024
−0.020

7114.5 ±1.0 2+
5 (7115) → 0+

1 (g.s.) < 0.029
7000.6 ±0.4 7001.4±1.6 1+

2 (7001) → 0+
1 (g.s.) 0.057±0.016

6976.2 ±0.7 6973.5±1.3 1+
5 (9208) → 2+

1 (2230) 0.098±0.018
6665.4 ±1.0 6665.8±2.1 2+

4 (6666) → 0+
1 (g.s.) 0.048+0.018

−0.019

5894.2 ±0.2 1+
4 (8125) → 2+

1 (2230) < 0.027
5689.9 ±1.0 5693.3±1.3 0+

5 (7921) → 2+
1 (2230) 0.033+0.014

−0.013

5548.0 ±1.0 5548.9±0.9 2+
3 (5549) → 0+

1 (g.s.) 1.6 ±0.3 1.50+0.08
−0.09

4959.1 ±1.5 4959.6±0.8 1+
3 (7190) → 2+

1 (2230) 0.32±0.04
4884.3 ±1.0 4883.7±0.8 2+

5 (7115) → 2+
1 (2230) 0.45±0.20 0.504+0.031

−0.032

4770.4 ±0.4 4770.8±0.8 1+
2 (7001) → 2+

1 (2230) 20.5 ±2.0 20.62+0.20
−0.17

4694.9 ±0.4 4695.6±0.8 1+
1 (4695) → 0+

1 (g.s.) 2.8 ±0.6 2.42±0.05
4435.2 ±1.0 4435.5±0.8 2+

4 (6666) → 2+
1 (2230) 0.8 ±0.2 0.83±0.06

4281.5 ±0.3 4282.0±0.7 2+
2 (4282) → 0+

1 (g.s.) 2.6 ±0.1 2.42±0.06
3778.2 ±1.0 3777 ±4 0+

2 (3778) → 0+
1 (g.s.) 0.044±0.025

3411.5 ±1.8 3412.2±0.7 1+
3 (7190) → 0+

2 (3778) 0.122±0.019
3355.0 ±1.0 0+

4 (7637) → 2+
2 (4282) < 0.026

3336.7 ±1.4 3339.7±1.2 2+
5 (7115) → 0+

2 (3778) 0.037±0.015
3317.7 ±1.0 3317.9±0.6 2+

3 (5549) → 2+
1 (2230) 2.5 ±0.4 2.46±0.05

3222.8 ±1.1 3222.4±0.6 1+
2 (7001) → 0+

2 (3778) 0.881+0.029
−0.027

2908.2 ±1.5 1+
3 (7190) → 2+

2 (4282) < 0.022
2887.6 ±1.4 2887.0±0.5 2+

4 (6666) → 0+
2 (3778) 1.0 ±0.4 0.976+0.028

−0.025

2840.3 ±1.1 2839.7±0.5 0+
3 (7536) → 1+

1 (4695) 0.185±0.018
2833.4 ±1.0 2832.4±1.5 2+

5 (7115) → 2+
2 (4282) 0.019±0.013

2719.5 ±0.5 2719.0±0.5 1+
2 (7001) → 2+

2 (4282) 0.533+0.019
−0.024

2494.7 ±1.6 2495.2±2.3 1+
3 (7190) → 1+

1 (4695) 0.016±0.014
2464.6 ±0.4 2464.4±0.5 1+

1 (4695) → 2+
1 (2230) 4.0 ±0.4 4.24±0.05

2419.9 ±1.1 2417.7±0.6 2+
5 (7115) → 1+

1 (4695) 0.057+0.013
−0.015

2384.2 ±1.0 2383.3±0.5 2+
4 (6666) → 2+

2 (4282) 0.077+0.019
−0.021

2306.0 ±0.6 2305.2±0.5 1+
2 (7001) → 1+

1 (4695) 0.137±0.023
2230.49±0.15 2230.2±0.4 2+

1 (2230) → 0+
1 (g.s.) 92 ±4 91.9+0.6

−0.4

2051.2 ±0.3 2050.7±0.4 2+
2 (4282) → 2+

1 (2230) 0.47±0.04
1970.7 ±1.1 1969.3±0.6 2+

4 (6666) → 1+
1 (4695) 0.15±0.04

1770.0 ±1.4 1769.6±0.4 2+
3 (5549) → 0+

2 (3778) 0.136±0.026
1641.6 ±1.8 1+

3 (7190) → 2+
3 (5549) < 0.04

1566.8 ±1.4 2+
5 (7115) → 2+

3 (5549) < 0.030
1547.8 ±1.0 1547.1±0.4 0+

2 (3778) → 2+
1 (2230) 3.6 ±0.6 3.155+0.040

−0.036

1452.9 ±1.1 1451.8±0.4 1+
2 (7001) → 2+

3 (5549) 0.276±0.019
1266.7 ±1.0 1265.7±0.6 2+

3 (5549) → 2+
2 (4282) < 0.036±0.013

1117.6 ±1.4 2+
4 (6666) → 2+

3 (5549) < 0.022
916.9 ±1.1 915.8±0.5 1+

1 (4695) → 0+
2 (3778) 0.034±0.009

853.2 ±1.1 851.8±0.5 2+
3 (5549) → 1+

1 (4695) 0.027±0.008
503.4 ±1.0 2+

2 (4282) → 0+
2 (3778) < 0.04

413.5 ±0.5 1+
1 (4695) → 2+

2 (4282) < 0.019

aCalculated from the adopted levels of Ref. [12].
bRef. [29].

function. The usual statistical rate function, f , as used
for example in Table I to obtain log ft values, puts the
shape correction function C(W ) to unity. Taking the
Fermi strength to be zero for these non-analogue tran-

sitions, we obtain an experimental value for the GT
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strength from

Bexp(GT) =
2Ft0

+→0+

fexactt(1 + δ′R)
, (7)

and an associated experimental GT matrix element,
Mexp(GT), defined by:

Bexp(GT) = g2A,eff |Mexp(GT)|2. (8)

Because fexact depends on the GT matrix element via
C(W ), we use an iterative procedure which is explained

below. In Eq. (7) we use Ft0
+→0+ = 3071.81(83) s

from the survey of Hardy and Towner [1]. The par-
tial half-life, t, is calculated from the 32Cl half-life of
t1/2 = 298(1) ms [25] and the branches, R, listed in Ta-
ble I, corrected for a small electron-capture fraction, PEC:

t =
t1/2

R
(1 + PEC) . (9)

The correction δ′R is the transition-dependent part of
the radiative correction and is obtained from a stan-
dard QED calculation that depends on Z and W . It
is evaluated to order α and Zα2, with the order Z2α3

terms estimated [36–39]. Thus with the quantities on the
right-hand side of Eq. (7) determined, an experimental
Bexp(GT) value is obtained. This relates to the Gamow-
Teller matrix element, Mexp(GT), as shown in Eq. (8).
It requires knowledge of the ratio of the axial-vector to
vector coupling constants, denoted gA, for which an ef-
fective value is used, gA,eff in the context of shell-model
calculations in finite model spaces. In the s, d shell, the
systematic studies of Wildenthal and Brown [40, 41] have
shown the effective value to be of order unity, so we take
gA,eff = 1.
In the shell model, the calculation of the Gamow-Teller

matrix element is based on:

M(GT) =
∑

α,β

〈f |a†αbβ |i〉〈α|GT|β〉, (10)

where a†α creates a neutron in quantum state α, bβ anni-
hilates a proton in quantum state β and 〈α|GT|β〉 is the
single-particle Gamow-Teller matrix element. The ma-
trix element of a†αbβ in the initial and final many-body
states are known as the one-body density matrix elements
(OBDME). The same OBDME used in the construction
of the shape-correction function, C(W ), are also used in
the shell-model evaluation of M(GT). Our procedure
is to scale one of these OBDME, recompute C(W ) and
fexact, and obtain a new Mexp(GT) from Eq. (7). We
then repeat the procedure, refining the scaling at each
step until the theory input matches the experimental out-
put. We found that it did not matter which USD calcu-
lation we started from, or which OBDME we scaled; the
convergent result for the Gamow-Teller matrix element
was always the same. Thus the method is quite stable.
In Table IV we list the partial half-lives, t, the sta-

tistical rate function fexact at convergence, the radiative

FIG. 10. (Color online) The observed integrated B(GT) as a
function of excitation energy for the decay of 32Cl and com-
parison to shell-model calculations. For the experimental his-
togram (thick solid line with the shaded region representing
its uncertainty bars), we have assumed zero Fermi strength
in the 4695-keV state, zero Gamow-Teller strength in the
isobaric analogue state, the range of Gamow-Teller strength
given in the footnote of Table IV for the 7190-keV state, and
included the β-delayed particle emitting states from Ref. [31].
The hatched region indicates strength that may be missed
in the experiment because the phase space for β decay is too
small resulting in β-delayed branches less than 0.0015% which
would not have been reported in Ref. [31].

correction δ′R, and the deduced experimental Gamow-
Teller matrix element. We also list the theoretical values
from three shell-model calculations with effective inter-
actions USD, USD-A and USD-B, now without any of the
adjustments to the OBDME discussed above. Thus, Ta-
ble IV compares Mexp(GT) values with theoretical ex-
pectations. The comparison is very favourable with the
RMS difference ≈ 0.07. Where the matrix element is
quite large, say M(GT) > 0.2, theory does exceedingly
well. For retarded transitions with M(GT) < 0.2, theory
does not perform as well, but here the small values are
a consequence of cancellations among shell-model ampli-
tudes which are much harder to get precisely right. The
same comparison is presented in Fig. 10, where the inte-
grated B(GT) values are displayed as a function of exci-
tation energy. As has been found by Brown and Wilden-
thal [40, 41], the USD effective interaction in s, d-shell nu-
clei gives a reasonably accurate picture of Gamow-Teller
properties in these nuclei. The newer interactions, USD-A
and USD-B, perform equally well.

2. Isospin-symmetry breaking in Fermi transitions

We switch our attention to the β transition to the 7001-
keV, 1+2 , T =1 isobaric analogue state (IAS). This tran-
sition is a mix of Fermi and Gamow-Teller components;
therefore from the partial half-life alone it is not possi-
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TABLE IV. Deduced experimental Gamow-Teller matrix elements, Mexp(GT), in the decay of 32Cl, and comparison with three
shell-model calculations. The RMS deviations in the predicted |M(GT)| compared to experiment are 0.073 (USD), 0.068 (USD-A)
and 0.067 (USD-B).

Experiment Theory |M(GT)|
Ex in 32Sa Jπ

n , T t [s] fexact
b δ′R [%] |M(GT)| USD USD-A USD-B

9207.1 ±0.7 1+
5 , 1 135+115

−22 133.2±0.2 1.70(3) 0.58+0.05
−0.15 0.300 0.348 0.298

8125.4 ±0.2 1+
4 , 1 > 150 689.2±2.7 1.55(3) < 0.20 0.123 0.146 0.134

7921.8 ±0.9 0+
5 , 0 900+600

−300 879.5±1.3 1.52(3) 0.087±0.019 0.130 0.148 0.183
7637.0 ±1.0 0+

4 , 0 > 1200 1261±4 1.49(3) < 0.05 0.121 0.022 0.056
7535.6 ±0.9 0+

3 , 1 161±18 1392±3 1.48(3) 0.164±0.009 0.193 0.165 0.192
7190.3 ±1.1 1+

3 , 0 48±4 2024±4 1.44(3) 0.250±0.010c 0.143 0.117 0.162
7115.1 ±0.8 2+

5 , 1 48±3 2232.4±2.4 1.44(3) 0.238±0.008 0.259 0.166 0.228
7001.4 ±0.4 1+

2 , 1 1.327±0.012 2413.0±1.7 1.42(3) 0.012 0.064 0.036
6665.9 ±0.8 2+

4 , 0 14.3±0.5 3411±4 1.40(3) 0.353±0.006 0.428 0.273 0.365
5548.4 ±0.8 2+

3 , 0 7.79±0.23 8583±7 1.30(3) 0.301±0.004 0.227 0.333 0.302
4695.3 ±0.4 1+

1 , 0 4.89±0.07 15702±30 1.24(3) 0.281±0.002c 0.280 0.309 0.346
4281.81±0.28 2+

2 , 0 13.7±0.5 21280±10 1.22(3) 0.145±0.003 0.071 0.059 0.085
3778.3 ±0.7 0+

2 , 0 31±3 28009±26 1.18(3) 0.083±0.003 0.076 0.137 0.077
2230.56±0.14 2+

1 , 0 0.504±0.003 67470±40 1.11(3) 0.423±0.001 0.423 0.421 0.457
ground state 0+

1 , 0 30+30
−5 167900±1600 0.94(3) 0.035+0.003

−0.010 0.004 0.089 0.024

aThe average of currently accepted values and the present work, i.e. the third column of Table I.
bThe error bar reflects both the uncertainty in the Q-value and the range obtained for different shell-model calculations
of the shape-correction function, C(W ).
cFor these non-analogue 1+ transitions the experimental derived value is

√

B(F) + B(GT), where the Fermi contribution
originates from isospin mixing as discussed in the text. For the 4695-keV level, the Fermi contribution is theoretically
expected to be very small, so the value quoted is likely a good estimate for |Mexp(GT)|. For the 7190-keV level, the Fermi
contribution is likely substantial, so a conservative estimate for |Mexp(GT)| is in the range 0 < |Mexp(GT)| < 0.260.

ble to deduce the Gamow-Teller matrix element. Hence
the gap in Table IV. However, the shell-model calcula-
tion for the Gamow-Teller matrix element predicts for
the IAS a very small value indeed. This is a fortunate
happenstance: it gives us the opportunity to study this
transition as if it were a pure Fermi type, compare it with
the precisely measured pure Fermi transitions between
0+ states, and deduce the amount of isospin-symmetry
breaking (ISB) in this transition. A fairly large ISB ef-
fect is anticipated because in 32S the IAS is only 189 keV
away from the 7190-keV state; a state with the same
spin but different isospin. Perturbation theory predicts
that when two states of the same spin are close together
in the spectrum, Coulomb and charge-dependent nuclear
forces induce a degree of isospin-symmetry breaking that
is inversely proportional to the square of the energy sep-
aration of the two states. For a separation of 189 keV,
mixing at the several percent level can be anticipated.

The partial half-life for decay to the IAS has been de-
termined with 1% accuracy, namely tIAS = 1.331(12) s.
From this, the ISB correction δC can be determined to

15% accuracy from the equation:

fexact t
IAS(1 + δ′R)(1 + δNS − δC)

=
K

G2
V (1 + ∆V

R)[B(F) +B(GT)]

=
2Ft0

+→0+

B(F) +B(GT)
.

(11)

Here K/(~c)6 = 2π3
~ ln 2/(mec

2)5 is a constant and
GV is the vector coupling constant characterizing the
strength of the vector weak interaction. The quan-
tity K/G2

V (1 + ∆V
R) is taken from the precision work

on 0+→ 0+ superallowed transitions and is expressed in

terms of Ft0
+→0+ introduced in Eq. (7). The radiative

correction has been split into three pieces: (a) a nucleus-

independent term, ∆V
R , is included in Ft0

+→0+; (b) a
trivially nucleus-dependent term, δ′R, is calculated to be
1.421(32)%; and (c) a second nucleus-dependent term,
δNS, is small but requires a nuclear-structure calculation
to be evaluated. It is convenient to place δNS and δC
together as both are dependent on shell-model nuclear-
structure calculations. Finally B(F) is the square of the
Fermi matrix element, B(F) = |M0|

2 = 2 for T =1 tran-
sitions in the isospin-symmetry limit, and B(GT) is the
square of the Gamow-Teller matrix element, Eq. (7). For
B(GT), we take the three theoretical values from the
shell-model calculation using USD, USD-A and USD-B ef-
fective interactions, average them and assign an uncer-
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tainty equal to half the spread between the largest and
smallest calculated values: B(GT) = 0.002 ± 0.002. On
rearranging Eq. (11), we obtain

(δC − δNS)exp = 1−
2〈Ft0

+→0+〉

fexact tIAS(1 + δ′R)
[

B(F) +B(GT)
]

= 5.4(9)%, (12)

a substantial isospin symmetry breaking term, the largest
yet determined in a superallowed Fermi transition.
In what follows we present a shell-model calculation of

δC − δNS following the procedures developed by Towner
and Hardy [4]. First, for the ISB correction δC defined in
Eq. (1), the technique is to introduce Coulomb and other
charge-dependent terms into the shell-model Hamilto-
nian. However, because the Coulomb force is long range,
the shell-model space has to be very large indeed to in-
clude all the potential states with which the Coulomb
interaction might connect. Currently this is not a practi-
cal proposition. To proceed, Towner and Hardy [4] divide
δC into two parts:

δC = δC1 + δC2. (13)

For δC1, we perform a shell-model calculation in the trun-
cated 0~ω model space of the s, d-shell orbitals. Charge-
dependent terms are added to the charge-independent
Hamiltonians of USD, USD-A and USD-B. The strengths of
these charge-dependent terms are adjusted to reproduce
the b = −5.4872(35) MeV and c = 0.1953(37) MeV [42]
coefficients of the isobaric multiplet mass equation
(IMME) as applied to the 1+, T =1 states in A = 32, the
triplet of states involved in the β-transition under study.
As mentioned already, the bulk of the isospin mixing in
the IAS occurs with the neighbouring 1+3 state. This ob-
servation is used to constrain and refine the calculation.
In the limit of two-state mixing, perturbation theory in-
dicates that

δC1 ∝ 1/(∆E)2, (14)

where ∆E is the energy separation of the analogue and
non-analogue 1+ states. Thus it is important that the
shell-model Hamiltonian produce a good-quality spec-
trum of 1+ states. The shell model calculation has vary-
ing degrees of success in this regard. For the 1+ states
in A = 32, the separation between the IAS and the third
1+3 , T =0 state is observed to be 188.9±1.2 keV. The shell
model calculates this separation to be 184 keV with USD,
248 keV with USD-A and 387 keV with USD-B interactions.
These are quite respectable results given the inherent ac-
curacy of a shell-model calculation for predicting ener-
gies. However, for a reliable δC1 calculation, this spread
in ∆E values is quite a problem. To cope with this, the
Towner-Hardy recommended procedure is to scale the
calculated δC1 value by a factor of (∆E)2theo/(∆E)2exp,

the ratio of the square of the energy separation of the 1+

states in the model calculation to that known experimen-
tally. After this is done, the δC1 values obtained in the

three shell-model calculations are reasonably consistent:
δC1 = 3.73% for USD, 3.32% for USD-A, and 4.19% for
USD-B. We average these three results and assign an un-
certainty equal to half the spread between them to arrive
at:

δC1 = 3.75(45)%. (15)

For the calculation of δC2 we need to consider mix-
ing with states outside the 0~ω shell-model space. The
principal mixing is with states that have one more radial
node. Such mixing effectively changes the radial func-
tion of the proton involved in the β decay relative to
that of the neutron. The practical calculation, therefore,
involves computing radial overlap integrals with modeled
proton and neutron radial functions. Details of how this
is done are given in Ref. [4]. The radial functions are
taken to be eigenfunctions of a Saxon-Woods potential
whose strength is adjusted so that the asymptotic form
of the radial function has the correct dependence on the
separation energy. The initial and final A-body states are
expanded in a complete set of (A−1)-parent states. The
separation energies are the energy differences between
the A-body state and the (A−1)-body parent states. A
shell-model calculation is required to give the spectrum
of parent states and the spectroscopic amplitudes of the
expansion. For the three USD interactions, we compute
δC2 = 0.827% for USD and 0.865% for both USD-A and
USD-B. Our adopted value is:

δC2 = 0.85(3)%. (16)

The uncertainty, calculated in the same manner as de-
scribed in Ref. [4], represents the range of results for the
USD interactions, the different methodologies considered
in adjusting the strength of the Saxon-Woods potential,
and the uncertainty in the Saxon-Woods radius parame-
ter which was fitted to the experimental charge radius of
32S.
Finally, we need an evaluation of the nuclear-structure-

dependent piece of the radiative correction, δNS. Such
a term arises because in a many-body system such as
a nucleus, the electromagnetic interaction and the weak
interaction that collectively induce a radiative correction
do not have to interact with the same nucleon in the nu-
cleus. When these interactions occur with different nu-
cleons, the process is described by two-body operators.
The evaluation of matrix elements of two-body operators
depends in detail on the nuclear structure of the states in-
volved. Such calculations were first made in 1992 [43, 44]
and updated two years later [45]. We follow the latter
reference and compute δNS for each of the s, d-shell ef-
fective USD interactions. Essentially the same result was
obtained in each case. We adopt the average value of

δNS = −0.15(2)%. (17)

The result is a very small correction, about 3 times
smaller than the uncertainty in δC .



15

0+
→ 0+

calculated

14O 26Alm 34Ar 42Sc 50Mn 62Ga

10C 22Mg 34Cl 46V38Km 54Co 74Rb32Cl

δC1

δC2}

0+
→ 0+

−δNSTZ = −1

TZ = 0

measured
}

32Cl
calculated

δ C
−

δ N
S

[%
]

FIG. 11. Our determination of the isospin-symmetry-
breaking correction for 32Cl (filled circle) and calculations for
32Cl as well as other superallowed transitions (open points).
The three components, δC1, δC2 and δNS, are shown sepa-
rately. The measurement and prediction for 32Cl, particularly
the δC1 component, is significantly larger than in any of the
0+→ 0+ transitions.

Adding together Eqs. (15), (16) and (17), we obtain

δC − δNS = 4.8(5)%, (18)

which agrees with the experimental result of 5.4(9)%
of Eq. (12) within stated uncertainties. A comparison
of this result with calculations for the 0+→ 0+ cases is
shown in Fig. 11. As one can clearly see, the correction
in 32Cl is about five times larger than the typical < 1%
values found for the s, d-shell nuclei in 0+→ 0+ super-
allowed transitions. The TH model, which has already
been shown [46] to reproduce the nucleus-to-nucleus vari-
ation of ISB effects in superallowed zerotozero transitions
required by the CVC hypothesis, is shown here to pro-
duce a much larger ISB effect as again verified by the
current experiment. As far as we know, there aren’t any
other published calculations for this kind of transition, so
there isn’t a comparison of methods that we can estab-
lish here by examining how well the different calculations
agree with the experiment. However, our measurement
should serve as a benchmark for future calculations.
Let us now briefly consider the isospin mixing in the

non-analogue 1+ states at 7190 and 4695 keV, and de-
duce experimental values for the degree of mixing in the
same way as just described for the IAS. We assume the
shell-model calculation for B(GT) to be correct, assign-
ing an uncertainty equal to half the spread between the
different results obtained with the USD, USD-A and USD-B

interactions. For the 7190-keV state, the shell-model cal-
culations yield B(GT) = 0.020(6), and for the 4695-keV
state B(GT) = 0.098(21). An experimental value for
B(F) +B(GT) is computed from a rearranged Eq. (12):

Bexp(F) +Bexp(GT) =
2Ft0

+→0+

fexactt(1 + δ′R)
, (19)

where the nuclear-structure-dependent radiative correc-
tion, δNS, is ignored. Inserting the experimental values

into the right-hand side of Eq. (19), we obtain

Bexp(F) +Bexp(GT) = 0.062± 0.005

Bexp(F) = 0.042± 0.008 (20)

for the 7190-keV state, and

Bexp(F) +Bexp(GT) = 0.0790± 0.0012

Bexp(F) = −0.019± 0.021

or Bexp(F) < 0.014 (21)

for the 4695-keV state. In the limit of exact isospin
symmetry the B(F) values would be zero for these non-
analogue transitions. So the non-zero value in Eq. (20)
is a further indication that isospin-symmetry breaking is
present. For non-analogue transitions, we define

B(F) = |M0|
2δnC1(1− δC2) ≃ 2δnC1 (22)

where δnC1 is the isospin-symmetry breaking correction
for the nth 1+ state in 32S computed in the s, d shell-
model space, and δC2 the radial overlap correction repre-
senting Coulomb mixing beyond the 0~ω model space.
In Eq. (22), we drop the δC1δC2 cross term as being
negligible. From the experimental results in Eqs. (20)
and (21), we determine δ3C1, exp = 2.1(4)% for the 7190-

keV state and δ1C1, exp < 0.7% for the 4695-keV state.
The theory calculation that produced the result for δC1

in Eq. (15) also gives as a by-product values of δnC1

for the non-analogue transitions. For the 7190-keV and
4695-keV states, theory predicts δ3C1 = 3.2(3)% and
δ1C1 = 0.04(1)% respectively. Evidently there is a 2-
σ discrepancy between theory and experiment for the
symmetry-breaking in the 7190-keV transition. On the
theory side, if we accept the symmetry-breaking in the
IAS to be correct, then it is most likely to be correct in
the 7190-keV state as well. This is because the situation
is close to 2-state mixing, and the loss of Fermi strength
to the IAS is recovered in the 7190-keV state. On the
experimental side, the result depends on the correctness
of the Gamow-Teller strength calculated with USD wave
functions. Unlike the IAS where the B(GT) value is com-
puted to be very small, its value for the 7190-keV state is
found to be more substantial and is subject to a larger un-
certainty. If the B(GT) were over-estimated by the USD

calculation, then theoretical and experimental values for
the isospin symmetry mixing in the 7190-keV state could
easily be reconciled.

V. CONCLUSIONS

We have measured relative γ-ray intensities and de-
duced β-decay branches for the decay of 32Cl. We have
observed 3 new β branches, 22 new γ lines, placed limits
on 2 other β branches and 10 other γ transitions, and
have improved the precision on previously known yields
and branches by about an order of magnitude.
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In total, twelve β branches have been measured in the
decay of 32Cl. Eleven of these are Gamow-Teller transi-
tions and one is predominantly Fermi. For the Gamow-
Teller transitions, the GT matrix element has been de-
termined and compares favourably with shell-model cal-
culations using USD effective interactions. These calcu-
lations also find the Gamow-Teller component in the
IAS transition to be very small, indicating this tran-
sition is almost pure Fermi-like. Thus, this transition
can be analyzed in an identical way to that used for the
0+→ 0+ superallowed transitions. We extract a sizable
isospin symmetry breaking correction for this transition,
δC − δNS = 5.4(9)%, which agrees well with a theoretical
value of 4.8(5)%.

In addition, the improved precision in the relative γ-
ray intensities can be used for a more precise determina-
tion of γ-ray efficiencies in the decay of 32Ar [13]. The γ
intensity from the lowest T =2 state in 32Cl is of interest

for measuring isospin symmetry breaking in the T = 2
superallowed decay of 32Ar. Presently the γ-decay in-
tensities from the decay of 32Ar are limited by statistical
precision, but the present work opens the possibility of
determining its γ branches to higher precision in future
experiments.
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