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We compute nucleon and Roper electromagnetic elastic and transition form factors using a
Poincaré-covariant, symmetry-preserving treatment of a vector× vector contact-interaction. Ob-
tained thereby, the electromagnetic interactions of baryons are typically described by hard form
factors. In contrasting this behaviour with that produced by a momentum-dependent interaction,
one achieves comparisons which highlight that elastic scattering and resonance electroproduction
experiments probe the evolution of the strong interaction’s running masses and coupling to infrared
momenta. For example, the existence, and location if so, of a zero in the ratio of nucleon Sachs
form factors are strongly influenced by the running of the dressed-quark mass. In our description
of the nucleon and its first excited state, diquark correlations are important. These composite and
fully-interacting correlations are instrumental in producing a zero in the Dirac form factor of the
proton’s d-quark; and in determining the ratio of d-to-u valence-quark distributions at x = 1, as we
show via a simple formula that expresses dv/uv(x = 1) in terms of the nucleon’s diquark content.
The contact interaction produces a first excitation of the nucleon that is constituted predominantly
from axial-vector diquark correlations. This impacts greatly on the γ∗p → P11(1440) form factors,
our results for which are qualitatively in agreement with the trend of available data. Notably,
our dressed-quark core contribution to F2∗(Q

2) exhibits a zero at Q2
≈ 0.5m2

N . Faddeev equation
treatments of a hadron’s dressed-quark core usually underestimate its magnetic properties, hence we
consider the effect produced by a dressed-quark anomalous electromagnetic moment. Its inclusion
much improves agreement with experiment. On the domain 0 < Q2 . 2GeV2, meson-cloud effects
are conjectured to be important in making a realistic comparison between experiment and hadron
structure calculations. We find that our computed helicity amplitudes are similar to the bare ampli-
tudes inferred via coupled-channels analyses of the electroproduction process. This supports a view
that extant hadron structure calculations, which typically omit meson-cloud effects, should directly
be compared with the bare-masses, -couplings, etc., determined via coupled-channels analyses.

PACS numbers: 13.40.Gp; 14.20.Dh; 14.20.Gk; 11.15.Tk

I. INTRODUCTION

Building a bridge between QCD and the observed
properties of hadrons is one of the key problems in mod-
ern science. The international programme focused on the
physics of excited nucleons is close to the heart of this ef-
fort. It addresses the questions: which hadron states and
resonances are produced by QCD, and how are they con-
stituted? The N∗ program therefore stands alongside the
search for hybrid and exotic mesons as an integral part
of the search for an understanding of QCD. An example
of the theory activity in this area is provided in Ref. [1].

It is in this context that we consider the N(1440)P11,
JP = (1/2)+ Roper resonance, whose discovery was re-
ported in 1964 [2]. In important respects the Roper ap-
pears to be a copy of the proton. However, its (Breit-
Wigner) mass is 50% greater [3]. This feature has long
presented a problem within the context of constituent-
quark models formulated in terms of colour-spin poten-
tials, which typically produce the following level order-
ing [4]: ground state, JP = (1/2)+ with radial quan-
tum number n = 0 and angular momentum l = 0; first
excited state, JP = (1/2)− with (n, l) = (0, 1); sec-
ond excited state, JP = (1/2)+, with (n, l) = (1, 0);
etc. The difficulty is that the lightest l = 1 baryon

appears to be the N(1535)S11, which is heavier than
the Roper. Holographic models of QCD are viewed by
some as a covariant generalisation of constituent-quark
potential models [5]. In their soft-wall variant, they pre-
dict degeneracy of (n, l) = (1, 0) and (0, 1) states within
the same parity sector and can reproduce the empiri-
cal Roper mass [6]. However, results for negative par-
ity baryons are not yet available. Whilst it has been
observed that constituent-quark models with Goldstone-
boson exchange potentials can produce the observed level
ordering [7], such a foundation makes problematic a uni-
fied description of baryons and mesons.

In order to correct the level ordering problem within
the potential model paradigm, other ideas have been ex-
plored. The possibility that the Roper is simply a hybrid
baryon with constituent-gluon content is difficult to sup-
port because the lightest such states occur with masses
above 1.8GeV [8]. An alternative is to consider the pres-
ence of explicit constituent-q̄q components within baryon
bound-states [9]. Whilst not literally correct, such a pic-
ture may be interpreted as suggesting that πN final-
state interactions must play an important role in any
understanding of the Roper. This perspective is com-
mon to modern coupled-channels treatments of baryon
resonances [10–12], and finds support in contemporary
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FIG. 1. Poincaré covariant Faddeev equation, Eq. (B10), em-
ployed herein to calculate baryon properties. Ψ in Eq. (B1)
is the Faddeev amplitude for a baryon of total momentum
P = pq + pd. It expresses the relative momentum correlation
between the dressed-quark and -diquarks within the baryon.
The shaded region demarcates the kernel of the Faddeev equa-
tion, Sec. B, in which: the single line denotes the dressed-
quark propagator, Sec.A 1; Γ is the diquark Bethe-Salpeter
amplitude, Sec.A 4; and the double line is the diquark prop-
agator, Eqs. (B4), (B9).

numerical simulations of lattice-QCD [13] and Dyson-
Schwinger equation (DSE) studies [14–16].
Given that an understanding of the Roper has long

eluded practitioners, it is unsurprising that this reso-
nance has been a focus of the N∗ programme at Jefferson
Lab (JLab). Experiments at JLab [17–20] have enabled
an extraction of nucleon-to-Roper transition form factors
and thereby exposed the first zero-crossing seen in any
nucleon form factor or transition amplitude. Explaining
this new structure also presents a challenge for theory
[21].
Notwithstanding its history, an understanding of the

Roper is perhaps now beginning to emerge through a con-
structive interplay between dynamical coupled-channels
models and hadron structure calculations, particularly
those symmetry-preserving studies made using the tower
of Dyson-Schwinger equations [22–25]. One indication of
this is found in predictions for the masses of the baryons’
dressed-quark-cores [14], which match the bare masses
of nucleon resonances determined by the Excited Baryon
Analysis Center (EBAC) [11] with a rms-relative error of
14% and, in particular, agree with EBAC’s value for the
bare-mass of the Roper resonance; viz. (in GeV),

mQQQ
Roper = 1.82±0.07 cf. mEBAC−bare

Roper = 1.76±0.10 . (1)

The DSE state is the first excitation of the ground-state
nucleon whilst the EBAC bare state is the source for
three distinct features in the πN -scattering P11 partial
wave, which migrate widely from the real-energy axis
once meson-nucleon final-state interactions are enabled.
It is notable that the dressed-quark core of the nucleon’s
parity partner is approximately 400MeV heavier than

mQQQ
Roper and 1.1GeV heavier than the core of the ground-

state nucleon, a magnitude commensurate with its origin
in dynamical chiral symmetry breaking (DCSB) [14].
Herein we probe further into the possibility that πN

final-state interactions play a critical role in understand-
ing of the Roper, through a simultaneous computation
within the DSE framework of nucleon and Roper elastic

TABLE I. (A) Computed quantities required as input for the
Faddeev equation, obtained with αIR/π = 0.93 and (in GeV)
m = 0.007, Λir = 0.24 , Λuv = 0.905. (B) Nucleon and Roper
masses, and associated unit-normalised eigenvectors, obtained
therewith. (All dimensioned quantities are listed in GeV.)

M mqq0+ mqq1+ Eqq0+ Fqq0+ Eqq1+ Md
1/2
F

0.368 0.776 1.056 4.354 0.499 1.3029 0.880

mass (GeV) s a+
1 a0

1 a+
2 a0

2

mN = 1.14 0.88 -0.38 0.27 -0.065 0.046
mR = 1.72 -0.44 -0.030 0.021 0.73 -0.52

form factors, and the form factors describing the nucleon-
to-Roper transition. In so doing we add materially to a
body of work that presents the unified analysis of many
properties of meson and baryon ground- and excited-
states based on the symmetry-preserving treatment of
a single quark-quark interaction; namely, a vector-vector
contact-interaction. This procedure has already been ap-
plied to the spectrum of u, d-quark mesons and baryons
[14], and the electromagnetic properties of π- and ρ-
mesons, and their diquark partners [26–28]. These stud-
ies provide the foundation for much of that which follows.
In Sec. II we present a brief overview of our frame-

work: both the Faddeev equation treatment of the nu-
cleon and Roper dressed-quark cores, and the currents
which describe the interaction of a photon with a baryon
composed from consistently-dressed constituents. Addi-
tional material is expressed in appendices and referred to
as necessary. In Sec. III we describe the parameter-free
calculation of nucleon elastic form factors within a DSE
treatment of the contact interaction. Germane to our
presentation are comparisons both with data and com-
putations using QCD-like momentum-dependence for the
propagators and vertices. In addition, we use the elastic
form factors to predict the ratio of valence-quark distri-
bution functions at x = 1.
We begin to describe our results for the Roper elastic

and nucleon-to-Roper transition form factors in Sec. IV.
The description continues in Sec. V, with a considera-
tion of the impact on all form factors of a dressed-quark
anomalous magnetic moment. In Sec. VI we explore the
effect of meson-cloud contributions to hadron structure
calculations in the context of the γ∗p → P11(1440) helic-
ity amplitudes, which have been analysed using coupled-
channels methods [29–32].
Section VII is an epilogue.

II. ELECTROMAGNETIC CURRENTS

We base our description of the dressed-quark-core of
the nucleon and Roper on solutions of a Faddeev equa-
tion, which is illustrated in Fig. 1, and formulated and
described in Apps.A, B. The Faddeev equations are
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FIG. 2. Interaction vertex which ensures a conserved cur-
rent for the elastic and transition form factors in Eqs. (2),
(3). The single line represents the dressed-quark propagator,
S(p) in App.A1; the double line, the diquark propagators in
Eqs. (B4) and (B9); and the vertices are described in App.C.
From top to bottom, the diagrams describe the photon cou-
pling: directly to the dressed-quark; to a diquark, in an elastic
scattering event; or inducing a transition between scalar and
axial-vector diquarks.

completed by the quantities reported in Table IA, and
our values for the nucleon and Roper masses and eigen-
vectors, the latter normalised to unity, are presented in
Table IB. These masses are drawn from a unified spec-
trum of u, d-quark hadrons, obtained using a symmetry-
preserving regularisation of a vector× vector contact in-
teraction [14]. That study simultaneously correlates the
masses of meson and baryon ground- and excited-states
within a single framework. In comparison with rele-
vant quantities, it produces a root-mean-square-relative-
error/degree-of-freedom equal to 13%. The predictions
uniformly overestimate the experimental values of meson
and baryon masses [3]. Given that the employed trunca-
tion deliberately omitted meson-cloud effects in the Fad-
deev kernel, this is a good outcome because inclusion of
such contributions acts to reduce the computed masses.
As noted in the Introduction, Eq. (1), such effects are
particularly important for the Roper resonance.
We are interested in three electromagnetic currents:

those defining the nucleon and Roper elastic form factors

JB
µ (Pf , Pi) = ie ūB(Pf )

[

γµF1B(Q
2)

+
1

2MB
σµνQνF2B(Q

2)

]

uB(Pi), (2)

B = N , R and Q = Pf − Pi; and that expressing the

TABLE II. Row 1: Results computed herein with the contact
interaction, whose input is presented in Table I. Row 2: Re-
sults obtained using QCD-like momentum-dependence for the
dressed-quark propagators and diquark Bethe-Salpeter ampli-
tudes in solving the Faddeev equation. Row 3: Values rep-
resentative of experiment. Row 4: Contact interaction aug-
mented by a model dressed-quark anomalous electromagnetic
moment (see Sec.V).

r1pMN r2pMN r1nMN r2nMN κp κn

contact 3.19 2.84 1.21 3.19 1.02 -0.92
Ref. [34] 3.76 2.82 0.59 3.14 1.67 -1.59
Ref. [35] 3.76 4.18 0.56 4.33 1.79 -1.91
contactQAMM 3.41 4.00 0.55 3.85 1.68 -1.24

transition form factors [Qµγ
T
µ = 0, Eq. (A20)]

J∗
µ(Pf , Pi) = ie ūR(Pf )

[

γT
µ F1∗(Q

2)

+
1

MR +MN
σµνQνF2∗(Q

2)

]

uN(Pi). (3)

N.B. Electromagnetic current kinematics and the defini-
tion of constraint-independent form factors are discussed
in Ref. [33], so that Eq. (2) may be viewed as a special
case of Eq. (3) which is simplified by the on-shell condi-
tion ūB(Pf )γ ·QuB(pi) = 0.
With the contact interaction described in App. A and

our treatment of the Faddeev equation, App.B, there are
three contributions to the currents. They are illustrated
in Fig. 2 and detailed in App. C. The computation of
form factors is straightforward following the procedures
outlined in those appendices.

III. NUCLEON ELASTIC

There are no free parameters in our computation of
nucleon elastic form factors: all those associated with
our treatment of the contact interaction are fixed in
Refs. [14, 28], see Table I. We report static properties in
Table II, and depict form factors for the proton in Fig. 3
and the neutron in Fig. 4. N.B. We use a Euclidean met-
ric, App. E, and hence in elastic scattering one has

P 2
f = −m2

B = P 2
i , Q2 + 2Pi ·Q = 0 , (4)

where mB is the mass of the baryon involved.

A. Dirac and Pauli Form factors

In our symmetry-preserving DSE-treatment of the
contact interaction we construct a nucleon from di-
quarks whose Bethe-Salpeter amplitudes are momentum-
independent and dressed-quarks with a momentum-
independent mass-function, and arrive at a nucleon de-
scribed by a momentum-independent Faddeev ampli-
tude. This last is the hallmark of a pointlike composite
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FIG. 3. Proton Dirac (upper panel) and Pauli (lower panel)
form factors, as a function of x = Q2/m2

N . Solid curve

– result obtained herein using the contact-interaction and
hence a dressed-quark mass-function and diquark Bethe-
Salpeter amplitudes that are momentum-independent; dashed
curve – result obtained in Ref. [34], which employed QCD-
like momentum-dependence for the dressed-quark propaga-
tors and diquark Bethe-Salpeter amplitudes in solving the
Faddeev equation; dot-dashed curve – a parametrisation of
experimental data [35].

particle and explains the hardness of the computed form
factors, which is evident in Figs. 3, 4.

The hardness contrasts starkly with results ob-
tained from a momentum-dependent Faddeev ampli-
tude produced by dressed-quark propagators and diquark
Bethe-Salpeter amplitudes with QCD-like momentum-
dependence; and with experiment. Evidence for a con-
nection between the momentum-dependence of each of
these elements and the behaviour of QCD’s β-function
is accumulating; e.g., Refs. [26–28, 36–39]. The compar-
isons in Figs. 3, 4 add to this evidence, in connection here
with readily accessible observables, and support a view
that experiment is a sensitive probe of the running of the
β-function to infrared momenta. This perspective will be
reinforced by subsequent figures.

Table II exposes another shortcoming in the descrip-
tion of nucleons via a momentum-independent Faddeev
amplitude; namely, the anomalous magnetic moments
are far too small. In a Poincaré-covariant treatment,
the magnitude of the magnetic moment grows with in-
creasing quark orbital angular momentum. However, a
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FIG. 4. Neutron Dirac (upper panel) and Pauli (lower
panel) form factors, as a function of x = Q2/m2

N . Solid

curve – result obtained herein using the contact-interaction
and hence a dressed-quark mass-function and diquark Bethe-
Salpeter amplitudes that are momentum-independent; dashed
curve – result obtained in Ref. [34], which employed QCD-
like momentum-dependence for the dressed-quark propaga-
tors and diquark Bethe-Salpeter amplitudes in solving the
Faddeev equation; dot-dashed curve – a parametrisation of
experimental data [35].

momentum-independent Faddeev amplitude suppresses
quark orbital angular momentum, as may be seen from
the absence in Eqs. (B17) of a dependence on the rela-
tive momentum. This explains the differences between
the anomalous magnetic moments in Rows 1 and 2 of
Table II.
The differences between the anomalous moments in

Rows 2 and 3 have a different origin; viz., QCD’s dressed-
quarks possess large momentum-dependent anomalous
magnetic moments owing to dynamical chiral symmetry
breaking [40], and the discrepancy is resolved by incor-
porating this phenomenon. Owing to the momentum de-
pendence of these moments, the magnetic radii are also
affected, so that r2p, r2n in Row 2 are shifted markedly
toward the values in Row 3. This is illustrated in Ref. [41]
and in Row 4, which is discussed further in Sec. V.
In Fig. 5 we depict a flavour decomposition of the pro-

ton’s Dirac form factor. In neither the data nor the calcu-
lations is the scaling behaviour anticipated from pertur-
bative QCD evident on the momentum domain depicted.
This fact is emphasised by the zero in F d

1p, whose exis-
tence is independent of the interaction. Its location is
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FIG. 5. Flavour separation of the proton’s Dirac form fac-
tor, as a function of x = Q2/m2

N : normalisation: Fu
1p(0) = 2,

F d
1p(0) = 1. Solid curve – u-quark obtained using the con-

tact interaction; short-dashed curve – d-quark, contact in-
teraction; dot-dashed curve – u-quark obtained from QCD-
like momentum-dependence for the dressed-quark propaga-
tors and diquark Bethe-Salpeter amplitudes in the Faddeev
equation [34]; and long-dashed curve – d-quark obtained sim-
ilarly. The data are from Refs. [43, 44]: u-quark, circles; and
d-quark, diamonds. The dotted curves are determined from
the parametrisation of data in Ref. [45].

not, and the extrapolation of a modern parametrisation
of data produces a zero which is coincident with that
predicted by the QCD-based interaction [34, 42]. The
zero owes to the presence of diquark correlations in the
nucleon. It has been found [34] that the proton’s singly-
represented d-quark is more likely to be struck in associa-
tion with an axial-vector diquark correlation than with a
scalar, and form factor contributions involving an axial-
vector diquark are soft. On the other hand, the doubly-
represented u-quark is predominantly linked with harder
scalar-diquark contributions. This interference produces
the zero in the Dirac form factor of the d-quark in the
proton. The location of the zero depends on the relative
probability of finding 1+ and 0+ diquarks in the proton:
with increasing probability for an axial-vector diquark, it
moves to smaller-x – in Ref. [34] the scalar-diquark prob-
ability is 60%, whereas herein it is 78%.

We plot the flavour decomposition of the proton’s Pauli
form factor in Fig. 6. Once again, the contact-interaction
results are far too hard and the general trend of the
data favours a Faddeev equation built from dressed-
quark propagators and diquark Bethe-Salpeter ampli-
tudes which are QCD-like in their momentum depen-
dence.
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FIG. 6. Flavour separation of the proton’s Pauli form fac-
tor, as a function of x = Q2/m2

N : d-quark, upper panel; and
u-quark, lower panel. Solid curve – result obtained using
the contact interaction; dashed curve – obtained from QCD-
like momentum-dependence for the dressed-quark propaga-
tors and diquark Bethe-Salpeter amplitudes in the Faddeev
equation [34]; dotted curve – determined from the parametri-
sation of data in Ref. [45]; and data from Refs. [43, 44, 46].

B. Sachs form factors

The lower panel of Fig. 7 depicts the ratio of proton
Sachs electric and magnetic form factors:

GEp(Q
2) = F1p(Q

2)− Q2

4m2
N

F2p(Q
2), (5a)

GMp(Q
2) = F1p(Q

2) + F2p(Q
2) . (5b)

Once again, the existence of a zero is independent of the
interaction upon which the Faddeev equation is based
but the location is not. That location is insensitive to
the size of the diquark correlations [34].
In order to assist in explaining the origin and location

of a zero in the Sachs form factor ratio, in the top panel
of Fig. 7 we depict the ratio of Pauli and Dirac form fac-
tors: both the actual contact-interaction result and that
obtained when the Pauli form factor is artificially “soft-
ened;” viz.,

F2p(Q
2) → F2p(Q

2)

1 +Q2/(4m2
N )

. (6)

As observed in Ref. [47], a softening of the proton’s Pauli
form factor has the effect of shifting the zero to larger



6

values of Q2. In fact, if F2p becomes soft quickly enough,
then the zero disappears completely.
The Pauli form factor is a gauge of the distribution

of magnetisation within the proton. Ultimately, this
magnetisation is carried by the dressed-quarks and in-
fluenced by correlations amongst them, which are ex-
pressed in the Faddeev wave-function. If the dressed-
quarks are described by a momentum-independent mass-
function, then they behave as Dirac particles with con-
stant Dirac values for their magnetic moments and pro-
duce a hard Pauli form factor. Alternatively, suppose
that the dressed-quarks possess a momentum-dependent
mass-function, which is large at infrared momenta but
vanishes as their momentum increases. At small mo-
menta they will then behave as constituent-like parti-
cles with a large magnetic moment, but their mass and
magnetic moment will drop toward zero as the probe mo-
mentum grows. (N.B. Massless fermions do not possess a
measurable magnetic moment [40].) Such dressed-quarks
will produce a proton Pauli form factor that is large for
Q2 ∼ 0 but drops rapidly on the domain of transition be-
tween nonperturbative and perturbative QCD, to give a
very small result at large-Q2. The precise form of the
Q2-dependence will depend on the evolving nature of
the angular momentum correlations between the dressed-
quarks. From this perspective, existence, and location if
so, of the zero in µpGEp(Q

2)/GMp(Q
2) are a fairly direct

measure of the location and width of the transition region
between the nonperturbative and perturbative domains
of QCD as expressed in the momentum-dependence of
the dressed-quark mass-function.
We expect that a mass-function which rapidly becomes

partonic – namely, is very soft – will not produce a zero;
have seen that a constant mass-function produces a zero
at a small value of Q2, and know that a mass-function
which resembles that obtained in the best available DSE
studies [48, 49] and via lattice-QCD simulations [50], pro-
duces a zero at a location that is consistent with extant
data. There is an opportunity here for very constructive
feedback between future experiments and theory.

C. Valence-quark distributions at x = 1

At this point we would like to exploit a connection
between the Q2 = 0 values of elastic form factors and
the Bjorken-x = 1 values of the dimensionless structure
functions of deep inelastic scattering, Fn,p

2 (x). Our first
remark is that the x = 1 value of a structure function is
invariant under the evolution equations [24]. Hence the
value of

dv(x)

uv(x)

∣

∣

∣

∣

x→1

, where
dv(x)

uv(x)
=

4
Fn

2 (x)

Fp

2
(x)

− 1

4− Fn
2
(x)

Fp
2
(x)

, (7)

is a scale-invariant feature of QCD and a discriminator
between models. Next, when Bjorken-x is unity, then
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FIG. 7. Upper panel : Normalised ratio of proton Pauli and
Dirac form factors. Solid curve – contact interaction; long-
dashed curve – result from Ref. [41], which employed QCD-
like momentum-dependence for the dressed-quark propaga-
tors and diquark Bethe-Salpeter amplitudes; long-dash-dotted
curve – drawn from parametrisation of experimental data in
Ref. [35]; and dotted curve – softened contact-interaction re-
sult, described in connection with Eq. (6). Lower panel : Nor-
malised ratio of proton Sachs electric and magnetic form fac-
tors. Solid curve and long-dashed curve, as above; dot-dashed
curve – linear fit to data in Refs. [51–55], constrained to one at
Q2 = 0; short-dashed curve – [1, 1]-Padé fit to that data; and
dotted curve – softened contact-interaction result, described
in connection with Eq. (6). In addition, we have represented
a selection of data explicitly: filled-squares [52]; circles [54];
up-triangles [55]; and open-squares [56].

Q2 + 2P · Q = 0; i.e., one is dealing with elastic scat-
tering. Therefore, in the neighbourhood of x = 1 the
structure functions are determined by the target’s elastic
form factors. The ratio in Eq. (7) expresses the relative
probability of finding a d-quark carrying all the proton’s
light-front momentum compared with that of a u-quark
doing the same or, equally, owing to invariance under
evolution, the relative probability that a Q2 = 0 probe
either scatters from a d-quark or a u-quark; viz.,

dv(x)

uv(x)

∣

∣

∣

∣

x→1

=
P p,d
1

P p,u
1

. (8)

Plainly, in SU(6) constituent-quark models, the right-
hand-side of Eq. (8) is 1/2. On the other hand, when a
Poincaré-covariant Faddeev equation is employed to de-
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TABLE III. Probabilities described after Eq. (9), from which
one may compute the evolution-invariant x = 1 value of the
structure function ratio.

P p,s
1 P p,a

1 P p,m
1

dv
uv

Fn
2

F
p
2

M=constant 0.78 0.22 0 0.18 0.41
M(p2) 0.60 0.25 0.15 0.28 0.49

scribe the nucleon,

P p,d
1

P p,u
1

=
2
3P

p,a
1 + 1

3P
p,m
1

P p,s
1 + 1

3P
p,a
1 + 2

3P
p,m
1

, (9)

where we have used the notation of Ref. [34]. Namely,
P p,s
1 = F s

1p(Q
2 = 0) is the contribution to the proton’s

charge arising from diagrams with a scalar diquark com-
ponent in both the initial and final state: u[ud]⊗γ⊗u[ud].
The diquark-photon interaction is far softer than the
quark-photon interaction and hence this diagram con-
tributes solely to uv at x = 1. P p,a

1 = F a
1p(Q

2 = 0),
is the kindred axial-vector diquark contribution; viz.,
2d{uu} ⊗ γ ⊗ d{uu} + u{ud} ⊗ γ ⊗ u{ud}. At x = 1
this contributes twice as much to dv as it does to uv.
P p,m
1 = Fm

1p(Q
2 = 0), is the contribution to the pro-

ton’s charge arising from diagrams with a different di-
quark component in the initial and final state. The ex-
istence of this contribution relies on the exchange of a
quark between the diquark correlations and hence it con-
tributes twice as much to uv as it does to dv. If one uses
the “static approximation” to the nucleon form factor,
Eq. (B16), as with the contact-interaction herein, then
P p,m
1 ≡ 0.

It is plain from Eq. (9) that dv/uv = 0 in the absence of
axial-vector diquark correlations; i.e., in scalar-diquark-
only models of the nucleon. Furthermore, Eq. (9) pro-
duces dv/uv = 0.05, Fn

2 /F
p
2 = 0.30, using the case-II

solution in Ref. [57], which is fully consistent with Fig. 5
therein.

Using the probabilities derived from Table IB, one ob-
tains the first row in Table III, whilst the second row
is drawn from Ref. [34]. (Here we correct an error in
Ref. [24], which inadvertently interchanged 2 ↔ 1 in eval-
uating the P p,a

1 contribution.) Both rows in Table III are
consistent with dv/uv = 0.23±0.09 (90% confidence level,
Fn
2 /F

p
2 = 0.45± 0.08) inferred recently via consideration

of electron-nucleus scattering at x > 1 [58]. On the other
hand, this is also true of the result obtained through a
naive consideration of the isospin and helicity structure
of a proton’s light-front quark wave function at x ∼ 1,
which leads one to expect that d-quarks are five-times
less likely than u-quarks to possess the same helicity as
the proton they comprise; viz., dv/uv = 0.2 [59]. Plainly,
contemporary experiment-based analyses do not provide
a particularly discriminating constraint. Future experi-
ments with a tritium target could help [60].
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FIG. 8. Comparison of charged-Roper and proton Dirac (up-
per panel) and Pauli (lower panel) form factors, as a function
of x = Q2/m2

N : Solid curve – Roper; and dashed-curve –
proton. All results obtained using the contact-interaction,
and hence a dressed-quark mass-function and diquark Bethe-
Salpeter amplitudes that are momentum-independent.

IV. NUCLEON→ROPER TRANSITION AND

ROPER ELASTIC

A computation of the nucleon-to-Roper transition form
factors must be performed in conjunction with that of
the Roper elastic form factors. They are connected via
orthonormalisation: the Roper is orthogonal to the nu-
cleon, which means F1∗(Q

2 = 0) = 0 for both the
charged and neutral channels; and the canonical normali-
sation of the Roper Faddeev amplitude is fixed by setting
F1R+(Q2 = 0) = 1. The transition is calculated with the
kinematic arrangements:

P 2
f = −m2

R , P 2
i = −m2

N , m2
R −m2

N +2Pi ·Q+Q2 = 0 ,
(10)

from the transition current expressed by the diagrams in
Fig. 2, which are as explained in App.C except that the
final baryon, Ψf , is the Roper resonance. These consid-
erations lead to the modifications described in App. D.

Note that in connection with all form factors involv-
ing the Roper resonance, we only report results obtained
with our symmetry-preserving treatment of the contact
interaction. This is a first step. Based on the information
in Sec. III, we anticipate that a momentum-dependent in-
teraction will produce Roper-related form factors that are
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TABLE IV. Row 1: Roper results computed herein with
the contact interaction, whose input is presented in Table I.
Row 2: Related contact-interaction nucleon results repeated
for ease of comparison. Rows 3, 4: Analogous results ob-
tained with a model dressed-quark anomalous magnetic mo-
ment, Sec. V.

rR+
1 MN rR

+

2 MN rR
0

1 MN rR
0

2 MN κR+ κR0

Roper 2.96 2.66 0.81 3.19 0.61 -0.61
Nucleon 3.19 2.84 1.21 3.19 1.02 -0.92
RoperQAMM 3.29 3.90 0.22 3.46 1.75 -1.20
NucleonQAMM 3.41 4.00 0.55 3.85 1.68 -1.24

similar for Q2 . 0.5GeV2 but softer at larger momentum
scales.

A. Roper Faddeev amplitude

The Faddeev amplitude for the Roper resonance in Ta-
ble IB, whose origin is explained in Apps. B, D, contrasts
strikingly with that of the nucleon and suggests a fas-
cinating new possibility for the structure of the Roper’s
dressed-quark core. To explain this remark, we focus
first on the nucleon, whose Faddeev amplitude describes
a ground-state that is dominated by its scalar diquark
component (78%). The axial-vector component is signif-
icantly smaller but nevertheless important. This heavy
weighting of the scalar diquark component persists in so-
lutions obtained with more sophisticated Faddeev equa-
tion kernels (see, e.g., Table 2 in Ref. [34]). From a per-
spective provided by the nucleon’s parity partner and the
radial excitation of that state, in which the scalar and
axial-vector diquark probabilities are [16] 51%-49% and
43%-57%, respectively, the scalar diquark component of
the ground-state nucleon actually appears to be unnatu-
rally large.
One can nevertheless understand the structure of the

nucleon. As with so much else, the composition of the
nucleon is intimately connected with dynamical chiral
symmetry breaking. In a two-color version of QCD, the
scalar diquark is a Goldstone mode, just like the pion [61].
(This is a long-known result of Pauli-Gürsey symmetry.)
A memory of this persists in the three-color theory and
is evident in many ways. Amongst them, through a large
value of the canonically normalized Bethe-Salpeter am-
plitude and hence a strong quark+quark−diquark cou-
pling within the nucleon. (A qualitatively identical ef-
fect explains the large value of the πN coupling con-
stant.) There is no such enhancement mechanism associ-
ated with the axial-vector diquark. Therefore the scalar
diquark dominates the nucleon.

With the Faddeev equation treatment described
herein, the effect on the Roper is dramatic: orthogonality
of the ground- and excited-states forces the Roper to be
constituted almost entirely (81%) from the axial-vector
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FIG. 9. Comparison of neutral-Roper and neutron Dirac
(upper panel) and Pauli (lower panel) form factors, as a
function of x = Q2/m2

N : Solid curve – neutral-Roper;
and dashed-curve – neutron. All results obtained using the
contact-interaction, and hence a dressed-quark mass-function
and diquark Bethe-Salpeter amplitudes that are momentum-
independent.

diquark correlation. It is important to check whether
this outcome survives with a Faddeev equation kernel
built from a momentum-dependent interaction.

B. Roper elastic

The Roper mass and Faddeev amplitude in Table IB
produce the radii and anomalous magnetic moments in
Table IV and the elastic form factors depicted in Figs. 8,
9. Notwithstanding the markedly different internal struc-
ture, the Roper elastic form factors are similar to those
of the nucleon, both in magnitude and Q2-evolution.
The exception is the Dirac form factor of the neutral

Roper, which exhibits a zero at Q2 ≃ 3m2
N . This be-

haviour derives from a constructive interference between
Diagrams 2 and 3 in Fig. 2 that, with increasingQ2, sums
to overwhelm the always-negative contribution from Di-
agram 1. As Q2 increases, the dominant contributions
expressed by Diagrams 2 and 3 are associated with a
photon scattering from the positively-charged [ud] and
{ud} correlations, whereas Diagram 1 is alone in mea-
suring only a negative charge; i.e., that of the d-quark.
Ultimately, therefore, suppression of the scalar-diquark
component in the Roper is responsible for the zero in
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FIG. 10. Upper panel – F1∗ (solid and dot-dashed with
dressed-quark anomalous magnetic moment, Sec.V) and F2∗

(dashed and dotted with dressed-quark anomalous magnetic
moment) as a function of x = Q2/m2

N , computed using
the framework described herein. Lower panel – Computed
form of F1∗(x) compared with available data [18–20]. The
squares, triangles and stars are preliminary results [62] from
a simulation of Nf = 2 + 1 lattice-QCD at, respectively,
m2

π/m
2
πexpt. ≃ 8 , 10, 40.

F1R0 at Q2 > 0.

C. Transition

In Figs. 10, 11 we depict the charged-Roper→ proton
transition form factors computed using our treatment of
the contact interaction. The calculated form factors un-
derestimate the data on the domain 0 < Q2 < 3GeV2

and are very probably too hard. Both of these defects are
natural given that we have: deliberately omitted effects
associated with a meson cloud in the Faddeev kernel and
the current; and used a contact interaction.
On the other hand, the results are qualitatively in

agreement with the trend apparent in available data and
reproduce the zero in F2∗(Q

2) at Q2 ≃ 0.5m2
N without

fine tuning. These are meaningful successes given that
they are features derived only from that which we con-
sider to be the Roper’s dressed-quark core.
As shown in the figures, lattice-QCD results are also

available for these form factors [62]. They have roughly
the same magnitude as the experimental data. In con-
trast to earlier simulations of quenched-QCD, these Nf =
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FIG. 11. Comparison between F2∗(x) computed using the
framework described herein and available data [18–20], with
x = Q2/m2

N . Upper panel – normalised to unity at x = 0; and
lower panel, as computed. In both panels the dashed curve
was computed with a model for the dressed-quark anomalous
electromagnetic moment, Sec.V. The squares, triangles and
stars are preliminary results from a simulation of Nf = 2+ 1
lattice-QCD at, respectively, m2

π/m
2
πexpt. ≃ 8 , 10, 40 [62].

2 + 1 results also support the presence of a zero in F2∗.
In Fig. 12 we display the separate contributions from

each diagram represented by the current in Fig. 2. Whilst
Diagram 1 with a scalar diquark bystander is plainly
dominant, a significant contribution is also received from
Diagram 2 with a photon probing the structure of the
axial-vector diquark correlations. The form factor is neg-
ative at Q2 = 0 owing to orthogonality, which produces
sRsN < 0, and passes through zero because of the zero
in the Roper’s Faddeev amplitude, which is characteristic
of a radial excitation.
Figure 13 depicts the neutral-Roper→ neutron transi-

tion form factors. Each possesses a zero at Q2 ≃ 3m2
N ;

the Dirac form factor is an order-of-magnitude smaller
than its analogue in the charged-Roper transition; and
regarding F2R0→n cf. F2R+→p, in the neighbourhood of
Q2 = 0 the similar magnitude but opposite sign is con-
sistent with available data [3].

V. ANOMALOUS MAGNETIC MOMENTS

It is noticeable from the lower panel of Fig. 11 that
the magnitude of F2∗(Q

2 = 0) is underestimated in our
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FIG. 12. Separation of F2∗(x) into contributions from differ-
ent diagrams, with x = Q2/m2

N : solid – photon on u-quark
with scalar diquark spectator; dashed – photon on scalar di-
quark with u-quark spectator; dot-dashed – photon on axial-
vector diquark with quark spectator; dotted – photon-induced
transition between scalar and axial-vector diquarks with u-
quark spectator. N.B. Owing to Eq. (C5), there is no contri-
bution involving an axial-vector diquark spectator.

framework: −0.1 cf. experiment [18], −0.56 ± 0.02. A
similar but smaller deficit is apparent in our computed
nucleon anomalous electromagnetic moments, Table II.
In this connection it is interesting to explore the effect
produced by the dressed-quark anomalous electromag-
netic moment, which is produced by DCSB [40] and is
known to have a material impact on the nucleons’ Pauli
form factors [41].

To this end we modified the quark-photon coupling as
described in App. C6 and recomputed all the form fac-
tors described above. Some results for the nucleon are
summarised in the last row of Table II: in each case,
inclusion of the dressed-quark anomalous magnetic mo-
ment produces a significant improvement in the compar-
ison with data. A similar comparison is made for the
Roper in Table IV.

Results for the Roper→ proton transition form factor
are included in Figs. 10, 11. Inclusion of a dressed-quark
anomalous electromagnetic moment has a pronounced ef-
fect on F2∗, which moves the result a little closer to ex-
periment: F2∗(Q

2 = 0) = −0.1 → −0.16 cf. experiment
[18] −0.56± 0.02. It does not, however, compensate suf-
ficiently for the absence of meson-cloud effects.

VI. MESON CLOUD

In Fig. 14 we draw the helicity amplitudes for the
γ∗p → P11(1440) transition. They may be computed
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FIG. 13. Upper panel – F1R0→n (solid) as a function of x =
Q2/m2

N compared with F1R+→p (dashed), computed using
the framework described herein. Lower panel – Analogue for
F2R0→n.

from the transition form factors in Eq. (3):

A 1
2
(Q2) = c(Q2)

[

F1∗(Q
2) + F2∗(Q

2)
]

, (11a)

S 1
2
(Q2) = −qCMS√

2
c(Q2)

[

−F1∗(Q
2)
mR +mN

Q2

+
F2∗(Q

2)

mR +mN

]

, (11b)

with

c(Q2) =

[

παQ2
−

mRmNK

]

1
2

, qCMS =

√

Q2
−Q

2
+

2mR
, (12)

where Q2
± = Q2+(mR±mN)2, K = (m2

R−m2
N)/(2mR),

and α is QED’s fine structure constant.
In addition to our own computation, Fig. 14 displays

results obtained using a light-front constituent-quark
model [63], which employed a constituent-quark mass of
0.22GeV and identical momentum-space harmonic os-
cillator wave functions for both the nucleon and Roper
(width= 0.38GeV) but with a zero introduced for the
Roper, whose location was fixed by an orthogonality
condition. The quark mass is smaller than the DCSB-
induced value we determined from the gap equation (see
Table I) but a more significant difference is the choice of
spin-flavour wave functions for the nucleon and Roper.
In Ref. [63] they are simple SU(6)× O(3) S-wave states
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FIG. 14. Helicity amplitudes for the γ∗p → P11(1440) tran-
sition, with x = Q2/m2

N : A1/2 (upper panel); and S1/2

(lower panel). Solid curves – computed using the treat-
ment of the contact interaction described herein, including
the dressed-quark anomalous magnetic moment (App.C 6);
dashed curves – the light-front constituent quark model re-
sults from Ref. [63]; long-dash-dot curves – the light-front
constituent quark model results from Ref. [64]; short-dashed
curves – our smooth fit to the bare form factors inferred in
Ref. [30–32]; and data – Refs. [18–20].

in the three-quark centre-of-mass system, in contrast to
the markedly different spin-flavour structure produced by
our Faddeev equation analysis of these states, Table IB.

Owing to this, in Fig. 14 we also display the light-front
quark model results from Ref. [64]. It is stated therein
that large effects accrue from “configuration mixing;”
i.e., the inclusion of SU(6)-breaking terms and high-
momentum components in the wave functions of the nu-
cleon and Roper. In particular, that configuration mix-
ing yields a marked suppression of the calculated helicity
amplitudes in comparison with both relativistic and non-
relativistic results based on a simple harmonic oscillator
Ansatz for the baryon wave functions, as used in Ref. [63].

There is also another difference; namely, Ref. [64] em-
ploys Dirac and Pauli form factors to describe the inter-
action between a photon and a constituent-quark [65].
As apparent in Fig. 2 of Ref. [64], they also have a notice-
able impact, providing roughly half the suppression on
0.5 . Q2/GeV2 . 1.5. The same figure also highlights
the impact on the form factors of high-momentum tails
in the nucleon and Roper wave functions.

In reflecting upon constituent-quark form factors, we
note that the interaction between a photon and a dressed-
quark in QCD is not simply that of a Dirac fermion
[40, 66–71]. Moreover, the interaction of our dressed-
quark with the photon is also modulated by form fac-
tors, see Apps. A 3, C 6. On the other hand, the purely
phenomenological form factors in Refs. [64, 65] are in-
consistent with a number of constraints that apply to
the dressed-quark-photon vertex in quantum field the-
ory; e.g., the dressed-quark’s Dirac form factor should
approach unity with increasing Q2 and neither its Dirac
nor Pauli form factors may possess a zero. Notwithstand-
ing these observations, the results from Ref. [64] are more
similar to ours than those in Ref. [63].
Helicity amplitudes can also be computed using

EBAC’s dynamical coupled-channels framework [29]. In
this approach, one imagines that a Hamiltonian is de-
fined in terms of bare baryon states and bare meson-
baryon couplings; the physical amplitudes are computed
by solving coupled-channels equations derived therefrom;
and the parameters characterising the bare states are de-
termined by requiring a good fit to data. In connec-
tion with the γ∗p → P11(1440) transition, results are
available for both helicity amplitudes [30–32]. The as-
sociated bare form factors are reproduced in Fig. 14: for
Q2 < 1.5GeV2 we depict a smooth interpolation; and for
larger Q2 an extrapolation based on perturbative QCD
power laws (A 1

2
∼ 1/Q3 ∼ S 1

2
).

The bare form factors are evidently similar to the re-
sults obtained herein and in Ref. [64]: both in magnitude
and Q2-evolution. Regarding the transverse amplitude,
Ref. [30] argues that the bare component plays an im-
portant role in changing the sign of the real part of the
complete amplitude in the vicinity of Q2 = 0. In this
case the similarity between the bare form factor and the
results obtained herein is perhaps most remarkable – e.g.,
the appearance of the zero in A 1

2
, and the Q2 = 0 mag-

nitude of the amplitude (in units of 10−3GeV−1/2)

Ref. [63] Ref. [64] Ref. [30–32] contact
A 1

2
(0) −35.1 −32.3 −18.6 −16.3 . (13)

These similarities strengthen support for an interpre-
tation of the bare-masses, -couplings, etc., inferred via
coupled-channels analyses, as those quantities compara-
ble with hadron structure calculations that exclude the
meson-baryon coupled-channel effects which are deter-
mined by multichannel unitarity conditions.
An additional remark is valuable in this connection.

EBAC computes electroproduction form factors at the
resonance pole in the complex plane and hence they
are complex-valued functions. Whilst this is consistent
with the standard theory of scattering [72], it differs
markedly from phenomenological approaches that use a
Breit-Wigner parametrisation of resonant amplitudes in
fitting data. As concerns the γ∗p → P11(1440) transi-
tion, the real parts of EBAC’s complete amplitudes are
qualitatively similar to the results in Refs. [17–20] but
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EBAC’s amplitudes also have sizeable imaginary parts.
This complicates a direct comparison between theory and
extant data.

VII. EPILOGUE

We computed form factors for elastic electromag-
netic nucleon and Roper scattering and nucleon→
Roper transitions using a Poincaré-covariant, symmetry-
preserving DSE-treatment of a vector× vector contact-
interaction. Within this internally-consistent framework
current-conservation is assured and we obtain: a dressed-
quark that is described by a momentum-independent
mass-function but whose computed interaction with the
photon is described by a Q2-dependent vertex; scalar
and axial-vector diquark correlations (constituted from
dressed-quarks) whose Bethe-Salpeter amplitudes are in-
dependent of constituent relative momentum but whose
interactions with the photon are described by calculated
Q2-dependent form factors; and baryons, whose nontriv-
ial spin-flavour structure is determined from the solu-
tion of a Faddeev equation, which produces a bound-
state comprised from dressed-quarks and -diquarks, de-
scribed by a momentum-independent Faddeev amplitude
but whose elastic electromagnetic and transition form
factors are Q2-dependent.
We found that the electromagnetic interactions of

baryons constituted thus from the contact interaction
are typically described by hard form factors. Although
this was to be expected, it is nevertheless important to
compute and record the behaviour because this hard-
ness contrasts markedly with results obtained from the
momentum-dependent Faddeev amplitudes produced by
dressed-quark propagators and diquark Bethe-Salpeter
amplitudes with QCD-like momentum-dependence, and
with experiment. Hence the present calculations provide
concrete comparisons which support a view that exper-
iment is a sensitive probe of the evolution of the strong
interaction’s running masses and coupling to infrared mo-
menta, and hence of the long-range behaviour of the β-
function.
In this connection, our analysis of the proton’s elas-

tic form factors suggests that the existence, and location
if so, of a zero in the ratio of Sachs form factors are
strongly influenced by the running of the dressed-quark
mass. Our calculations indicate that a constant mass-
function produces a zero at a small value of Q2; a mass-
function that is very soft will not produce a zero; and a
mass-function which resembles that obtained in the best
available DSE- and lattice-QCD studies, produces a zero
at a location that is consistent with extant data. Ob-
taining a clear experimental answer to the question of
whether or not there is a zero, and its location in the
latter case, is therefore particularly important.
It is worth reiterating that the diquark correlations,

whose properties are computed and employed herein, are
composite and fully-interacting. They must not be con-

fused with the pointlike and sometimes inert degrees-of-
freedom used in constituent-quark+constituent-diquark
potential models of baryons. Indeed, our analysis showed
that the structure and interactions of the diquark correla-
tions play an important role in the development of each
baryon form factor. For example, they are instrumen-
tal in producing a zero in the Dirac form factor of the
proton’s d-quark and in determining the ratio of d-to-u
valence-quark distributions at x = 1. It is unsound and
misleading to employ a framework in which the correla-
tions are considered as inert and structureless.

We found that the Roper elastic electromagnetic form
factors are generally similar to those of the nucleon, both
in magnitude and Q2-evolution. The one exception is
the neutral Roper’s Dirac form factor, which exhibits a
zero at Q2 ∼ 3GeV2. This outcome owes particularly to
the presence of electromagnetically-active diquark corre-
lations. It is notable in this connection that our treat-
ment of the contact interaction produces a first excitation
of the nucleon which is constituted almost entirely (81%)
from axial-vector diquark correlations. This is an intrigu-
ing possibility that should be checked using a Faddeev
equation kernel built from an interaction with QCD-like
momentum dependence.

A primary motivation for this study was a desire to
correlate nucleon elastic and transition form factors, so
that the latter could be considered well-constrained, and
then probe further for a connection between the proper-
ties of a baryon’s dressed-quark core and the bare quan-
tities which feature in modern coupled-channels analyses
of resonance electroproduction. We focussed primarily
on the γ∗p → P11(1440) transition and obtained form
factors that underestimate extant data on the domain
0 < Q2 < 3GeV2. This is consistent with having delib-
erately omitted effects associated with a meson cloud in
the Faddeev kernel and the current. On the other hand,
the results are qualitatively in agreement with the trend
of available data; for instance, F2∗(Q

2) obtained from the
dressed-quark core exhibits a zero at Q2 ≈ 0.5m2

N .

In Faddeev equation treatments of a baryon’s dressed-
quark core it is common to find that anomalous electro-
magnetic moments are underestimated. This is apparent
herein, in connection, too, with transition form factors.
We therefore explored the effect produced by a dressed-
quark anomalous electromagnetic moment, whose exis-
tence is an essential consequence of DCSB. We found that
with a realistic value for this dressed-quark moment, the
magnitudes of hadron magnetic moments are typically
increased by ∼ 90% and magnetic radii by ∼ 30%, and
thereafter agree much better with experiment.

As mentioned above, on the domain 0 < Q2 . 2GeV2

it is widely suspected that the inclusion of effects asso-
ciated with strong meson-baryon final state interactions
– the so-called meson cloud – is important in making
a realistic comparison between experiment and hadron
structure calculations. We considered this conjecture
in the context of the γ∗p → P11(1440) helicity ampli-
tudes and found that the bare amplitudes determined via
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coupled-channels analyses are similar to the form factors
produced by our dressed-quark core, both in magnitude
and Q2-evolution. This outcome strengthens support for
an interpretation of the bare-masses, -couplings, etc., in-
ferred via coupled-channels analyses, as those quantities
with which the results of hadron structure calculations
should directly be compared, if those calculations have
knowingly excluded the meson-cloud.
The Roper-related calculations we have described

should now be repeated using a momentum dependent
interaction that is drawn, as closely as reasonably possi-
ble, from the behaviour of QCD. We expect this to pro-
duce form factors that, for Q2 . 0.5GeV2, are similar
to those we have obtained from the contact-interaction,
but softer at larger momentum scales. Near term, such
computations are achievable within the framework of
Ref. [34], which has provided the basis for many compar-
isons herein. Looking further ahead, we anticipate that
some priority will be given to the improvement of com-
putational techniques, so that the interaction of Ref. [49],
e.g., can be used directly in the study of transitions to
excited states, in analogy with the treatment of ground-
state nucleon form factors [38, 39, 73].
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Appendix A: Contact interaction

1. Gap equation

The starting point for our study is the dressed-quark
propagator, which is obtained from the gap equation:

S(p)−1 = iγ · p+m

+

∫

d4q

(2π)4
g2Dµν(p− q)

λa

2
γµS(q)

λa

2
Γν(q, p), (A1)

wherein m is the Lagrangian current-quark mass, Dµν is
the vector-boson propagator and Γν is the quark–vector-
boson vertex. Much is now known about Dµν in QCD
[74] and nonperturbative information is accumulating on
Γν [40, 75–77]. However, this is one of a series of studies
undertaken in order to build a stock of material that can
be used to identify unambiguous signals in experiment
for the pointwise behaviour of: the interaction between
light-quarks; the light-quark’s mass-function; and other
similar quantities. Whilst these are particular qualities,

taken together they can plausibly enable a characteri-
sation of the nonperturbative behaviour of the theory
underlying strong interaction phenomena [1, 24, 25].
We therefore work with the following choice

g2Dµν(p− q) = δµν
4παIR

m2
G

, (A2)

where mG = 0.8GeV is a gluon mass-scale typical of the
one-loop renormalisation-group-improved interaction in-
troduced in Ref. [49], and the fitted parameter αIR/π =
0.93 is commensurate with contemporary estimates of
the zero-momentum value of a running-coupling in QCD
[78, 79]. Equation (A2) is embedded in a rainbow-ladder
truncation of the DSEs, which is the leading-order in
the most widely used, global-symmetry-preserving trun-
cation scheme [80]. This means

Γν(p, q) = γν (A3)

in Eq. (A1) and in the subsequent construction of the
Bethe-Salpeter kernels.
One may view the interaction in Eq. (A2) as being in-

spired by models of the Nambu–Jona-Lasinio type [81].
However, our treatment is atypical. It is notable that
one typically finds Eqs. (A2), (A3) produce results for
low-momentum-transfer observables that are practically
indistinguishable from those produced by more sophisti-
cated interactions [26–28].
Using Eqs. (A2), (A3), the gap equation becomes

S−1(p) = iγ ·p+m+
16π

3

αIR

m2
G

∫

d4q

(2π)4
γµ S(q) γµ , (A4)

an equation in which the integral possesses a quadratic
divergence, even in the chiral limit. When the divergence
is regularised in a Poincaré covariant manner, the solu-
tion is

S(p)−1 = iγ · p+M , (A5)

where M is momentum-independent and determined by

M = m+M
4αIR

3πm2
G

∫ ∞

0

ds s
1

s+M2
. (A6)

Our regularisation procedure follows Ref. [82]; i.e., we
write

1

s+M2
=

∫ ∞

0

dτ e−τ(s+M2)

→
∫ τ2

ir

τ2
uv

dτ e−τ(s+M2) (A7)

=
e−(s+M2)τ2

uv − e−(s+M2)τ2
ir

s+M2
, (A8)

where τir,uv are, respectively, infrared and ultraviolet reg-
ulators. It is apparent from Eq. (A8) that a finite value
of τir =: 1/Λir implements confinement by ensuring the
absence of quark production thresholds [25, 83]. Since
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TABLE V. Meson-related results obtained with αIR/π = 0.93
and (in GeV): m = 0.007, Λir = 0.24 , Λuv = 0.905 [28]. The
Bethe-Salpeter amplitudes are canonically normalised; κπ is
the in-pion condensate [84, 85]; and fπ,ρ are the mesons’ lep-
tonic decay constants. Empirical values are κπ ≈ (0.22GeV)3

and [3] fπ = 0.092GeV, fρ = 0.153GeV.

Eπ Fπ Eρ κ
1/3
π mπ mρ fπ fρ

3.639 0.481 1.531 0.243 0.140 0.928 0.101 0.129

Eq. (A2) does not define a renormalisable theory, then
Λuv := 1/τuv cannot be removed but instead plays a dy-
namical role, setting the scale of all dimensioned quanti-
ties. Using Eq. (A7), the gap equation becomes

M = m+M
4αIR

3πm2
G

Ciu(M2) , (A9)

where Ciu(M2)/M2 = Γ(−1,M2τ2uv) − Γ(−1,M2τ2ir),
with Γ(α, y) being the incomplete gamma-function.

2. Point-meson Bethe-Salpeter equation

In rainbow-ladder truncation, with the interaction in
Eq. (A2), the homogeneous Bethe-Salpeter equation for
a colour-singlet meson is

Γ(k;P ) = −16π

3

αIR

m2
G

∫

d4q

(2π)4
γµχ(q;P )γµ , (A10)

where χ(q;P ) = S(q + P )Γ(q;P )S(q) and Γ(q;P ) is the
meson’s Bethe-Salpeter amplitude. Since the integrand
does not depend on the external relative-momentum, k,
then a symmetry-preserving regularisation of Eq. (A10)
yields solutions that are independent of k. This is the
defining characteristic of a pointlike composite particle.

With a dependence on the relative momentum forbid-
den by the interaction, then rainbow-ladder pseudoscalar
and vector Bethe-Salpeter amplitudes take the form1

Γπ(P ) = iγ5Eπ(P ) +
1

M
γ5γ · PFπ(P ) , (A11)

Γρ
µ(P ) = γT

µEρ(P ), (A12)

where Pµγ
T
µ = 0 and γT

µ + γL
µ = γµ.

Values of some meson-related quantities, of relevance
herein and computed using the contact-interaction, are
reported in Table V.

1 We assume isospin symmetry throughout and hence do not in-

clude the Pauli isospin matrices explicitly.

3. Ward-Takahashi identities

No study of low-energy hadron observables is meaning-
ful unless it ensures expressly that the vector and axial-
vector Ward-Takahashi identities are satisfied. Violation
of these identities is a flaw of constituent-quark models
that cannot be remedied. The m = 0 axial-vector iden-
tity states (k+ = k + P )

PµΓ5µ(k+, k) = S−1(k+)iγ5 + iγ5S
−1(k) , (A13)

where Γ5µ(k+, k) is the axial-vector vertex, which is de-
termined by

Γ5µ(k+, k) = γ5γµ − 16π

3

αIR

m2
G

∫

d4q

(2π)4
γαχ5µ(q+, q)γα .

(A14)
One must implement a regularisation that maintains

Eq. (A13). That amounts to eliminating the quadratic
and logarithmic divergences. Their absence is just the
circumstance under which a shift in integration variables
is permitted, an operation required in order to prove
Eq. (A13). It is guaranteed so long as one implements
the constraint [14, 26, 28]

0 =

∫ 1

0

dα
[

Ciu(ω(M2, α, P 2)) + Ciu
1 (ω(M2, α, P 2))

]

,

(A15)
with

ω(M2, α, P 2) = M2 + α(1− α)P 2 , (A16)

Ciu
1 (z) = −z(d/dz)Ciu(z)

= z
[

Γ(0,M2τ2uv)− Γ(0,M2τ2ir)
]

. (A17)

The vector Ward-Takahashi identity

PµiΓ
γ
µ(k+, k) = S−1(k+)− S−1(k) , (A18)

wherein Γγ
µ is the dressed-quark-photon vertex, is cru-

cial for a sensible study of a bound-state’s electromag-
netic form factors [70]. The vertex must be dressed at
a level consistent with the truncation used to compute
the bound-state’s Bethe-Salpeter or Faddeev amplitude.
Herein this means the vertex should be determined from
the following inhomogeneous Bethe-Salpeter equation:

Γµ(Q) = γµ − 16π

3

αIR

m2
G

∫

d4q

(2π)4
γαχµ(q+, q)γα , (A19)

where χµ(q+, q) = S(q + P )Γµ(Q)S(q). Owing to the
momentum-independent nature of the interaction kernel,
the general form of the solution is

Γµ(Q) = γT
µ PT (Q

2) + γL
µPL(Q

2) . (A20)

Inserting Eq. (A20) into Eq. (A19), one readily obtains

PL(Q
2) = 1 , (A21)
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owing to corollaries of Eq. (A13). Using these same iden-
tities, one finds [28]

PT (Q
2) =

1

1 +Kγ(Q2)
, (A22)

with (C1(z) = C1(z)/z)

Kγ(Q
2) =

4αIR

3πm2
G

×
∫ 1

0

dαα(1− α)Q2 Ciu

1 (ω(M2, α,Q2)) . (A23)

4. Diquark Bethe-Salpeter amplitudes

In the rainbow-ladder truncation, colour-antitriplet
quark-quark correlations (diquarks) are described by an
homogeneous Bethe-Salpeter equation that is readily in-
ferred from Eq. (A10); viz., following Ref. [86] and ex-
pressing the diquark amplitude as

Γc
qq(k;P ) = Γqq(k;P )C†Hc (A24)

then

Γqq(k;P ) = −8π

3

αIR

m2
G

∫

d4q

(2π)4
γµχqq(q;P )γµ . (A25)

Hence, one may obtain the mass and amplitude for a di-
quark with spin-parity JP from the equation for a J−P -
meson in which the only change is a halving of the inter-
action strength. The flipping of the sign in parity occurs
because fermions and antifermions have opposite parity.
Scalar and axial-vector quark-quark correlations are

dominant in studies of the nucleon and Roper:

Γ0+

qq (P ) = iγ5Eqq0+(P ) +
1

M
γ5γ · PFqq0+(P ) , (A26)

Γ1+

qq µ(P ) = γT
µEqq1+(P ). (A27)

These amplitudes are canonically normalised:

Pµ = 2tr

∫

d4q

(2π)4
Γ0+

qq (−P )
∂

∂µ
S(q + P )Γ0+

qq (P )S(q);

(A28)
and

Pµ =
2

3
tr

∫

d4q

(2π)4
Γ1+

qq α(−P )
∂

∂µ
S(q + P )Γ1+

qq α(P )S(q).

(A29)

Appendix B: Faddeev Equation

We describe the dressed-quark-cores of the nucleon
and Roper via solutions of a Poincaré-covariant Faddeev
equation [87]. The equation is derived following upon the
observation that an interaction which describes mesons

also generates diquark correlations in the colour-3̄ chan-
nel [86]. The fidelity of the diquark approximation to the
quark-quark scattering kernel is verified by recent studies
[39].
Within this approach, a J = 1

2 baryon is represented
by a Faddeev amplitude

Ψ = Ψ1 +Ψ2 + Ψ3 , (B1)

where the subscript identifies the bystander quark and,
e.g., Ψ1,2 are obtained from Ψ3 by a cyclic permutation
of all the quark labels. We employ a simple but realistic
representation of Ψ. The spin- and isospin- 12 nucleon and
Roper are each a sum of scalar and axial-vector diquark
correlations:

Ψ3(pi, αi, τi) = N 0+

3 +N 1+

3 , (B2)

with (pi, αi, τi) the momentum, spin and isospin labels
of the quarks constituting the bound state, and P =
p1 + p2 + p3 the system’s total momentum.
The scalar diquark piece in Eq. (B2) is

N 0+

3 (pi, αi, τi) = [Γ0+(
1

2
p[12];K)]τ1τ2α1α2

×∆0+(K) [S(ℓ;P )u(P )]τ3α3
, (B3)

where: the spinor satisfies Eq. (E4), with M the mass
obtained by solving the Faddeev equation, and it is also a
spinor in isospin space with ϕ+ = col(1, 0) for the charge-
one state and ϕ− = col(0, 1) for the neutral state; K =
p1 + p2 =: p{12}, p[12] = p1 − p2, ℓ := (−p{12} + 2p3)/3;

∆0+(K) =
1

K2 +m2
qq

0+

(B4)

is a propagator for the scalar diquark formed from quarks
1 and 2, with m0+ the mass-scale associated with this

correlation, and Γ0+ is the canonically-normalised Bethe-
Salpeter amplitude describing their relative momentum
correlation, Sec. A 4; and S, a 4 × 4 Dirac matrix, de-
scribes the relative quark-diquark momentum correla-

tion. The colour antisymmetry of Ψ3 is implicit in ΓJP

,
with the Levi-Civita tensor, ǫc1c2c3 , expressed via the an-
tisymmetric Gell-Mann matrices; viz., defining

{H1 = iλ7, H2 = −iλ5, H3 = iλ2} , (B5)

thenǫc1c2c3 = (Hc3)c1c2 . (B6)

The axial-vector component in Eq. (B2) is

N 1+(pi, αi, τi) = [ti Γ1+

µ (
1

2
p[12];K)]τ1τ2α1α2

×∆1+

µν (K) [Ai
ν(ℓ;P )u(P )]τ3α3

, (B7)

where the symmetric isospin-triplet matrices are

t
+ =

1√
2
(τ0 + τ3) , t0 = τ1 , t− =

1√
2
(τ0 − τ3) , (B8)
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and the other elements in Eq. (B7) are straightforward
generalisations of those in Eq. (B3) with, e.g.,

∆1+

µν (K) =
1

K2 +m2
qq

1+

(

δµν +
KµKν

m2
qq

1+

)

. (B9)

One can now write the Faddeev equation for Ψ3:

[

S(k;P )u(P )
Ai

µ(k;P )u(P )

]

= − 4

∫

d4ℓ

(2π)4
M(k, ℓ;P )

[

S(ℓ;P )u(P )
Aj

ν(ℓ;P )u(P )

]

. (B10)

The kernel in Eq. (B10) is

M(k, ℓ;P ) =

[

M00 (M01)
j
ν

(M10)
i
µ (M11)

ij
µν

]

, (B11)

with

M00 = Γ0+(kq − ℓqq/2; ℓqq)S
T(ℓqq − kq)

× Γ̄0+(ℓq − kqq/2;−kqq)S(ℓq)∆
0+(ℓqq) , (B12)

where: ℓq = ℓ, kq = k, ℓqq = −ℓ + P , kqq = −k + P and
the superscript “T” denotes matrix transpose; and

(M01)
j
ν = t

j Γ1+

µ (kq − ℓqq/2; ℓqq)S
T(ℓqq − kq)

× Γ̄0+(ℓq − kqq/2;−kqq)S(ℓq)∆
1+

µν (ℓqq), (B13)

(M10)
i
µ = Γ0+(kq − ℓqq/2; ℓqq)S

T(ℓqq − kq) t
i

× Γ̄1+

µ (ℓq − kqq/2;−kqq)S(ℓq)∆
0+(ℓqq), (B14)

(M11)
ij
µν = t

j Γ1+

ρ (kq − ℓqq/2; ℓqq)S
T(ℓqq − kq) t

i

× Γ̄1+

µ (ℓq − kqq/2;−kqq)S(ℓq)∆
1+

ρν (ℓqq). (B15)

Our dressed-quark propagator is described in Sec. A 1
and the diquark propagators are given in Eqs. (B4), (B9),
so the Faddeev equation is complete once the diquark

Bethe-Salpeter amplitudes are known. They are re-
viewed in Sec. A 4. We note here, however, that we follow
Ref. [14] and employ a simplification of the kernel; viz.,
in the Faddeev equation, the quark exchanged between
the diquarks is represented as

ST(k) → g2N
M

, (B16)

where gN = 1.18 [14]. This is a variant of the so-called
“static approximation,” which itself was introduced in
Ref. [88] and has subsequently been used in studying
a range of nucleon properties [89]. In combination
with diquark correlations generated by Eq. (A2), whose
Bethe-Salpeter amplitudes are momentum-independent,
Eq. (B16) generates Faddeev equation kernels which
themselves are momentum-independent. The dramatic
simplifications which this produces are the merit of
Eq. (B16).
The general forms of the matrices S(ℓ;P ) and

Ai
ν(ℓ;P ), which describe the momentum-space correla-

tion between the quark and diquark in the nucleon and
Roper, are described in Refs. [90, 91]. However, with the
interaction described in Sec. A 1 augmented by Eq. (B16),
they simplify greatly; viz.,

S(P ) = s(P ) ID , (B17a)

Ai
µ(P ) = ai1(P )γ5γµ + ai2(P )γ5P̂µ , i = +, 0 , (B17b)

with the scalars s, ai1,2 independent of the relative quark-

diquark momentum and P̂ 2 = −1.
The mass of the ground-state nucleon is then deter-

mined by a 5×5 matrix Faddeev equation; viz., Ψ = KΨ,
with eigenvector

Ψ(P ) =















s(P )

a+1 (P )

a01(P )

a+2 (P )

a02(P )















, (B18)

and kernel

K(P ) =















K00
ss −√

2K01
sa1

K01
sa1

−√
2K01

sa2
K01

sa2

−√
2K10

a1s 0
√
2K11

a1a1
0

√
2K11

a1a2

K10
a1s

√
2K11

a1a1
K11

a1a1

√
2K11

a1a2
K11

a1a2

−√
2K10

a2s 0
√
2K11

a2a1
0

√
2K11

a2a2

K10
a2s

√
2K11

a2a1
K11

a2a1

√
2K11

a2a2
K11

a2a2















, (B19)

constructed using: cN = g2N/(4π2M);

σ0
N = σN (α,M,mqq

0+
,mN ) := (1− α)M2 + αm2

qq
0+

− α(1− α)m2
N , σ1

N = σN (α,M,mqq
1+

,mN ) ; (B20)
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and

K00
ss = K00

EE +K00
EF +K00

FF , (B21a)

K00
EE = cNE2

qq
0+

∫ 1

0

dα Ciu

1 (σ0
N )(αmN +M) , (B21b)

K00
EF = −2cNEqq

0+
Fqq

0+

mN

M

∫ 1

0

dα Ciu

1 (σ
0
N )(1 − α)(αmN +M) , (B21c)

K00
FF = cNF 2

qq
0+

m2
qq

0+

M2

∫ 1

0

dα Ciu

1 (σ0
N )(αmN +M) ; (B21d)

K01
sa1

= K01
sEa1

+K01
sF a1

, (B21e)

K01
sEa1

= cN
Eqq

0+
Eqq

1+

m2
qq

1+

∫ 1

0

dα Ciu

1 (σ
1
N )(m2

qq
1+

(3M + αmN ) + 2α(1− α)2m3
N ) , (B21f)

K01
sF a1

= −cN
Fqq

0+
Eqq

1+

m2
qq

1+

mN

M

∫ 1

0

dα Ciu

1 (σ
1
N )(1 − α)(m2

qq
1+

(M + 3αmN ) + 2(1− α)2Mm2
N) ; (B21g)

K01
sa2

= K01
sEa2

+K01
sF a2

, (B21h)

K01
sEa2

= cN
Eqq

0+
Eqq

1+

m2
qq

1+

∫ 1

0

dα Ciu

1 (σ1
N )(αmN −M)((1− α)2m2

N −m2
qq

1+
) , (B21i)

K01
sF a2

= cN
Fqq

0+
Eqq

1+

m2
qq

1+

mN

M

∫ 1

0

dα Ciu

1 (σ1
N )(1− α)(αmN −M)((1− α)2m2

N −m2
qq

1+
) ; (B21j)

K10
a1s = K10

a1sE +K10
a1sF , (B21k)

K10
a1sE =

cN
3

Eqq
0+

Eqq
1+

m2
qq

1+

∫ 1

0

dα Ciu

1 (σ0
N )(αmN +M)(2m2

qq
1+

+ (1 − α)2m2
N) , (B21l)

K10
a1sF = −cN

3

Fqq
0+

Eqq
1+

m2
qq

1+

mN

M

∫ 1

0

dα Ciu

1 (σ
0
N )(1 − α)(2m2

qq
1+

+ (1− α)2m2
N )(αmN +M) ; (B21m)

K10
a2s = K10

a2sE +K10
a2sF , (B21n)

K10
a2sE =

cN
3

Eqq
0+

Eqq
1+

m2
qq

1+

∫ 1

0

dα Ciu

1 (σ0
N )(αmN +M)(m2

qq
1+

− 4(1− α)2m2
N), (B21o)

K10
a2sF =

cN
3

Fqq
0+

Eqq
1+

m2
qq

1+

mN

M

∫ 1

0

dα Ciu

1 (σ0
N )(1− α)(5m2

qq
1+

− 2(1− α)2m2
N )(αmN +M) ; (B21p)

K11
a1a1

= −cN
3

E2
qq

1+

m2
qq

1+

∫ 1

0

dα Ciu

1 (σ1
N )[2m2

qq
1+

(M − αmN ) + (1− α)2m2
N (M + 5αmN )] ; (B21q)

K11
a1a2

= −2cN
3

E2
qq

1+

m2
qq

1+

∫ 1

0

dα Ciu

1 (σ1
N )(−m2

qq
1+

+ (1− α)2m2
N )(αmN −M) ; (B21r)

K11
a2a1

= −cN
3

E2
qq

1+

m2
qq

1+

∫ 1

0

dα Ciu

1 (σ1
N )[m2

qq
1+

(11αmN +M)− 2(1− α)2m2
N (7αmN + 2M)] ; (B21s)

K11
a2a2

= −5cN
3

E2
qq

1+

mqq2
1+

∫ 1

0

dα Ciu

1 (σ1
N )(m2

qq
1+

− (1− α)2m2
N )(αmN −M) . (B21t)

The computation of this kernel is detailed in Ref. [14].
The eigenvectors exhibit the pattern:

a+i = −
√
2a0i , i = 1, 2. (B22)

The kernel for the Roper resonance has the same form

but there is one change; namely, the functions Ciu are
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replaced by functions F iu = Ciu − dFDiu where

Diu(ω(M2, α, P 2)) =

∫ ∞

0

ds s
s

s+ ω

→
∫ τ2

iu

τ2
uv

dτ
2

τ3
exp

[

−τω(M2, α, P 2)
]

, (B23)

F iu
1 (z) = −z(d/dz)F iu(z) and F1(z) = F1(z)/z. As ex-

plained in Sec. 3.2 of Ref. [14], this has the effect of in-
serting a zero at q2 = 1/dF in the amplitude for the
nucleon’s excitation, which then has the structure of a
radial excitation of the bystander quark with respect to
the diquark “core.”

Solving for the Roper with this kernel and Md
1/2
F =

0.88 we obtain

mass (GeV) s a+1 a01 a+2 a02
mR = 1.72 −0.0828 0.590 −0.417 −0.561 0.397

.

(B24)
The eigenvector differs from that listed in Table IB for
reasons that are explained in App. D.

Appendix C: Electromagnetic Current

Using the properties of our baryon spinors, the current
in Eq. (2) can be rewritten in the form

J B
µ (Q) = ieΛB

+(Pf )
[

γµ F1B(Q
2)

+
1

2MB
σµνQνF2B(Q

2)

]

ΛB
+(Pi), (C1)

where the positive-energy projection operator is defined
in Eq. (E8). In this connection each of the three diagrams
in Fig. 2 can similarly be expressed

Lk
µ(Q) = ΛB

+(Pf )Ik
µ(Pf , Pi)Λ

B
+(Pi), k = 1, 2, 3.

In being explicit, we will focus on the elastic form fac-
tors for the charged baryon. N.B. For the neutral par-
ticles, one simply exchanges the flavours of the doubly-
and singly-represented quarks.

1. Diagram 1

The uppermost diagram in Fig. 2 describes a photon
coupling directly to a dressed-quark, through the vertex
described in App. A 3. It can be seen to represent the
following three expressions, the first involving the scalar
diquark and the second two, the axial-vector diquarks:

I1
sµ = s(Pi)

2

∫

ℓ

S(ℓf)ieuγ
T
µ PT (Q

2)S(ℓi)∆
0+(−ℓ), (C2)

where
∫

ℓ
=
∫

d4ℓ
(2π)4 , ℓ±(i,f) = ℓ± Pi,f , eu = 2/3; and

I1+
jµ = a+j (P )2

∫

ℓ

M̄jαS(ℓf)

×iedγ
T
µ PT (Q

2)S(ℓi)Mjβ∆
1+

αβ(−ℓ), (C3)

I10
jµ = a0j(P )2

∫

ℓ

MjαS(ℓf)

×ieuγ
T
µ PT (Q

2)S(ℓi)Mjβ∆
1+

αβ(−ℓ), (C4)

with ed = −1/3, j = 1, 2 and M1α = γ5γβ , M2α = γ5P̂µ.
If one assumes isospin symmetry, as herein, then it is
notable that owing to Eq. (B22)

I1+
jµ + I10

jµ ≡ 0 , j = 1, 2 , (C5)

which means diagrams with axial-vector diquark specta-
tors do not contribute to charged-particle form factors.

2. Diagram 2

The second diagram in Fig. 2 depicts the photon scat-
tering elastically from a diquark, with the dressed-quark
as spectator. Again, it can be expressed through the sum
of three separate terms, the first involving the scalar di-
quark:

I2
sµ = s(P )2

∫

ℓ

S(ℓ)∆0+(−ℓ−f)

×e[ud]Γ
0+
µ (−ℓ−f ,−ℓ−i)∆

0+(−ℓ−i), (C6)

where e[ud] = 1/3. Here Γ0+
µ is the dressed-photon–

scalar-diquark vertex, computed in Ref. [28]:

Γ0+
µ (−ℓ−f ,−ℓ−i) = −(ℓ−f + ℓ−i)F0+(Q

2) , (C7)

with the following expression providing an accurate in-
terpolation on the domain Q2 ∈ [−m2

ρ, 10]GeV2, mρ is
the ρ-meson’s mass,

F0+(Q
2)

interpolation
=

1 + 0.25Q2 + 0.027Q4

1 + 1.27Q2 + 0.13Q4
. (C8)

The remaining terms involve elastic scattering from the
axial-vector diquark:

I2+
jµ = a+j (P )2

∫

ℓ

M̄jαS(ℓ)∆
1+

αρ(−ℓf)

×e{uu}Γ
1+
µ,ρσ(−ℓ−f ,−ℓ−i)∆

1+

σβ(−ℓ−i)Mjβ , (C9)

I20
jµ = a0j(P )2

∫

ℓ

M̄jαS(ℓ)∆
1+

αρ(−ℓf)

×e{ud}Γ
1+
µ,ρσ(−ℓ−f ,−ℓ−i)∆

1+

σβ(−ℓ−i)Mjβ , (C10)

with e{uu} = 4/3, e{ud} = 1/3 and

Γ1+
µ,ρσ(kf = K +Q/2, ki = K −Q/2)

=

3
∑

j=1

T j
µ,ρσ(K,Q)F 1+

j (Q2) , (C11)
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where

T 1
µ,ρσ(K,Q) = 2KµPT

ρα(p
i)PT

ασ(p
f ) , (C12a)

T 2
µ,ρσ(K,Q) =

[

Qρ − piρ
Q2

2m2
1+

]

PT
µσ(p

f )

−
[

Qσ + pfσ
Q2

2m2
1+

]

PT
µρ(p

i) , (C12b)

T 3
µ,ρσ(K,Q) =

Kµ

m2
1+

[

Qρ − piρ
Q2

2m2
1+

][

Qσ + pfσ
Q2

2m2
1+

]

,

(C12c)

PT
ρσ(p) = δρσ − pρpσ/p

2. The electric, magnetic and
quadrupole form factors of the axial-vector diquark are
constructed as follows:

G1+
E (Q2) = F 1+

1 (Q2) +
2

3
ηG1+

Q (Q2) , (C13a)

G1+
M (Q2) = −F 1+

2 (Q2) , (C13b)

G1+
Q (Q2) = F 1+

1 (Q2)

+F 1+
2 (Q2) + [1 + η]F 1+

3 (Q2) , (C13c)

where η = Q2/[4m2
1+ ]. These quantities were computed

in Ref. [28] and the following functions provide accurate
interpolations on Q2 ∈ [−m2

ρ, 10]GeV2:

G1+

E (Q2)
interpolation

=
1− 0.16Q2

1 + 1.17Q2 + 0.012Q4
, (C14a)

G1+

M (Q2)
interpolation

=
2.13− 0.19Q2

1 + 1.07Q2 − 0.10Q4
, (C14b)

G1+

Q (Q2)
interpolation

= − 0.81− 0.029Q2

1 + 1.11Q2 − 0.054Q4
. (C14c)

3. Diagram 3

The last diagram depicts a dressed-quark spectator to
a photon induced transition between scalar and axial-
vector diquarks. It may be constructed from a sum

I3
jµ = I301

jµ + I310
jµ (C15)

where

I301
jµ = s(P )a0j (P )

∫

ℓ

S(ℓ)∆0+(−ℓf )

×ie{ud}Γ
01
µρ(Q,−ℓ−i)∆

1+

ρβ (−ℓi)Mjβ , (C16)

I310
jµ = s(P )a0j (P )

∫

ℓ

M̄jαS(ℓ)∆
1+

αρ(−ℓf)

×ie{ud}Γ
10
ρµ(−ℓ−f , Q)∆0+(−ℓi), (C17)

with

Γ10
ρµ(k2, k1) = Γ01

ρµ(−k2, k1) = Γ01
µρ(k1, k2) (C18)

and

Γ01
µρ(k1, k2) =

g01
mqq

1+

ǫµραβk1αk2β G
01(Q2). (C19)

The coupling and form factor were computed in
Ref. [28], with the results: g01 = 0.78; and a function for
which an accurate interpolation on Q2 ∈ [−m2

ρ, 10]GeV2

is provided by

G01(Q2)
interpolation

=
1 + 0.10Q2

1 + 1.073Q2
. (C20)

4. Current conservation

In Secs. C 1–C3 we have expressed formulae in terms
of the baryon’s unit-normalised Faddeev amplitude. In
analogy with mesons, the canonical normalisation con-
dition amounts to an overall multiplicative rescaling so
that F1B(Q

2 = 0) = 1 for the charged state [92].

Ward-Takahashi identities play an important role
in computing the rescaling factor. To explain, con-
sider the contribution to F1B(Q

2) from Eq. (C2),
defined as eus(P )2F1B,I1

s
, and that from Eq. (C6),

e[ud]s(P )2F1B,I2
s
. Then so long as a translationally in-

variant regularisation scheme is used, one can show

F1B,I1
s
(Q2 = 0) = F1B,I2

s
(Q2 = 0) . (C21)

In addition, with definitions clear by analogy, one has

F1B,I1p

j
(Q2 = 0) = F1B,I2p

j
(Q2 = 0) , j = 1, 2 , p = +, 0.

(C22)
Along with the fact that I3

jµ does not contribute at

F1B(Q
2), then Eqs. (C21), (C22) ensure: simple additiv-

ity of the quark and diquark electric charges, and thereby
guarantee a unit-charge isospin=(+1/2) baryon through
a single rescaling factor; and a neutral isospin=(−1/2)
baryon without fine tuning. In applying our regularisa-
tion scheme, we consistently enforce Eqs. (C21), (C22).

5. Typical contribution

There are many terms in the complete expression for
the baryon elastic electromagnetic form factors: accord-
ing to one enumeration scheme, eleven each for F1B and
F2B. Hence, we choose only to list one pair as an exam-
ple; namely, that determined from Eq. (C6). The proce-
dure is the same in all cases.

Using Eq. (C1), one constructs momentum-dependent
Dirac-matrices that, under a trace operation, project the
F1B and F2B components of each diagram. All of the
scalar expressions thus obtained are simplified by using
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the kinematic conditions (K0+(i,f) = −ℓ+ P(i,f))

P 2
f = −m2

B = P 2
i , (C23a)

Pi ·Q = −1

2
Q2, (C23b)

Pi · Pf = −m2
B − 1

2
Q2, (C23c)

K2
0+i = −m2

0+ , (C23d)

Q ·K0+i = −1

2
Q2, (C23e)

Q ·K0+f =
1

2
Q2, (C23f)

K0+i ·K0+f = −m2
0+ − 1

2
Q2. (C23g)

A Feynman parametrisation is then employed in or-
der to produce a single denominator from the product
of three propagators which appears, and the momentum-
integration variable is subsequently shifted, in our case:

ℓ → l + α(Pi + βQ). (C24)

This produces a simple denominator:

[l2 + ω(M2,m2
0+ , Q

2, α, β)]3, (C25)

where M is the dressed-quark mass and

ω(α, β,M,m0+ ,mB, Q
2) = M2(1− α)

+ α(m2
0+ − (1− α)m2

B + α2β(1 − β)Q2; (C26)

and a numerator that is simplified using Eqs. (C23), their
corollaries,

Pi ·K0+i = −l · Pi − (1− α)m2
B − 1

2
αβQ2, (C27a)

Pi ·K0+f = −l · Pi − (1− α)m2
B

−1

2
(1 + αβ)Q2, (C27b)

ℓ · Pi = l · Pi − αm2
B − 1

2
αβQ2, (C27c)

ℓ ·K0+i = −l2 + (1− 2α)l · Pi − 2αβl ·Q
−α(1 − α)m2

B

−1

2
αβ[1 + 2α(1− β)]Q2, (C27d)

ℓ ·Q = l · Pi −
1

2
α(1− 2β)Q2, (C27e)

ℓ ·K0+f = ℓ ·K0+i + ℓ ·Q , (C27f)

and subsequently O(4)-invariance.

Finally, the momentum integral is regularised to yield

F1B,I2
s
(Q2) =

∫ 1

0

dα dβ 2α [Q2 + 4m2
B]

−1

×
{[

2mB(αmB +M)(4m2
B(1− α) + (1− 2αβ)Q2)

−1

2
α2β(1 − 2β)Q4

]

C̄iu
2 (ω) ,

+
1

4
[3Q2 + 8m2

B][C̄iu
1 (ω)− ωC̄iu

2 (ω)]

}

, (C28)

F2B,I2
s
(Q2) = −

∫ 1

0

dα dβ 2α 2mB[Q
2 + 4m2

B]
−1

×
{[

4m2
B(αmB +M)(1− α) + [(1 − 2αβ)M

+α(1− αβ[1 + 2β])mB]Q
2

}

C̄iu
2 (ω) ,

−m2
B[C̄iu

1 (ω)− ωC̄iu
2 (ω)]

}

, (C29)

where

Ciu
2 (ω) = (ω2/2)Ciu ′′(ω) =

ω

2

(

e−ωτ2
uv − e−ωτ2

ir

)

, (C30)

Ciu

2 (ω) = Ciu
2 (ω)/ω2, is a derived form of Eq. (A7).

In computing the Roper elastic form factor there is one
modification at this point, arising in connection with the
zero we have inserted in the associated Faddeev equation
(see the last paragraph of App.B). Namely, the functions
Ciu are replaced by functions

Riu = Ciu − 2dFDiu + d2FHiu (C31)

where

Hiu(ω(M2, α, P 2)) =

∫ ∞

0

ds s
s2

s+ ω

→
∫ τ2

iu

τ2
uv

dτ
6

τ4
exp

[

−τω(M2, α, P 2)
]

, (C32)

Hiu
1 (z) = −z(d/dz)Hiu(z), H1(z) = H1(z)/z and

Hiu
2 (z) = (z2/2)Hiu ′′(z), H̄iu

2 (z)/z2. Through this ex-
pedient we represent the square of a Faddeev amplitude
that possesses a zero, as would appear in computing the
elastic form factor of the excitation.

6. Dressed-quark anomalous magnetic moment

In the presence of dynamical chiral symmetry break-
ing, a dressed light-quark possesses a large anomalous
electromagnetic moment [40]. To indicate the effect
on form factors that one might expect from this phe-
nomenon, we modified the quark-photon coupling as fol-
lows:

Γ(Q) = γT
µPT (Q

2) +
ζ

2M
σµνQν exp(−Q2/4M2) (C33)
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where M is the dressed-quark mass. Both the value of
ζ = 1/2 and the rate at which the anomalous moment
term decays are taken from the distribution computed in
Ref. [40].
The anomalous moment has no effect on the elastic

form factor of the scalar diquark but it does change the
form factors of the axial-vector diquarks; viz., with our
standard parameter choice, Table V, and z = Q2, the
following functions provide an accurate interpolation of
the result:

F 1+

1 (z) =
(1 + 0.98z)

1 + 2.75z + 1.26z2
, (C34a)

F 1+

2 (z) = − 3.23 + 0.048z

1 + 2.11z + 0.0037z2
, (C34b)

F 1+

3 (z) =
1.19 + 0.33z

1 + 1.38x+ 4.62z2
. (C34c)

Comparison with Eqs. (C13), (C14) reveals that the
dressed-quark anomalous electromagnetic moment in
Eq. (C33) increases the axial-vector diquarks’ magnetic
moment by 50% and the magnitude of its quadrupole
moment by 30%.

Appendix D: Transition Current

With the baryon spinors we have defined, the current
in Eq. 3 can be expressed

J∗
µ(Pf , Pi) = ieΛR

+(Pf )
[

γT
µF1∗(Q

2)

+
1

MR +MN
σµνQνF2∗(Q

2)

]

ΛN
+ (Pi), (D1)

where the positive-energy projection operators are as de-
fined in Eq. (E8). The same three diagrams contribute
to the transition but with the modification that the fi-
nal state is the Roper resonance. This means that the
kinematics are different, Eq. (10), and in Eq. (C2), for
example,

s(P )2 → sR(Pf )sN (Pi) . (D2)

With such changes implemented throughout, the anal-
ysis proceeds unchanged, although one must pay at-
tention to the modified kinematics when computing in-
variants, Eqs. (C23), and working through the Feynman
parametrisation, Eqs. (C27), until final expressions, such
as those in Eqs. (C28), (C30), are obtained.
At this point, the functions Ciu are replaced by the

functions F iu, in order that the zero we have inserted
into the Roper’s Faddeev amplitude is expressed in the
transition form factors.
We require that the Roper’s dressed-quark core be or-

thogonal to that of the nucleon and insist that each radi-
ally excited state possess a zero in its Faddeev amplitude,
as in Ref. [14]. The latter requirement ensures that the
contact interaction is able to produce a radial excitation
of both the ∆ resonance and its parity partner. On the

other hand, it modifies the Faddeev kernel, so that the
nucleon kernel is different from that for the Roper and
therefore orthogonality is not assured. This drawback,
which accompanies the interaction’s simplicity, is readily
corrected now that we have expressions for the transition
form factors.

As mentioned above, orthogonality means that
F1∗(Q

2 = 0) = 0 for both the charged and neu-
tral resonances. (The analogue of this condition has
been used in studies of meson radial excitations, both
with momentum-independent [93, 94] and momentum-
dependent kernels [95, 96].) In Ref. [14], lacking expres-
sions for the transition form factors, the location of the
zero in the Roper’s Faddeev amplitude was fixed follow-
ing inspection of its position in meson Bethe-Salpeter
amplitudes. This led to the choice M2dF = 1.0± 0.2.

Herein, we first consider F1R+→p(Q
2 = 0). Employ-

ing Eq. (D1), the analogues of Eqs. (C2), (C6), (C15),
and using Eqs. (C5), one finds that F1R+→p(Q

2 = 0)
receives just one contribution; viz., that of Diagram 1
where the photon strikes a dressed-quark in association
with a scalar diquark (all others are zero at Q2 = 0).
Orthogonality of the proton and charged-Roper is then
assured if

1

dF
= 0.77M2 , (D3)

a value just 3% smaller than the lower bound esti-
mated in Ref. [14] so that the mass estimate therein
(1.82± 0.07GeV) was reasonable. In fact, with Eq. (D3)
one obtains the Roper mass in Table IB, which is in even
better agreement with EBAC’s result for the dressed-
quark core; viz., 1.76± 0.1GeV, Eq. (1).

This procedure does not fix the value of sR. For guid-
ance in this respect we turn again to studies of meson
excitations. At zero relative momentum in a radial-
excitation’s Bethe-Salpeter amplitude, the magnitude of
the dominant Dirac stucture’s leading Chebyshev mo-
ment is approximately one-half of that for the ground-
state [96, 97]. We therefore choose

sR = −1

2
sN = −0.44 , (D4)

as listed in Table IB. The sign here matches that pro-
duced by the Roper’s Faddeev equation but the magni-
tude is five-times larger: the Faddeev equation for the
Roper produces a state that is 99% axial-vector diquark.

Now, given the canonical normalisation condition,
F1R+(Q2 = 0) = 1, and Eqs. (B22), there is only one
entry left to be fixed in the Roper’s Faddeev amplitude.
That is set by the condition F1R0→n(Q

2 = 0) = 0, whose
only nonzero entries are Diagram 1 quark plus axial-
vector diquark contributions. We thus arrive at the Fad-
deev amplitude entries for the Roper in Table IB.
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Appendix E: Euclidean Conventions

In our Euclidean formulation:

p · q =
4
∑

i=1

piqi ; (E1)

{γµ, γν} = 2 δµν ; γ
†
µ = γµ ; σµν =

i

2
[γµ, γν ] ; (E2)

tr [γ5γµγνγργσ] = −4 ǫµνρσ , ǫ1234 = 1 . (E3)

A positive energy spinor satisfies

ū(P, s) (iγ · P +M) = 0 = (iγ · P +M)u(P, s) , (E4)

where s = ± 1
2 is the spin label. The spinor is normalised:

ū(P, s)u(P, s) = 2M , (E5)

and may be expressed explicitly:

u(P, s) =
√
M − iE





χs

~σ · ~P
M − iE χs



 , (E6)

with E = i
√

~P 2 +M2,

χ+ =

(

1
0

)

, χ− =

(

0
1

)

. (E7)

For the free-particle spinor, ū(P, s) = u(P, s)†γ4.
The spinor can be used to construct a positive energy

projection operator:

Λ+(P ) :=
1

2M

∑

s=±

u(P, s) ū(P, s) =
1

2M
(−iγ · P +M) .

(E8)
A charge-conjugated Bethe-Salpeter amplitude is ob-

tained via

Γ̄(k;P ) = C† Γ(−k;P )TC , (E9)

where “T” denotes a transposing of all matrix indices and
C = γ2γ4 is the charge conjugation matrix, C† = −C.
We note that

C†γT
µ C = −γµ , [C, γ5] = 0 . (E10)
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