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We present event-by-event viscous hydrodynamic calculations of the anisotropic flow coefficients v2
to v5 for heavy-ion collisions at the Relativistic Heavy-Ion Collider (RHIC).We study the dependence
of different flow harmonics on shear viscosity and the morphology of the initial state. v3 and higher
flow harmonics exhibit a particularly strong dependence on both the initial granularity and shear
viscosity. We argue that a combined analysis of all available flow harmonics has the potential to
determine η/s of the quark gluon plasma more precisely than previously. Presented results strongly
hint at a value (η/s)QGP < 2/4π at RHIC. Furthermore, we demonstrate the effect of shear viscosity
on pseudo-rapidity spectra and the mean transverse momentum as a function of rapidity.

I. INTRODUCTION

Hydrodynamics is an indispensable and accurate tool
for the description of the bulk behavior of a fluid. The
equations of hydrodynamics are just the conservation
laws, an additional equation of state and constitutive
relationships for dissipative hydrodynamics. The idea
that ideal hydrodynamics can describe the outcome of
hadronic collisions has a long history. Applications to
relativistic heavy-ion collisions have been carried out by
many researchers (see [1, 2] for an extensive list of refer-
ences).

Fluctuating initial conditions for hydrodynamic sim-
ulations of heavy-ion collisions have been argued to be
very important for the exact determination of collective
flow observables and to describe features of multi-particle
correlation measurements in heavy-ion collisions [3–22].
Real event-by-event hydrodynamic simulations have been
performed and show modifications to spectra and flow
from “single-shot” hydrodynamics with averaged initial
conditions [17, 20–22]. An important advantage of event-
by-event hydrodynamic calculations is the possibility to
consistently study all higher flow harmonics in the same
simulation. The initial state does not have to be con-
structed as a smooth distribution with a given eccentric-
ity, triangularity, etc., which will cause simulations to
miss some of the dynamics relevant for the calculation
of higher flow harmonics. This is particularly important
for the computation of v4, which receives strong contri-
butions from elliptical deformations of the initial state,
and v5, which couples to triangularity from fluctuations
and to the ellipticity of the collision geometry [22]. Re-
cent hydrodynamic simulations have highlighted the role
of viscous corrections [23], fluctuating initial states [24]
and the combination of both [25] also on electromagnetic
observables.

Different vn depend differently on η/s and the details
of the initial condition, which is determined by the dy-
namics and fluctuations of partons in the incoming nu-
clear wave functions. In this work we present quantitative
results on the dependence of v2 to v5 on both the shear

viscosity to entropy density ratio η/s and the granularity
of the initial state, and compare to experimental data.
This paper is organized as follows. In Section II we

introduce the employed second order relativistic viscous
hydrodynamic framework. The explicit form of the hy-
perbolic equations in τ -ηs coordinates and the numerical
implementation are presented in Section III. We discuss
the initial condition for single events in Section IV and
explain the freeze-out procedure in Section V. Finally,
results are presented in Section VI, followed by conclu-
sions and discussions in Section VII.

II. VISCOUS HYDRODYNAMICS

In [1] we introduced the simulation music for ideal
relativistic fluids and extended it in [20] to include dissi-
pative effects.
In the ideal case, the evolution of the system, created

in relativistic heavy-ion collisions, is described by the fol-
lowing 5 conservation equations

∂µT
µν
0 = 0 , (1)

∂µJ
µ
B = 0 , (2)

where T µν
0 is the energy-momentum tensor and Jµ

B is the
net baryon current. These are usually re-expressed using
the time-like flow 4-vector uµ as

T µν
0 = (ε+ P)uµuν − Pgµν , (3)

Jµ
B = ρBu

µ , (4)

where ε is the energy density, P is the pressure, ρB is
the baryon density and gµν = diag(1,−1,−1,−1) is the
metric tensor. The equations are then closed by adding
the equilibrium equation of state

P = P(ε, ρB) (5)

as a local constraint on the variables.
Historically, these equations have first been solved in

a boost-invariant framework [26], eliminating the longi-
tudinal direction and assuming uniformity in the trans-
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verse direction. At RHIC the central plateau in rapid-
ity extends over 4 units. Hence, as long as one is con-
cerned only with the dynamics near the mid-rapidity re-
gion, boost invariance should be a valid approximation
at RHIC, restricting the relevant spatial dimensions to
the transverse plane. Much success has been achieved
by these (2+1)D calculations (see references in [1] and
[27, 28] for thorough reviews). However, in order to an-
alyze experimental data away from mid-rapidity, inclu-
sion of the non-trivial longitudinal dynamics is essential
[1, 29–34].
The next step in improving relativistic hydrodynamic

simulations of heavy-ion collisions is the inclusion of finite
viscosities. In the first order, or Navier-Stokes formalism
for viscous hydrodynamics, the stress-energy tensor is de-
composed into

T µν
1st = T µν

0 + Sµν , (6)

where T µν
0 is given by Eq. (3)

The viscous part of the stress energy tensor in the first-
order approach is given by

Sµν = η

(

∇µuν +∇νuµ − 2

3
∆µν∇αu

α

)

(7)

where ∆µν = gµν − uµuν is the local 3-metric and
∇µ = ∆µν∂ν is the local spatial derivative. Note that
Sµν is transverse with respect to the flow velocity since
∆µνuν = 0 and uνuν = 1. Hence, uµ is also an eigen-
vector of the whole stress-energy tensor with the same
eigenvalue ǫ. η is the shear viscosity of the medium.
We assume the ratio η/s to be constant. This way we
can study the dependence of observables on an effective
η/s, neglecting its temperature dependence that has been
studied in e.g. [35, 36]. In particular, we do not take into
account an increasing η/s in the hadronic phase which
should preferably be done by switching to a hadronic
rescattering simulation when viscous corrections become
large. Not aiming at a precision determination of η/s(T )
in the current work these approximations are adequate.
The form of viscous hydrodynamics using (7) is con-

ceptually simple. However, this Navier-Stokes form
is known to introduce unphysical super-luminal signals
[37–39], leading to numerical instabilities. The second-
order Israel-Stewart formalism [40–42] avoids this super-
luminal propagation, as does the more recent approach
in [43].
In this work, we use a variant of the Israel-Stewart

formalism derived in [44], where the stress-energy tensor
is decomposed as

T µν = T µν
0 + πµν . (8)

The evolution equations are

∂µT
µν = 0 (9)

and

∆µ
α∆

ν
βu

σ∂σπ
αβ = − 1

τπ
(πµν − Sµν)− 4

3
πµν(∂αu

α) .

(10)

When dealing with rapid longitudinal expansion, it
is useful to transform these equations to the τ -ηs-
coordinate system, defined by

t = τ cosh ηs ,

z = τ sinh ηs . (11)

We obtain the following hyperbolic equations with
sources

∂aT
ab
0 = −∂aπab + F b (12)

and

∂a(u
aπcd) = −(1/τπ)(π

cd − Scd) +Gcd (13)

where F b and Gcd contain terms introduced by the coor-
dinate change from t, z to τ, ηs as well as those introduced
by the projections in Eq. (10), and τπ is the relaxation
time. Latin indeces a, b, c, d indicate that we are in the
τ -ηs-coordinate system. Summation over all four dimen-
sions is implied for repeated indeces.
Our approach to solve these hyperbolic equations relies

on the Kurganov-Tadmor (KT) scheme [45, 46], together
with Heun’s method to solve resulting ordinary differen-
tial equations.

III. IMPLEMENTATION

As mentioned above, the most natural coordinate sys-
tem for us is the τ − ηs coordinate system defined by
Eq. (11). In this coordinate system, the conservation
equation ∂µJ

µ = 0 becomes

∂τ (τJ
τ ) + ∂v(τJ

v) + ∂ηs
Jηs = 0 , (14)

where

Jτ = (cosh ηsJ
0 − sinh ηsJ

3) , (15)

Jηs = (cosh ηsJ
3 − sinh ηsJ

0) , (16)

which is simply a Lorentz boost with the space-time ra-
pidity ηs = tanh−1(z/t). The index v and w in this sec-
tion always refer to the transverse x, y coordinates which
are not affected by the boost. Repeated indices v or w
imply summation over x and y only. Applying the same
transformation to both indices in Eq. (9), one obtains

∂τ (τT
ττ
0 ) + ∂v(τT

vτ
0 ) + ∂ηs

(T ηsτ
0 ) + T ηsηs

0 (17)

+ ∂τ (τπ
ττ ) + ∂v(τπ

vτ ) + ∂ηs
(πηsτ ) + πηsηs = 0 ,

∂τ (τT
τηs

0 ) + ∂v(τT
vηs

0 ) + ∂ηs
(T ηsηs

0 ) + T τηs

0 (18)

+ ∂τ (τπ
τηs) + ∂v(τπ

vηs ) + ∂ηs
(πηsηs) + πτηs = 0 ,

and

∂τ (τT
τv
0 ) + ∂w(τT

wv
0 ) + ∂ηs

(T ηsv
0 ) (19)

+ ∂τ (τπ
τv) + ∂w(τπ

wv) + ∂ηs
(πηsv) = 0 .
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These 5 equations, namely Eq. (14) for the net baryon
current, and Eqs. (17, 18, 19) for the energy and momen-
tum, are solved along with Eqs. (13) for the viscous part
of the stress-energy tensor, which in a more explicit way
of writing read

∂c(u
cπab) =− 1

2τ
uτπab +

1

τ
∆aηuηπbτ − 1

τ
∆aτuηπbη

− gcfπ
cbuaDuf − πab

2τπ
− 1

6
πab∂cu

c

+
η

τπ

(

− 1

τ
∆aηgbηuτ +

1

τ
∆aηgbτuτ

+gac∂cu
b − uaDub − 1

3
∆ab∂cu

c

)

+ (a↔ b) , (20)

The relaxation time τπ is set to 3η/(ǫ + P), in line with
the approach in [47]. It was also shown in [48] that the
dependence of observables such as v2 on τπ is negligible
when including the term (4/3)πµν(∂αu

α) in Eq. (10).
To solve the equations we use the KT algorithm as ex-

plained in [1]. In detail, we compute the first step within
Heun’s method for Eqs. (14, 17, 18, 19), then the first step
for Eqs. (20), proceed with the second step for Eqs. (14,
17, 18, 19) using the evolved result for πab, and finally
compute the second step for Eqs. (20). This concludes
the evolution of one time step.
One major difference to the ideal hydrodynamic equa-

tions solved in [1] is the appearance of time derivatives
in the source terms of Eqs. (17, 18, 19, 20). These are
handled with the first order approximation

ġ(τn) = (g(τn)− g(τn−1))/∆τ , (21)

in the first step of the Heun method, and in the second
step we use

ġ(τn) = (g∗(τn+1)− g(τn))/∆τ , (22)

where g∗(τn+1) is the result from the first step.
As in most Eulerian algorithms, ours also suffers from

numerical instability when the density becomes small
while the flow velocity becomes large. Fortunately this
happens late in the evolution or at the very edge of the
system. Regularizing such instability has no strong ef-
fects on the observables we are interested in. Some ways
of handling this are known (for instance see Ref.[49]).
In this study, when finite viscosity causes negative

pressure in the cell, we revert to the previous value of
πµν and reduce all components by 5%. This procedure
stabilizes the calculations without introducing spurious
effects.

IV. INITIALIZATION AND EQUATION OF

STATE

To determine the energy density distribution at the
initial time τ0 for a single event, we employ the Monte-

Carlo Glauber model using the method described in [50]
to determine the initial distribution of wounded nucleons.
Before the collision the density distribution of the two
nuclei is described by a Woods-Saxon parametrization,
which we sample to determine the positions of individual
nucleons. The impact parameter is sampled from the
distribution

P (b)db = 2bdb/(b2max − b2min) , (23)

where bmin and bmax depend on the given centrality class.
Given the sampled initial impact parameter the two nu-
clei are superimposed. Two nucleons are assumed to col-
lide if their relative transverse distance is less than

D =
√

σNN/π , (24)

where σNN is the inelastic nucleon-nucleon cross-section,
which at top RHIC energy of

√
s = 200AGeV is σNN =

42mb. The energy density is taken to scale mostly with
the wounded nucleon distribution and to 25% with the
binary collision distribution. So, two distributions are
generated, one where for every wounded nucleon a con-
tribution to the energy density with Gaussian shape and
width σ0 in both x and y is added, one where the same is
done for every binary collision. These are then multiplied
by 0.75 and 0.25, respectively, and added.
In the rapidity direction, we assume the energy density

to be constant on a central plateau and fall like half-
Gaussians at large |ηs| as described in [1]:

ε(ηs) ∝ exp

[

− (|ηs| − ηflat/2)
2

2σ2
η

θ(|ηs| − ηflat/2)

]

(25)

This procedure generates flux-tube like structures com-
patible with measured long-range rapidity correlations
[51–53]. The absolute normalization is determined by
demanding that the obtained total multiplicity distribu-
tion reproduces the experimental data. We initialize with
πµν(τ0) = 0.
As equation of state we employ the parametrization

“s95p-v1” from [54], obtained from interpolating between
lattice data and a hadron resonance gas. This equation
of state describes a chemically equilibrated system and
hence does not account for chemical decoupling before
kinetic freeze-out. Equations of state including partial
chemical equilibrium improve on this and will be studied
in future work.

V. FREEZE-OUT

We perform a Cooper-Frye freeze-out using

E
dN

d3p
=

dN

dypTdpTdφp
= gi

∫

Σ

f(uµpµ)p
µd3Σµ , (26)

where gi is the degeneracy of particle species i, and Σ
the freeze-out hyper-surface. In the ideal case the distri-
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bution function is given by

f(uµpµ) = f0(u
µpµ) =

1

(2π)3
1

exp((uµpµ − µi)/TFO)± 1
,

(27)
where µi is the chemical potential for particle species
i and TFO is the freeze-out temperature. In the finite
viscosity case we include viscous corrections to the dis-
tribution function, f = f0 + δf , with

δf = D(α)f0(1 ± (2π)3f0)

(

T

E

)α

pµpνπµν
1

2(ǫ+ P)T 2
,

(28)
where π is the viscous correction introduced in Eq. (8).
This result is obtained using a relaxation time approxi-
mation [55]. α ∈ [0, 1] depends on the details of the (un-
known) underlying microscopic theory, E = pµu

µ, and
D(α) = 120/Γ(6 − α) is a normalization factor derived
using Boltzmann statistics in the kinetic theory (differ-
ences to quantum statistics are on the one percent level).
Γ(·) is the Euler gamma function. Most presented results
are obtained using α = 0, leading to δf ∼ p2, but this
choice is not unique [55]. Therefore we will show a com-
parison of all vn(pT ) using α = 0, 0.5 and 1 to see how
large an uncertainty is introduced in the final result by
the uncertainty in δf .
The algorithm used to determine the freeze-out surface

Σ has been presented in [1]. It can be used without modi-
fication for determining the freeze-out surface of a system
with fluctuating initial conditions. In this case the error
introduced by complicated surface shapes where the sur-
face can not be constructed without gaps is less than 1%.

VI. ANALYSIS AND RESULTS

While in standard hydrodynamic simulations with av-
eraged initial conditions all odd flow coefficients vanish
by definition, fluctuations generate all flow harmonics as
response to the initial geometry. We follow [19], where
v3 is computed in a similar way to the standard event
plane analysis for elliptic flow, and for each vn define an
event plane through the angle

ψn =
1

n
arctan

〈sin(nφ)〉
〈cos(nφ)〉 . (29)

Note that here we do not weigh the average by pT as
done in [19, 20] and [56]. Definition (29) is closer to
what is done in the PHENIX experiment, because the
pT of the particles used to determine the event planes
are not measured. Therefore one can not apply an ex-
plicit pT weighting [57]. Most of the particles used to
determine the event plane have low transverse momen-
tum because of the fast dropping spectrum. Differences
between the different definitions are however small and
lead to variations of vn on the order of one percent or
less.

The flow coefficients can be computed using

vn = 〈cos(n(φ− ψn))〉 . (30)

When averaging over events we compute the root mean
square

√

〈v22〉 because we compare to data obtained with
the event-plane method (see [58]). First, we present re-
sults for particle spectra as functions of pT and ηs. Pa-
rameters were chosen in order to reproduce the experi-
mental data for the spectra when including all resonances
up to 2GeV (and some higher lying resonances to be con-
sistent with what is included in the employed equation
of state). The used parameters can be found in Table
I. Values for the maximal average energy density (in the
center of the system) 〈εmax〉 are quoted for most cen-
tral (0-5%) collisions. In addition, all parameter sets use
ηflat = 4.8 and ση = 0.7.

η/s σ0[fm] τ0[fm/c] 〈εmax〉[GeV/fm3] TFO[MeV]

0 0.4 0.4 65.7 150

0.08 0.4 0.4 57 150

0.16 0.4 0.4 50 150

0.08 0.2 0.4 57 155

0.08 0.8 0.4 57 145

TABLE I. Parameter sets.

Fig. 1 shows the transverse momentum spectra of pos-
itive pions, kaons and protons compared to experimental
data from PHENIX [59] in 20-30% central events. In
Fig. 2 we present a comparison of the computed charged
particle spectrum for η/s = 0.08 in 15-25% central colli-
sions as a function of pseudo-rapidity ηp with experimen-
tal data from PHOBOS [60].
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FIG. 1. (Color online) Positive pion transverse momentum
spectrum for 20-30% central Au+Au collisions using η/s =
0.08 including resonances up to 2GeV (solid) and up to the φ-
meson (dashed) compared to data from PHENIX [59]. Results
are averages over 10 single events.
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FIG. 2. (Color online) Charged hadron spectrum for 15-25%
central Au+Au collisions including resonances up to 2GeV
(solid, averaged over 10 events) and up to the φ-meson (dot-
ted, averaged over 100 events) compared to data from PHO-
BOS [60].

With the employed parameters we achieve very good
agreement when including all resonance decays. In gen-
eral, it is computationally too expensive to include reso-
nances up to 2GeV for all calculations. Hence, for most
presented results we restrict ourselves to including reso-
nances up to the φ-meson only. This is a good approx-
imation because pions dominate the flow of all charged
hadrons and it is mainly the ρ- and ω- mesons that mod-
ify the pion distributions. Fig. 3 shows how the vn for
charged hadrons are affected by including different num-
bers of resonances. Including more resonances reduces
all vn, however, the quantitative effect is small. The re-
duction is caused by the kinematics of resonance decays.
When including more resonances, decays will diffuse the
distribution of lower lying resonances and finally that of
pions, kaons, and protons. This diffusion leads to weaker
anisotropic flow. The influence of higher lying resonances
on v3 appears to be larger than that on the other vn.

Next, we verify that our results are not plagued by
large discretization errors. Higher flow harmonics are
sensitive to fine structures in the system and for the case
of ideal hydrodynamics with smooth initial conditions it
was shown in [1] that v4 is very sensitive to the lattice
spacing if it is not chosen small enough. Fig. 4 shows
vn(pT ) for two different lattice spacings, our standard
value of a = 0.115 fm and a larger a = 0.2 fm. Differences
are within the statistical error bars from averaging over
100 events each.

In Fig. 5 we demonstrate the uncertainty in all vn(pT )
introduced by the uncertainty in the viscous correction
δf to the thermal distribution function. Using α = 0, 0.5,
and 1 corresponding to δf ∝ p2, p3/2, and p, respectively,
as well as no δf -correction at all, we find that the un-
certainty from δf for pT < 2GeV is negligible and still
moderate for 2GeV < pT < 3GeV. Our results are hence
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FIG. 3. (Color online) Charged hadron v2 to v5 for η/s = 0.08
as a function of transverse momentum pT averaged over 10
single events, including resonances up to the φ-meson (upper
end of each band) and all resonances up to 2GeV (lower end
of each band).
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FIG. 4. (Color online) Charged hadron v2 to v5 for η/s =
0.08 and σ0 = 0.4 fm as a function of transverse momentum
pT averaged over 100 single events for lattice spacings a =
0.115 fm (solid lines) and a = 0.2 fm (dashed lines).

robust for pT < 2GeV.

Because we are using a (3+1)-dimensional relativis-
tic viscous hydrodynamic simulation, it is interesting
to demonstrate the effect of shear viscosity on the lon-
gitudinal dynamics of the system, which in a (1+1)-
dimensional simulation was studied in [61, 62].

Fig. 6 shows the modification of charged hadron
pseudo-rapidity spectra caused by the inclusion of shear
viscosity. The shape of the initial energy density distri-
bution in the longitudinal direction is the same for all
curves, which were each averaged over 200 events. The
normalization was adjusted to yield the same multiplicity
at midrapidity in all cases. In the range 2 < |ηp| < 4 the
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FIG. 5. (Color online) Differential v2 and v4 (upper panel)
and v3 and v5 (lower panel) in 20-30% central collisions using
η/s = 0.08 and varying the p-dependence of δf . Also shown
is the ideal result and the result from viscous evolution only
(no δf). We are not showing error bands for clarity. Results
are averages over 100 single events each.

pseudo-rapidity spectra are increased, for larger ηp de-
creased by the effect of shear viscosity. We checked that
this effect is almost entirely due to the modified evolution
when including shear viscosity. The viscous correction
to the distribution functions δf (28) only causes minor
modifications. Additional information can be obtained
by looking at the average transverse momentum 〈pT 〉 as
a function of rapidity. We show in Fig. 7 that also 〈pT 〉
increases at intermediate rapidities and decreases at the
largest |y|. For this observable the effect of δf is larger.

In the viscous case, the effective longitudinal pressure
is reduced compared to an ideal fluid. Hence longitudinal
pressure gradients are smaller and longitudinal acceler-
ation is reduced, leading to smaller multiplicity at the
largest rapidities. Also, at the largest rapidities the sys-
tem is small and freezes out early at low transverse veloc-
ity, leading to a small 〈pT 〉. At intermediate rapidities,
the strong change in the initial distribution leads to the
largest pressure gradients. Hence, longitudinal expansion
is strongest in that region. Because shear is proportional

to the difference in longitudinal and transverse expan-
sion, entropy production is largest in this region, which
we have checked explicitly. The large shear stress in this
region subsequently leads to larger transverse pressure,
hence larger transverse pressure gradients. This leads
to an increased transverse velocity at intermediate ra-
pidities, explaining the increased average pT . The shear
stress remains large until freeze-out leading to the larger
δf correction in the same region.
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FIG. 6. (Color online) Charged hadron spectrum for 20-30%
central Au+Au collisions for different values of η/s including
resonances up to the φ-meson.
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FIG. 7. (Color online) Positive pion average pT as a function
of rapidity y for 20-30% central Au+Au collisions from ideal
and viscous (η/s = 0.08) including resonances up to the φ-
meson.

In Fig. 8 we show the dependence of vn(pT ) on the
shear viscosity of the system. Results are averaged over
200 single events each. For v2 to v4 we compare to exper-
imental data from the PHENIX collaboration obtained
using the event plane method [63]. The dependence of
vn(pT ) on η/s increases with increasing n. To make this
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FIG. 8. (Color online) pT -differential v2 to v5 from ideal hy-
drodynamics (left), viscous hydrodynamics with η/s = 0.08
(middle), and η/s = 0.16 (right). Results are averaged over
200 events each. Experimental data from PHENIX [63].

point more quantitative, we present the ratio of the pT -
integrated vn from viscous calculations to vn from ideal
calculations as a function of n in Fig. 9. While v2 is
suppressed by ∼ 20% when using η/s = 0.16, v5 is sup-
pressed by ∼ 80%. Higher harmonics are substantially
more affected by the system’s shear viscosity than v2 and
hence are a much more sensitive probe of η/s. This be-

havior is expected because diffusive processes smear out
finer structures corresponding to higher nmore efficiently
than larger scale structures, and has been pointed out
previously in [18].
So far all results were obtained using initial conditions

with a Gaussian width σ0 = 0.4 fm. We now study the
effect of the initial state granularity on the flow harmon-
ics by varying σ0. Decreasing σ0 causes finer structures
to appear and hence strengthens the effect of hot spots.
This results in a hardening of the spectra as previously
demonstrated in [17]. Because we want to compare to ex-
perimental data, we readjust the slopes to match the ex-
perimental pT -spectra by modifying the freeze-out tem-
perature (see Table I).
Fig. 10 shows the dependence of vn(pT ) on the value

of σ0, which we vary from 0.2 fm to 0.8 fm. While v2 is
almost independent of σ0, higher flow harmonics show a
very strong dependence. In Fig. 11 we present the depen-
dence of the pT -integrated vn on the initial state granu-
larity characterized by σ0.
Higher flow harmonics turn out to be a more sensi-

tive probe of initial state granularity than v2. While we
are not yet attempting an exact extraction of η/s using
higher flow harmonics, our results give a first quantita-
tive overview of the effects of both the initial state gran-
ularity and η/s on all higher flow harmonics up to v5.
Comparing Figs. 8 and 10, we see that v4(pT ) obtained
from simulations using η/s = 0.16 is about a factor of 2
below the experimental result, and that decreasing σ0 by
a factor of two does not increase it nearly as much. Note
that σ0 = 0.2 fm is already a very small value given that
we assign this width to a wounded nucleon. It is hence
unlikely that a higher initial state granularity will be able
to compensate for the large effect of the shear viscosity.
Similar arguments hold for v3(pT ).
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FIG. 9. (Color online) Ratio of charged hadron flow harmo-
nics in viscous simulations to the result from ideal hydrody-
namics. Results are averages over 200 single events each.

A detailed systematic analysis of different models for
the initial state with a sophisticated description of fluc-
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single events each (200 events for σ0 = 0.4 fm).

tuations is needed to make more precise statements on
the value of η/s. Also an equation of state that includes
a partial chemical freeze-out is expected to modify the
results, in particular vn(pT ) [64].
It is however clear from the present analysis that the

utilization of higher flow harmonics can constrain models
for the initial state and values of transport coefficients
of the quark-gluon plasma significantly. The analysis of
only elliptic flow is not sufficient for this task, because it
depends too weakly on both the initial state granularity
and η/s.

We present v2 and v3 as a function of pseudo-rapidity
in Fig. 12. The v2(ηp) result from the simulation is flatter
than the experimental data out to ηp ≈ 3 and then falls
off more steeply. A modified shape of the initial energy
density distribution in the ηs-direction, the inclusion of
finite baryon number, and inclusion of a rapidity depen-
dence of the fluctuations will modify the result.

In Fig. 13 we show results of vn(pT ) for different cen-
tralities using η/s = 0.08. Overall, all flow harmonics
are reasonably well reproduced. Deviations from the ex-
perimental data, especially of v3(pT ) in the most central

collisions indicate that our rather simplistic description
of the initial state and its fluctuations is insufficient. Im-
provements can be made by a systematic study with al-
ternative models for the fluctuating initial state based
on e.g. the color-glass-condensate effective theory (along
the lines of [66]).
Finally, the higher flow harmonics integrated over a

transverse momentum range 0.2GeV < pT < 2GeV
are shown in Fig. 14 as a function of centrality. v2 has
the strongest dependence on the centrality because it is
driven to a large part by the overall geometry. The odd
harmonics are entirely due to fluctuations as we have
discussed earlier, and hence do not show a strong depen-
dence on the centrality of the collision.

VII. SUMMARY AND CONCLUSIONS

We have demonstrated that the analysis of higher flow
harmonics within (3+1)-dimensional event-by-event vis-
cous hydrodynamics has the potential to determine trans-
port coefficients of the QGP such as η/s much more pre-
cisely than the analysis of elliptic flow alone. We pre-
sented in detail the framework of (3+1)-dimensional vis-
cous relativistic hydrodynamics and the concept of event-
by-event simulations, which enable us to study quantities
that are strongly influenced or even entirely due to fluc-
tuations such as odd flow harmonics. Parameters of the
hydrodynamic simulation were fixed to reproduce parti-
cle spectra both as a function of transverse momentum
pT and pseudo-rapidity ηp. The studied flow harmonics
v2 to v5 were found to depend increasingly strongly on
the value of η/s and also on the initial state granularity.
This work does not attempt an exact extraction of η/s of
the QGP, and additional work is needed to do so, how-
ever, our quantitative results hint at a value of η/s not
larger than 2/4π. The reason is the strong suppression
of v3 to v5 by the shear viscosity. A higher granularity
of the initial state counteracts this effect, but our results
indicate that this increase is not large enough to account
for η/s ≥ 2/4π. We will report on a detailed analysis of
higher flow harmonics at LHC energies and a comparison
to the experimental data in a subsequent work.
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