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Earlier studies of 239Pu(n, f) have been extended to incident neutron energies up to 20 MeV
within the framework of the event-by-event fission model FREYA, into which we have incorporated
multichance fission and pre-equilibrium neutron emission. The main parameters controlling prompt
fission neutron evaporation have been identified and the prompt fission neutron spectrum has been
analyzed by fitting those parameters to the average neutron multiplicity ν from ENDF-B/VII.0,
including the energy-energy correlations in the covariance of ν(E) obtained by fitting to the experi-
mental ν data used in the ENDF-B/VII.0 evaluation. We present our results, discuss relevant tests
of this new evaluation, and describe possible further improvements.

I. INTRODUCTION

Nuclear fission forms a central topic in nuclear physics,
presenting many interesting issues for both experimen-
tal and theoretical research, and it has numerous prac-
tical applications as well, including energy production
and security. Nevertheless, a quantitative theory of fis-
sion is not yet available. While there has been consid-
erable progress in the last few years, both in liquid-drop
model-type calculations [1, 2] and in microscopic treat-
ments [3–5], these treatments primarily address “cold”
fission, induced by thermal neutrons, and cannot yet de-
scribe “hot fission”, induced by more energetic neutrons.
In order to perform new evaluations of observables impor-
tant for applications over the full relevant energy range,
it is therefore necessary to rely on a considerable degree
of phenomenological modeling.

One of the most important quantities for applications
is the prompt fission neutron spectrum (PFNS). As dis-
cussed earlier [6], the experimental spectral data them-
selves are neither sufficiently accurate nor of sufficiently
consistent quality to allow an improved PFNS evaluation.
However, by combining measured information about the
nuclear fragment yields and energies with the very pre-
cise evaluations of neutron multiplicities, it is possible to
constrain the neutron spectrum rather tightly without
having to rely on the spectral data themselves.

Our approach employs the fission model FREYA (Fis-
sion Reaction Event Yield Algorithm) which incorporates
the relevant physics and contains a few key parameters
that are determined by comparison to pertinent data
through statistical analysis [6, 7]. It simulates the en-
tire fission process, starting from the possible emission of
pre-equilibrium neutrons, and it generates a large sam-
ple of complete fission events with full kinematic infor-
mation on the emerging fission products and the emitted
neutrons and photons. FREYA provides a means of using
readily-measured observables to improve our understand-
ing of the fission process and it is, therefore, a potentially
powerful tool for bridging the gap between current mi-
croscopic models and important fission observables and

for improving estimates of the fission characteristics im-
portant for applications.
In the following, we briefly describe the employed ver-

sion of FREYA and the fitting procedure used to obtain
our extended evaluation of the 239Pu(n, f) prompt fis-
sion neutron spectrum. We then compare our results
to the ENDF-B/VII.0 [8] evaluation of the PFNS and
some benchmark criticality tests. Finally, we discuss the
energy and model dependence of several relevant observ-
ables.

II. GENERATION OF FISSION EVENTS

We have adapted the recently developed fission model
FREYA [7] for the present purpose of calculating the neu-
tron spectrum in terms of a set of well-defined model
parameters. We describe its main physics ingredients be-
low, with an emphasis on the new features added for the
present study, particularly multichance fission and pre-
equilibrium emission. Being a simulation model, FREYA
follows the temporal sequence of individual fission events
from the initial agitated fissionable nucleus, 240Pu∗ in
the present case, through possible pre-fission emissions
to a split into two excited fragments and their subse-
quent sequential emission of neutrons and photons. The
description below is similarly organized.

A. Pre-fission neutron emission

At low incident neutron energies, below a few MeV,
the neutron is absorbed into the target nucleus resulting
in an equilibrated compound nucleus which may have a
variety of fates. Most frequently, in the present case, it
will fission directly. But, since the compound nucleus was
formed by neutron absorption, it is energetically possible
for it to re-emit a neutron. In that circumstance, the
daughter nucleus cannot fission and will de-excite by se-
quential photon emission. FREYA generally discards such
events because it is designed to provide fission events (but
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FIG. 1: (Color online) The probability for first- (black circles),
second- (red squares), third- (green diamonds), and fourth-
(blue triangles) chance fission as a function of incident neutron
energy. The solid curves show the GNASH results used in the
ENDF-B/VII.0 evaluation [8], while the dashed curves with
open symbols are the FREYA results discussed in the text.

their frequency is noted). Neutron evaporation from a fis-
sionable compound nucleus can be treated in the same
manner as neutron evaporation from fission fragments,
as will be described later (Sect. II D 1). In principle, it is
also possible that the compound nucleus will start by ra-
diating a photon but the likelihood for this is very small
and is ignored.

1. Multichance fission

As the energy of the incident neutron is raised, neu-
tron evaporation from the produced compound nucleus
competes ever more favorably with direct (first-chance)
fission. The associated probability is given by the ratio
of the fission and evaporation widths Γf(E

∗) and Γn(E
∗)

for which we use the transition-state estimate [9],

Γn(E
∗)

Γf(E∗)
=

2gnµnσ

π~2

∫Xn

0
(Xn − x)ρn(x)dx
∫Xf

0
ρf(x)dx

, (1)

where gs = 2 is the spin degeneracy of the neutron, µn is
its reduced mass, and σ = πR2 = πr20A

2/3. Furthermore,
ρn(x) is the level density in the evaporation daughter nu-
cleus at the excitation energy x, whose maximum value
is given by Xn = Qn = E∗−Sn, where Qn is the Q value
for neutron emission and Sn is the neutron separation
energy. Similarly, ρf(x) is the level density of the tran-
sition configuration for the fissioning nucleus, i.e. when
its shape is that associated with the top of the fission
barrier; the excitation x is measured relative to that bar-
rier top, so its maximum value is Xf = E∗ − Bf , where
Bf is the height of the fission barrier (the corresponding
quantity for neutron emission is the neutron separation
energy Sn).

Neutron evaporation is possible whenever the excita-
tion energy of the compound nucleus exceeds the neutron
separation energy, E∗ > Sn. (Because it costs energy to
remove a neutron from the nucleus, Sn is positive.) The
excitation energy of the evaporation daughter nucleus is
E∗

d = E∗−Sn−E where E is the kinetic energy of the rel-
ative motion between the emitted neutron and the daugh-
ter nucleus. If this quantity exceeds the fission barrier in
the daughter nucleus, then second-chance fission is pos-
sible. (We use the Hill-Wheeler expression for the trans-
mission probability, Pf = 1/[1 + exp(2π(Bf − E∗

d)/~ω)]
with ~ω = 1 MeV, so there is an exponentially small
probability for sub-barrier fission.) The procedure de-
scribed above is then applied to the daughter nucleus,
thus making further pre-fission neutron emission possi-
ble. Thus as the incident neutron energy is raised, the
emission of an ever increasing number of pre-fission neu-
trons becomes possible and the associated fission events
may be classified as first-chance fission (when there are
no pre-fission neutrons emitted), second-chance fission
(when one neutron is emitted prior to fission), and so on.
Figure 1 shows the probabilities for nth-chance fission

obtained with FREYA for incident neutron energies up to
20 MeV. Also shown are the GNASH results used in the
ENDF-B/VII.0 evaluation [8]. The two calculations give
rather similar results but, because these probabilities are
not easy to measure experimentally, it is not possible to
ascertain the accuracy of the calculations.

2. Pre-equilibrium neutron emission
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FIG. 2: (Color online) Upper panel: The probability for pre-
equilibrium neutron emission as a function of the incident neu-
tron energy. Lower panel: The corresponding average multi-
plicity of neutrons emitted prior to fission calculated without
(dashed) and with (solid) the pre-equilibrium processes.

At higher incident neutron energies, there is a grow-
ing chance that complete equilibrium is not established
before the first neutron is emitted. Under such cir-
cumstances the calculation of statistical neutron evap-



3

oration must be replaced by a suitable non-equilibrium
treatment. A variety of models have been developed
for this process (for example Ref. [10] which combines
pre-equilibrium emission with the Madland-Nix model
[11] of the prompt fission neutron spectrum) and we em-
ploy a practical application of the two-component exciton
model [12] (described in detail in Ref. [13]). It repre-
sents the evolution of the nuclear reaction in terms of
time-dependent populations of ever more complex many-
particle-many-hole states.
A given many-exciton state consists of pν(π) neutron

(proton) particle excitons and hν(π) neutron (proton)
hole excitons. The total number of neutron (proton) ex-
citons in the state is nν(π) = pν(π) + hν(π). The incident
neutron provides the initial state consisting of a single ex-
citon, namely a neutron particle excitation: pν = 1 and
pπ = hν = hπ = 0. In the course of time, the number
of excitons present may change due to hard collisions or
charge exchange, as governed by the residual two-body
interaction. We ignore the unlikely accidental processes
that reduce the number of excitons, so the state grows
ever more complex.
The temporal development of the associated probabil-

ity distribution P (pν , hν , pπ, hπ) is described by a master
equation that accounts for the transitions between differ-
ent exciton states. The pre-equilibrium neutron emission
spectrum is then given by

dσn

dE
= σCN

pmax

π
∑

pπ=0

pmax

ν
∑

pν=1

W (pπ, hπ, pν , hν , E)

×τ(pπ , hπ, pν , hν)P (pπ, hπ, pν , hν) (2)

where σCN is the compound nuclear cross section (usu-
ally obtained from an optical model calculation), W is
the rate for emitting a neutron with energy E from
the exciton state (pπ, hπ, pν , hν), τ is the lifetime of
this state, and P (pπ, hπ, pν , hν) is the (time-averaged)
probability for the system to survive the previous stages
and arrive at the specified exciton state. In the two-
component model, contributions to the survival proba-
bility from both particle creation and charge exchange
need to be accounted for. The survival probability for
the exciton state (pπ, hπ, pν , hν) can be obtained from
a recursion relation starting from the initial condition
P (pν = 1, hν = 0, pπ = 0, hπ = 0) = 1 and setting P = 0
for terms with negative exciton number. As in Ref. [13],
particle emission is assumed to occur only from states
with at least three excitons, nπ + nν ≥ 3. We consider
excitons up to pmax

ν = pmax
π = 6.

The emission rate, W (pπ, hπ, pν , hν , Ek), is
largely governed by the particle-hole state density,
ω(pπ, hπ, pν , hν , E

∗). For a neutron ejectile of energy E
the rate is given by [14]

W (pπ, hπ, pν , hν , Ek) =
gn

π2~3
µnE σn,inv

×ω(pπ, hπ, pν − 1, hν , E
∗ − E − Sn)

ω(pπ, hπ, pν , hν , E∗)
(3)
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FIG. 3: (Color online) The contributions to the pre-
equilibrium neutron spectrum from exciton states with the
indicated values of (pπ, hπ, pν , hν), obtained at En = 14 MeV.

where σk,inv is the inverse reaction cross section (calcu-
lated within the optical model framework) and E∗ is the
total excitation energy of the system.

The calculated probability for pre-equilibrium neutron
emission is shown in the upper panel of Fig. 2 as a func-
tion of the incident neutron energy En, while Fig. 3 shows
the the pre-equilibrium neutron spectrum obtained at
En = 14 MeV. After being practically negligible below
a few MeV, the probability for pre-equilibrium emission
grows approximately linearly to about 24% at 20 MeV.
A careful inspection of the calculated energy spectrum
shows that neutrons emitted from states with larger ex-
citon number approach the statistical emission expected
from a compound nucleus, thus ensuring our treatment
has included sufficient complexity to exhaust the pre-
equilibrium mechanism. Because of the (desired) insen-
sitivity to the maximum specified exciton number, the
probability shown in Fig. 2 is not indicative of the impor-
tance of the pre-equilibrium processes. Their quantita-
tive significance is better seen by comparing the neutron
spectrum obtained with and without the pre-equilibrium
treatment, as shown in the lower panel of Fig. 2.

The reaction cross sections used in Eqs. (2) and (3)
define the overall magnitude of the cross sections for
the pre-equilibrium processes. The highest accuracy re-
sults are best obtained from coupled-channels calcula-
tions with an appropriately-determined optical potential.
However, since FREYA principally deals with probabilities,
the relative fraction of pre-equilibrium neutrons may be
computed with sufficient accuracy employing a spherical
optical potential to calculate the relevant cross sections.
Consequently, the compound-nucleus cross sections and
inverse cross sections were computed using the optical-
model program ECIS06 and the global optical model po-
tential of Koning and Delaroche [15].

For each event generated, FREYA first considers the
possibility of pre-equilibrium neutron emission and, if
it occurs, a neutron is emitted with an energy se-
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lected from the calculated pre-equilibrium spectrum (see
Fig. 3). Subsequently, the possibility of equilibrium neu-
tron evaporation is considered, starting either from the
originally agitated compound nucleus, 240Pu∗, or the less
excited nucleus, 239Pu∗, remaining after pre-equilibrium
emission has occurred. Neutron evaporation is iterated
until the excitation energy of a daughter nucleus is below
the fission barrier (in which case the event is abandoned
and a new event is generated) or the nucleus succeeds in
fissioning.

B. Mass and charge partition

After the possible pre-fission processes, we are pre-
sented with a fission-ready compound nucleus A0Z0 hav-
ing an excitation energy E∗

0 . The first task is to divide it
into a heavy fragment AHZH and a complementary light
fragment ALZL. Since no quantitatively useful model is
yet available for the calculation of the fission fragment
mass yields, we have to invoke experimental data. We
follow the procedure employed in the original version of
FREYA [7].
We thus assume that the mass yields Y (Af ) of the

fission fragments exhibit three distinct modes, each one
being of Gaussian form [16],

Y (Af ) = S1(Af ) + S2(Af ) + SL(Af ) . (4)

The first two terms represent asymmetric fission modes
associated with the spherical shell closure at N = 82
and the deformed shell closure at N = 88, respectively,
while the last term represents a broad symmetric mode,
referred to as super-long [17]. Although the symmet-
ric mode is relatively insignificant at low excitations, its
importance increases with the excitation energy and ul-
timately dominates the mass distribution.
The asymmetric modes have a two-Gaussian form,

Si =
Ni√
2πσi

[

e−(Af−Ā−Di)
2/2σ2

i + e−(Af−Ā+Di)
2/2σ2

i

]

,(5)

while the symmetric mode is given by a single Gaussian

SL =
NL√
2πσL

e−(Af−Ā)2/2σ2

L , (6)

with Ā = 1
2A0. Since each event leads to two fragments,

the yields are normalized so that
∑

A Y (A) = 2. Thus,

2N1 + 2N2 +NL = 2 , (7)

apart from a negligible correction because Af is discrete
and bounded from both below and above.
Most measurements are of fission product yields [18],

the yields after prompt neutron emission is complete.
However, FREYA requires fission fragment yields, i.e. the
probability of a given mass partition before neutron evap-
oration has begun. While no such data are yet avail-
able for Pu, there exist more detailed data for 235U(n, f)

that give the fragment yields as functions of both mass
and total kinetic energy, Y (Af ,TKE) for En ≤ 6 MeV
[19]. Guided by the energy dependence of these data,
together with other available data on the product yields
from 235U(n, f) [20] and 239Pu(n, f) [21] we derive an ap-
proximate energy dependence of the fragment yields for
239Pu(n, f) up to En = 20 MeV.
We now discuss how we obtained the values of the pa-

rameters used in Eqs. (5) and (6). The displacements,
Di, away from symmetric fission in Eq. (5) are anchored
above the symmetry point by the spherical and deformed
shell closures and because these occur at specific neutron
numbers, we assume that the values of Di are energy
independent. The fitted values of the displacements for
235U(n, f) are D1 = 23.05 and D2 = 16.54. The val-
ues of Di should be smaller for 239Pu than for 235U,
DU

i − DPu
i ≈ 2, because the larger Pu mass is closer

to the shell closure locations. We take D1 = 20.05 and
D2 = 14.54 for first-chance fission (A0=240) and increase
those values by 1

2 for each pre-fission neutron emitted.
The widths of the asymmetric modes, σi, are expanded

to second order in energy: σi = σi0 + σi1En + σi2E
2
n.

We fix the energy dependence of σi from the 235U(n, f)
fragment yields as a function of mass and total kinetic
energy of Ref. [19]. To adjust our results for 235U(n, f)
to Pu, we assume that general energy dependence of the
parameters is the same even though the values at En = 0
are different. We find

σ1 = 5.6 + 0.0937 (En/MeV) + 0.034 (En/MeV)2, (8)

σ2 = 2.5 + 0.11060 (En/MeV) + 0.008 (En/MeV)2.(9)

When the fissioning nucleus is the original system, 240Pu,
then En is the value of the actual incident neutron en-
ergy. But when the fissioning nucleus is lighter, i.e. when
ν0 pre-fission neutrons have been emitted, then En is the
equivalent incident neutron energy, i.e. the incident en-
ergy that would generate the given excitation energy E∗

0

when absorbed by the nucleus 239−ν0Pu. The width of
the super-long component, σL, is assumed to be constant,
independent of both the incident energy and the fission-
ing isotope. We take σL = 12.
The normalizations Ni change only slowly with inci-

dent energy until symmetric fission becomes more prob-
able, after which they decrease rapidly. We therefore
model the energy dependence of Ni by a Fermi distribu-
tion,

Ni = N0
i (1 + exp[(En − E1)/E2])

−1 . (10)

We assume that the midpoint and the width are the same
for both modes, E1 = 10.14 MeV and E2 = 1.15 MeV,
so that the relative normalizations for the asymmetric
modes have the same energy dependence. We have not
assumed that E1 and E2 are identical for U and Pu, be-
cause the transition from asymmetric to more symmet-
ric fission is not as smooth a function of energy in the
few-MeV region for Pu as it is for U [20, 21]. We take
N0

1 = 0.757 and N0
2 = 0.242. With N1 and N2 given by

Eq. (10), NL is determined from Eq. (7).
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FIG. 4: (Color online) Calculated fragment yields as function
of fragment mass for thermal (solid) and 14 MeV (dashed)
neutrons. The 14 MeV result also includes contributions from
multichance fission events.

The resulting fragment yields for two representative
incident neutron energies are shown in Fig. 4. The deep
dip at 1

2A0 visible for the thermal yields has substantially
filled in by En=14 MeV. The fragment yield at 14 MeV
is a composite distribution because there are substan-
tial contributions from second- and third-chance fission
for incident neutrons of such high energy (see Fig. 1).
The dashed curve in Fig. 4 includes these contributions
weighted with the appropriate probabilities shown in
Fig. 1.
The overall broadening of the yields is due in part to

the larger widths of the S1 and S2 modes at higher ener-
gies and in part to the increased contribution of the SL

component. We note that while σL does not change, the
larger NL enhances the importance of this component.
Once the Gaussian fit has been performed, it is

straightforward to make a statistical selection of a frag-
ment mass number Af . The mass number of the partner
fragment is then readily determined since AL + AH =
A0 − ν0.
The fragment charge, Zf , is selected subsequently. For

this we follow Ref. [22] and employ a Gaussian form,

PAf
(Zf ) ∝ e−(Zf−Z̄f (Af ))

2/2σ2

Z , (11)

with the condition that |Zf − Z̄f (Af )| ≤ 5σZ . The cen-
troid is determined by requiring that the fragments have,
on average, the same charge-to-mass ratio as the fission-
ing nucleus, Z̄f(Af ) = AfZ0/A0. The dispersion is the
measured value, σZ = 0.5 [22]. The charge of the com-
plementary fragment then follows using ZL + ZH = Z0.

C. Fragment energies

Once the partition of the total mass and charge among
the two fragments has been selected, the Q value asso-
ciated with that particular fission channel follows as the
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FIG. 5: (Color online) The measured average TKE as a func-
tion of the mass number of the heavy fragment [26–28] com-
pared to FREYA calculations at thermal energies. The FREYA

result is shown with the calculated dispersion around each
AH .

difference between the total mass of the fissioning nucleus
and the ground-state masses of the two fragments,

QLH = M(240−ν0Pu∗)−ML −MH . (12)

FREYA takes the required nuclear ground-state masses
from the compilation by Audi et al. [23], supplemented
by the calculated masses of Möller et al. [24] when no
data are available. The QLH value for the selected fis-
sion channel is then divided up between the total kinetic
energy (TKE) and the total excitation energy (TXE) of
the two fragments. The specific procedure employed is
described below.
Through energy conservation, the total fragment ki-

netic energy TKE is intimately related to the resulting
combined multiplicity of evaporated neutrons, νL + νH ,
which needs to be obtained very accurately.
Figure 5 shows the measured average TKE value as

a function of the mass number of the heavy fragment,
AH . Near symmetry, the plutonium fission fragments are
mid-shell nuclei subject to strong deformations. Thus the
scission configuration will contain significant deformation
energy and a correspondingly low TKE. At AH = 132,
the heavy fragment is close to the doubly-magic closed
shell having ZH = 50 and NH = 82 and is therefore
resistant to distortions away from sphericity, as first dis-
cussed in Ref. [25]. Consequently, the scission configura-
tion is fairly compact, causing the TKE to exhibit a max-
imum even though the complementary light fragment is
far from a closed shell and hence significantly deformed.
The TKE values shown in Fig. 5 were obtained in

experiments using thermal neutrons [26–28]. Unfortu-
nately, there are no such data for higher incident energy.
We therefore assume the energy-dependent average TKE
values take the form

TKE(AH , En) = TKEdata(AH) + dTKE(En) . (13)
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FIG. 6: (Color online) The average fragment kinetic energy
as a function of fragment mass from Refs. [27, 28] compared
to FREYA calculations at thermal energies. The FREYA result
is shown with the calculated dispersion around each Af .

The first term is extracted from the data shown in Fig. 5,
while the second term is a parameter adjusted to ensure
reproduction of the measured energy-dependent average
neutron multiplicity, ν(En). In each particular event, the
actual TKE value is then obtained by adding a thermal
fluctuation to the above average, as explained later.
Figure 5 includes the average TKE values calculated

with FREYA at thermal energies, together with the as-
sociated dispersions (these bars are not sampling errors
but indicate the actual width of the TKE distribution for
each AH).
Figure 6 shows the single-fragment kinetic energy ob-

tained with FREYA for incident thermal neutrons. Al-
though FREYA is not explicitly tuned to match the single-
fragment kinetic energies, it does reproduce these data
quite well, as would be expected due to momentum con-
servation. The light fragment carries away significantly
more kinetic energy than the heavy fragment. Further-
more, the kinetic energy of the fragment is nearly con-
stant for Af < 106, but after the dip near symmetry there
is an approximately linear decrease in the fragment ki-
netic energy. The figure also shows the calculated width
in the fragment energy distribution, together with a few
typical experimental widths provided by Ref. [27].
Of particular interest is the dependence of the average

neutron multiplicity on the fragment mass number Af ,
shown in Fig. 7. It is seen that the FREYA calculations
provide a rather good representation of the ‘sawtooth’
behavior of ν̄(Af ), as shown in Fig. 7, even though FREYA

is also not tuned to these data. This is not particularly
surprising since we have adopted the shape of TKE(AH)
in Fig. 5. The dip in the calculation and the data at
A ∼ 132 is at the same point as the peak of TKE(AH) due
to the shell-driven fragment deformation pointed out in
Ref. [25]. Although the agreement is good, the observed
behavior is not perfectly reproduced. When Af > 150,
a region where the fragment yield is decreasing sharply,
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FIG. 7: (Color online) The measured average neutron mul-
tiplicity as a function of the fragment mass [27–29] together
with the FREYA average and dispersions indicated for each Af

fitting to ν only (squares) and with the spectra included in
the fit (circles).

the data and the calculations appear to diverge. We note
that the uncertainties on the data in this region, where
reported, are rather large.
Once the average total fragment kinetic energy has

been obtained, the average combined excitation energy
in the two fragments follows by energy conservation,

TXE = E
∗

L + E
∗

H
.
= QLH − TKE . (14)

The first relation indicates that the total excitation en-
ergy is partitioned between the two fragments. As is
common, we assume that the fragment level densities are
of the form ρi(E

∗

i ) ∼ exp(2
√
aiUi), where Ui is the effec-

tive statistical energy in the fragment.
We have used a description of the level-density param-

eter based on the back-shifted Fermi gas (BSFG) model
[30],

ai(E
∗

i ) =
Ai

e0

[

1 +
δWi

Ui

(

1− e−γUi
)

]

, (15)

where Ui = E∗

i −∆i and γ = 0.05, also used in Ref. [31].
The pairing energy of the fragment, ∆i, and its shell cor-
rection, δWi, are tabulated in Ref. [30] based on the mass
formula of Koura et al. [32]. If δWi is negligible or if U
is large then the renormalization of ai is immaterial and
the BSFG level-density parameter reverts to the simple
form, ai ≈ Ai/e0[64]. [Because the back shift causes Ui

to become negative when E∗

i is smaller than ∆i, we re-
place Ui(E

∗

i ) by a quadratic spline for E∗

i ≤ 2∆i while

retaining the expressions Ti =
√

Ui/ai for the temper-
ature and σ2

Ei
= 2UiTi for the variance of the energy

distribution to ensure a physically reasonable behavior.]
In both scenarios, we take e0 as an adjustable model pa-
rameter.
If the two fragments are in mutual thermal equilibrium,

TL=TH , the total excitation energy will, on average, be
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partitioned in proportion to the respective heat capaci-
ties which in turn are proportional to the level-density

parameters, i.e. E
∗

i ∼ ai. FREYA therefore first assigns
tentative average excitations based on such an equipar-
tition,

É∗

i =
ai(Ẽ

∗

i )

aL(Ẽ∗

L) + aH(Ẽ∗

H)
TXE , (16)

where Ẽ∗

i = (Ai/A0)TXE. Subsequently, because the ob-
served neutron multiplicities suggest that the light frag-
ments tends to be disproportionately excited, the average
values are adjusted in favor of the light fragment,

E
∗

L = xÉ∗

L , E
∗

H = TKE− E
∗

L , (17)

where x is an adjustable model parameter expected
be larger than unity, as suggested by measurements of
235U(n,f) [33] and 252Cf(sf) [34].
After the mean excitation energies have been assigned,

FREYA considers the effect of thermal fluctuations. The
fragment temperature Ti is obtained from U i ≡ Ui(Ē

∗

i ) =
aiT

2
i and the associated variance in the excitation E∗

i is

taken as σ2
i = 2U

∗

iTi, where U(E∗) = E∗ in the simple
(unshifted) scenario.
Therefore, for each of the two fragments, we sample a

thermal energy fluctuation δE∗

i from a normal distribu-
tion of variance σ2

i and modify the fragment excitations
accordingly, arriving at

E∗

i = E
∗

i + δE∗

i , i = L,H. (18)

Due to energy conservation, there is a compensating op-
posite fluctuation in the total kinetic energy, so that

TKE = TKE− δE∗

L − δE∗

H . (19)

With both the excitations and the kinetic energies of
the two fragments fully determined, it is an elementary
matter to calculate the magnitude of their momenta with
which they emerge after having been fully accelerated by
their mutual Coulomb repulsion [7]. The fission direction
is assumed to be isotropic (i.e. directionally random) in
the frame of the fissioning nucleus and the resulting frag-
ment velocities are finally Lorentz boosted into the rest
frame of the original 240Pu∗ system.

D. Fragment de-excitation

Usually both fully accelerated fission fragments are ex-
cited sufficiently to permit the emission of one or more
neutrons. We simulate the evaporation chain in a man-
ner conceptually similar to the method of Lemaire et al.

[31] for 252Cf(sf) and 235U(n, f). After neutron emission
is no longer energetically possible, FREYA simulates the
sequential emission of photons by a similar method [7],
see also Ref. [35].

1. Neutron evaporation

Neutron emission is treated by iterating a simple neu-
tron evaporation procedure for each of the two fragments
separately. At each step in the evaporation chain, the
excited mother nucleus AiZi has a total mass equal to
its ground-state mass plus its excitation energy, M∗

i =
Mgs

i + E∗

i . The Q-value for neutron emission from the
fragment is then Qn = M∗

i − Mf − mn, where Mf is
the ground-state mass of the daughter nucleus and mn is
the mass of the neutron. (For neutron emission we have
Af = Ai − 1 and Zf = Zi.) The Q-value is equal to
the maximum possible excitation energy of the daughter
nucleus, achieved if the final relative kinetic energy van-
ishes. The temperature in the daughter fragment is then
maximized at Tmax

f . Thus, once Qn is known, the ki-
netic energy of the evaporated neutron may be sampled.
FREYA assumes that the angular distribution is isotropic
in the rest frame of the mother nucleus and uses a stan-
dard spectral shape [36],

fn(E) ≡ 1

Nn

dNn

dE
∼ E e−E/Tmax

f , (20)

which can be sampled efficiently [7].
Although relativistic effects are very small for neutron

evaporation, they are taken into account to ensure exact
conservation of energy and momentum, which is conve-
nient for code verification purposes. We therefore take
the sampled energy E to represent the total kinetic en-
ergy in the rest frame of the mother nucleus, i.e. it is
the kinetic energy of the emitted neutron plus the re-
coil energy of the excited residual daughter nucleus. The
daughter excitation is then given by

E∗

d = Qn − E . (21)

and its total mass is thus M∗

d = Mgs
d + E∗

d . The mag-
nitude of the momenta of the excited daughter and the
emitted neutron can then be determined [7]. Sampling
the direction of their relative motion isotropically, we
thus obtain the two final momenta which are subse-
quently boosted into the overall reference frame by the
appropriate Lorentz transformation.
This procedure is repeated until no further neutron

emission is energetically possible, i.e. when E∗

d < Sn,
where Sn is the neutron separation energy in the prospec-
tive daughter nucleus, Sn = M(AdZd)−M(Ad−1Zd)−mn.

2. Photon radiation

After the neutron evaporation has ceased, the ex-
cited product nucleus may de-excite by sequential photon
emission. FREYA treats this process in a manner analo-
gous to neutron evaporation, i.e. as the statistical emis-
sion of massless particles. While this simple treatment is
expected to be fairly reasonable at the early stage where
the level density can be regarded as continuous, it would
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obviously be inadequate for late stages that involve tran-
sitions between specific levels.
There are two important technical differences relative

to the treatment of neutron emission. There is no sep-
aration energy for photons and, since they are massless,
there is no natural end to the photon emission chain.
We therefore introduce an infrared cutoff of 200 keV.
Whereas the neutrons may be treated by nonrelativistic
kinematics, the photons are ultrarelativistic. As a conse-
quence, their phase space has an extra energy factor,

fγ(E) ≡ 1

Nγ

dNγ

dE
∼ E2 e−E/Tmax

f . (22)

The photons are assumed to be emitted isotropically
and their energy can be sampled very quickly from the
above photon energy spectrum [7]. The procedure is
repeated until the available energy is below the spec-
ified cutoff, yielding a number of kinematically fully-
characterized photons for each of the product nuclei.

III. RESULTS

We now proceed to discuss our analysis of the prompt
fission neutron spectrum (PFNS). We first describe the
computational approach and then explain how the model
parameters are determined. The resulting prompt neu-
tron spectral evaluations are then discussed in detail. Fi-
nally, we present some additional observables of particu-
lar relevance.

A. Computational approach

Here we briefly describe the statistical method used for
determining model parameters and reaction observables.
Our analysis uses the Monte Carlo approach to Bayesian
inference outlined in many books on general inverse prob-
lem theory, e.g. Ref [37].
We have introduced several model parameters: e0, x,

and dTKE, which in principle may be adjusted for each
incident neutron energy En. However, because indepen-
dent fits to the experimental data tend to yield values of
e0 and x that are nearly independent of En [6], we shall
assume that these two parameters are energy indepen-
dent. This simplification will facilitate the optimization
procedure. Thus a given model realization is character-
ized by the two values e0 and x together with the function
dTKE(En) which, for practical purposes, will be defined
by its values at certain selected energies, {dTKEℓ}. For
formal convenience, we denote the set of model parame-
ter values as m = {mk}.
When FREYA is used with any particular value set m,

it yields a sample of fission events from which we can ex-
tract observables, d(m), that can be directly compared
to the corresponding experimental values, dexp. For ex-
ample, we may extract the energy-dependent mean neu-

tron multiplicity, ν(En), and compare it with the values
given in the ENDF/B-VII.0 evaluation [8].
We assume that the experiment provides not just the

values but also the entire associated covariance matrix
Σexp. (The square roots of the diagonal elements of Σexp

are the uncertainties on the individual observables.) The
degree to which the particular model realization defined
by the parameter values m describes the measured data
dexp is then expressed by

P (dexp|m) ∼ exp
(

− 1
2χ

2(m)
)

. (23)

where χ2(m) is the generalized least-squares deviation
between the model m and experiment,

χ2 = (dexp − d(m)) · (Σexp)
−1 · (dexp − d(m))T . (24)

Employing merely the diagonal part of Σexp, i.e. the un-
certainties alone, ensures that well-measured observables
carry more weight than poorly measured ones. This ap-
proach was used in the previous PFNS evaluation [6],
which was restricted to lower energy (En < 5.5 MeV).
Here we now employ the full covariance matrix, thereby
ensuring that correlations between measured observables
are also taken into account. As we shall see, these corre-
lations do impact the results.
Using the above framework, we may now compute the

weighted averages of arbitrary observables O = {Oi}.
We assume that the physically reasonable values of the
model parameters m are uniformly distributed within a
hypercube in parameter space. This defines the a-priori

model probability distribution P (m). The best estimate

of the observable Oi is then given by

≺ Oi ≻ =

∫

dmP (m)P (dexp|m)Oi(m) . (25)

The best estimate for the covariance between two such
observables can be obtained similarly,

Oij ≡ ≺ OiOj ≻ − ≺ Oi ≻≺ Oj ≻
= ≺ Oi− ≺ Oi ≻≻≺ Oj− ≺ Oj ≻≻ . (26)

In particular, we may compute the best estimate of ν,

≺ ν ≻ =

∫

dmP (m)P (dexp|m) ν(m) , (27)

and the prompt neutron spectrum, as well as the covari-
ances between those quantities.
In practice, we average over parameter space employ-

ing a Monte Carlo approach, thereby reducing the inte-
gral over all possible parameter values m to a sum over
N sampled model realizations, {m(n)},

≺ Oi ≻≈ 1

N

N
∑

n=1

P (m(n))P (dexp|m(n))Oi(m
(n)) .

(28)
The joint probability wn ≡ P (m(n))P (dexp|m(n)) may
be viewed as the likelihood that the particular model
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realization m
(n) is “correct.” Since it depends exponen-

tially on χ2
n, the likelihood tends to be strongly peaked

around the favored set. It is important that the parame-
ter sample be sufficiently dense in the peak region to en-
sure that many sets have non-negligible weights. We use
Latin Hypercube sampling (LHS) [38, 39], which samples
a function of K variables with the range of each variable
divided into M equally-spaced intervals. Each combina-
tion of M and K is sampled at most once, with a maxi-
mum number of combinations being (M !)K−1. The LHS
method generates samples that better reflect the distri-
bution than a purely random sampling would. Conse-
quently, relative to a simple Monte Carlo sampling, the
employed sampling method requires fewer realizations to
determine the optimal parameter set. We used 5000 re-
alizations of the parameter space to obtain the optimal
parameter values.
Even though both ν and the neutron spectrum are im-

portant observables, the fact that the uncertainties on
the evaluated ν are so relatively small drive the results.
Indeed, for our primary result, we use only the evalu-
ated ν to constrain our new evaluation of the PFNS, as
in Ref. [6]. Thus, in this treatment, the spectra is an
outcome rather than a comparative observable. We use
the evaluated ν in the ENDF/B-VII.0 database [8] with
the covariance resulting from the least-squares fit to the
available 239Pu(n, f) data described in Ref. [40]. The
energy-dependent neutron multiplicity, ν(En) is repre-
sented as a locally linear fit to the experimental data.
Since the nodes in this fit do not align with fitted data,
the fit introduces energy correlations that are encoded
into the covariance matrix.
To show the difference in the resulting evaluation when

the spectral data are included, we also present a fit to ν
and spectral data themselves. Because the data are of-
ten given with an arbitrary normalization, we normalize
them to unity while preserving their spectral shapes, fol-
lowing the prescription of Ref. [6]. We note that this pro-
cedure could introduce some bias into the result because
a particular functional form has been assumed to obtain
the integral normalization. In addition, these data are
primarily for incident neutrons from thermal energies up
to 0.5 MeV [41–49] although one group reported results
for incident neutron energies up to 3.5 MeV [49]. Since
the shape of the data reported in Ref. [48] is significantly
different from the other data, they were not included in
the fit.
For each model realization, FREYA is used to generate a

large sample of fission events (typically one million events
for each parameter set) for each of the selected incident
neutron energies and the resulting average multiplicity
ν(En) is extracted from the generated event sample.

B. Fit results

Given the tendency of e0 to be larger than 8 MeV,
we let e0 vary between 8 and 12 MeV. Also, recalling our
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FIG. 8: (Color online) The values of dTKE and the associ-
ated fit uncertainty as a function of incident neutron energy
obtained when fitting to ν alone (squares) and to ν and the
spectral data (circles). The locations of the node points are
indicated by diamonds at dTKE = 1 MeV.

previous results [6] and the experimental indications that
the light fragment is hotter than the heavy fragment, we
have assumed 1 ≤ x ≤ 1.4. The resulting optimal val-
ues of these parameters are e0 = 9.2648 ± 0.0453 MeV
and x = 1.2449 ± 0.0066 when fitting to ν only and
e0 = 9.6905± 0.3441 MeV and x = 1.0536± 0.0445 when
the spectra are included. These values of e0 are consistent
with the calculation of a in Eq. (15) which does not in-
clude collective effects. If collective behavior is included,
then we expect e0 ∼ 13 MeV based on the RIPL-3 sys-
tematics [50]. Previously, we obtained e0 ∼ 8 MeV and
x ∼ 1.1 with a slightly different TKE prescription and us-
ing only the diagonal elements of the ν covariance matrix
[6].
We have fitted dTKE at six values of incident neutron

energy, En = 10−11, 0.25, 1, 5, 14 and 20 MeV, to keep
the parameter space manageable. These points are cho-
sen to reflect the physics of the fission process: the region
between 0.25 and 1 MeV is where ν(En) changes slope
while the second-chance fission threshold is just above 5
MeV. The full 20-point grid of the FREYA evaluation is
then covered by means of a linear interpolation between
these node points. The resulting values of dTKE for both
fits are shown in Fig. 8. The locations of the node points
are indicated by diamonds at dTKE = 1 MeV. The er-
ror bars on dTKE at the node points are the standard
deviations obtained from the averaging over the range of
parameter values while the error bars on dTKE between
two node points are the interpolated dispersions between
those two points. Note the large uncertainties associated
with including the spectra in the fit relative to those ob-
tained by fitting to ν alone. A similar difference in the
uncertainties on e0 and x can also be observed.
Because dTKE represents the shift in the total frag-

ment kinetic energy from the value obtained for incident
thermal neutron energies, dTKE should depend on the
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incident neutron energy, as suggested in Eq. (13). The
value of dTKE is positive, indicating that using the ther-
mal average value of TKE leads to too many neutrons.
The positive dTKE is then required to reduce the ex-
citation energy sufficiently to give a good fit to ν. For
example, reducing dTKE at En = 0.5 MeV from 1.1 MeV
to zero while retaining the same values of e0 and x, re-
duces the peak value of TKE(AH) by about 0.6% while
increasing ν by ∼ 5%.

We can test the sensitivity of ν to changes in the pa-
rameter values by changing one parameter while keeping
the other two fixed. For example, reducing dTKE by 10%
increases ν by 0.55% while decreasing x by 10% decreases
ν by 0.1%. The largest change in ν arises when e0 drops
by 10%. In this case, ν is 0.86% larger.

Above 14 MeV, the ENDF/B-VII.0 ν evaluation is not
based on data but on a linear extrapolation of measure-
ments taken for higher incident energies. Thus, ν is not
well constrained near the high end of the energy range.

A direct comparison of our fitted values of ν with those
in the ENDF-B/VII.0 evaluation is less revealing than
than fit residuals, the difference νENDF − νFREYA. The
residual values are shown in Fig. 9. The standard devi-
ation on each point reflects only the uncertainty on the
ENDF-B/VII.0 evaluation and not the uncertainty on the
fitted ν. The large uncertainties at 16 and 20 MeV arise
from the lack of experimental data at these values of En.

We note that the ENDF-B/VII.0 ν evaluation lies more
than one standard deviation above the evaluated ν data
extracted in the ENDF-B/VII.0 covariance analysis in
the region 0.1 < En < 1 MeV [40]. Our results agree
rather well with the evaluated data in this region. Here,
where ν is smallest, the relative difference is less than
0.5%, even when the spectra are included in the fit. The
residual difference is largest when En > 12 MeV. When
we fit to ν alone, the differences are much smaller. Note
that the finite residuals arise because we have taken the
energy-energy correlations in the ν evaluation into ac-
count. If we would assume, as in our previous work [6],
that the value of ν at each energy point is independent
of all others, e.g. the errors are uncorrelated and the co-
variance matrix is diagonal, then the fit residuals can be
very small.

Examples of the resulting prompt fission neutron spec-
trum are shown in Fig. 10. We present dν/dE for four
representative energies: En = 0.5 MeV (thermal neu-
trons), 4 MeV (below the second-chance fission thresh-
old), 9 MeV (below the threshold for third-chance fis-
sion), and 14 MeV (relevant for certain experimental
tests). We note that the integral of dν/dE over outgoing
neutron energies gives the average neutron multiplicity,
ν, obtained from the fitting procedure. In addition to
the increase in the peak of the spectrum, we note that
the average outgoing neutron energy appears to increase
with incident energy.

A close inspection of the spectra obtained for 9 and
14 MeV will reveal abrupt drops in value at the energies
corresponding to the threshold for emission of a second
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FIG. 9: (Color online) The residual differences between the
ENDF-B/VII.0 evaluation and our fits for ν only (squares)
and ν with the spectral data (circles) using FREYA. The
locations of the node points are indicated by diamonds at
〈ν〉ENDF − 〈ν〉FREYA = 0. The uncertainty on the residual only
reflects the uncertainty on ν from the ENDF-B/VII.0 evalu-
ation.

pre-fission neutron, namely at Ê2 = En − Sn(
239Pu), 3.4

and 8.4 MeV, respectively. The inset of Fig. 10 empha-
sizes the threshold at 8.4 MeV. When the energy of the
first pre-fission neutron is below Ê2, the daughter nu-
cleus is sufficiently excited to make secondary emission
possible. (These threshold discontinuities are also visi-
ble in the spectral differences shown in Figs. 12 and 13.)
This effect, noted already by Kawano et al. [10], grows
larger at higher incident energies where multichance fis-
sion is more probable. Furthermore, when the com-
bined energy of the first two pre-fission neutrons is below
Ê3 = En−Sn(

239Pu)−Sn(
238Pu) the emission of a third

pre-fission neutron is energetically possible. In principle,
these onset effects can be measured experimentally which
could thus provide novel quantitative information on the
degree of multichance fission.

Figure 11 compares the spectral results from the two
fits at En = 0.5 and 14 MeV. Since the differences are
largest in the high energy tail, we have placed the curves
on a semi-log scale to demonstrate the differences more
clearly. It is clear that the spectra fit to ν alone are
hotter.

Our final evaluation is based on our fits to ν and its
energy-energy covariance, either with or without fitting
the spectra also, as described above. The resulting spec-
tral evaluations are incorporated in different ENDF-type
files with their spectral shapes alone.

To produce the spectral evaluation, requiring fine en-
ergy spacings over the range 10−5 ≤ E ≤ 20 MeV, from
our FREYA results, we fit the FREYA PFNS in the regions
where either the employed bin widths are not sufficiently
small (in the region below 0.1 MeV) or the statistics are
limited (above 6-8 MeV). In between, we interpolate the
FREYA spectra. We also interpolate the spectra around
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FIG. 10: (Color online) The prompt neutron spectra resulting
from our fits, at selected values of En. The inset emphasizes
the change in slope due to prefission neutron emission at 8.4
MeV for En = 14 MeV.
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FIG. 11: (Color online) Comparison of the prompt neutron
spectra at incident neutron energies of 0.5 and 14 MeV result-
ing from the fits to ν alone and including the spectral data.
The results are shown on a semi-log scale to emphasize the
high energy tails of the spectra.

the multichance fission thresholds where smooth fitting
would not be appropriate.
Figures 12 and 13 give the difference between the

present evaluations and the ENDF/B-VII.0 evaluation.
The spectra are all normalized to unity at each value of
En. In both cases, for incident neutron energies below
the threshold for multichance fission, the difference be-
tween ENDF-B/VII.0 and our evaluations is around 1%
for E < 0.1 MeV, fluctuating to ±10% between 0.1 and
10 MeV. In most cases, the per cent difference between
the two evaluations is rather small, less than 1% below
outgoing energies of 0.1 MeV. There is a transition re-
gion between 0.1 and 3 MeV where the per cent difference
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FIG. 12: (Color online) The percent difference between the
ENDF-B/VII.0 evaluation of the PFNS and our resulting fit
to ν only at several representative incident neutron energies.
Results are shown for 0.5 (solid black), 4 (short dashed red),
6 (dot-dashed blue), 10 (dot-dot-dashed green), 14 (dot-dash-
dashed violet) and 20 (long dashed magenta) MeV.

changes sign before the tail region begins. The minimum
of the dip at ∼ −10% for En < 4 MeV indicates that the
FREYA spectra have slightly lower average energies. The
FREYA evaluation has a higher-energy tail than ENDF/B-
VII.0 for all En. As already noted, the difference is larger
for the fit to ν alone, as shown in Fig. 12 for E > 4 MeV.
The difference is largest for En ≤ 4 MeV where there are
spectral data.
As noted in the discussion of Fig. 10, contributions

from pre-fission neutron emission change the calculated
spectral slope at E = En − Sn. Although the Madland-
Nix (Los Alamos model) evaluation [11] includes an aver-
age result for multichance fission, the spectral shape for
pre-fission emission is assumed to be the same as that
of prompt neutron emission (evaporation) post fission.
Thus the ENDF/B-VII.0 evaluations are always smooth
over the entire outgoing energy regime, regardless of in-
cident energy, while the FREYA evaluations reflect the
changes due to pre-fission emission. The slope changes at
the multichance fission thresholds in the FREYA spectra
are evident for the En = 6, 10 and 14 MeV difference
curves at 0.35, 4.35 and 8.35 MeV, respectively. We note
that the threshold at 0.35 MeV is exaggerated because
the FREYA spectrum is∼ 20% higher than ENDF-B/VII.0
in this region. Indeed, the difference is larger here than
for all other incident energies below 20 MeV.
Figure 14 shows the ratio of our 0.5 MeV results

to a Maxwell distribution with T = 1.42 MeV. The
ENDF-B/VII.0 ratio is also shown, along with data
from Refs. [41–49]. As expected from the comparison
in Figs. 12 and 13, the FREYA ratio peaks at a lower
energy than the ENDF-B/VII.0 ratio. Since there is a
great deal of scatter in the data over the entire energy
range, any strong conclusion about the quality of the fits
with respect to the spectral data is difficult. We do note,
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FIG. 13: (Color online) The percent difference between the
ENDF-B/VII.0 evaluation of the PFNS and our result when
the PFNS data are included in the fit. Results are shown for
0.5 (solid black), 4 (short dashed red), 6 (dot-dashed blue),
10 (dot-dot-dashed green), 14 (dot-dash-dashed violet) and
20 (long dashed magenta) MeV.
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FIG. 14: (Color online) The ratios of ENDF-B/VII.0 (solid)
and FREYA fit to ν only (dot-dashed) and (long dashed) rel-
ative to a Maxwell distribution with T = 1.42 MeV. The
data from Refs. [41–49] are also shown as ratios to the same
Maxwellian.

however, that the resulting fit to ν only exhibits a smaller
deviation from a Maxwellian for E > 4 MeV

C. Covariances

We can calculate covariances and correlation coeffi-
cients between the optimal model parameter values as
well as between the various output quantities using Eq.
(26). The covariance between two parameters mk and
mk′ is

Σkk′ ≡ ≺ (mk− ≺ mk ≻)(mk′− ≺ mk′ ≻) ≻ . (29)

The diagonal elements, Σkk are the variances (∆mk)
2,

representing the squares of the uncertainty on the opti-
mal value of the individual model parameter mk, while
the off-diagonal elements give the covariances between
two different model parameters. It is often more instruc-
tive to employ the associated correlation coefficients,
Ckk′ ≡ Σkk′/[Σmk

Σmk′
], which is plus (minus) one for

fully (anti)correlated variables and vanishes for entirely
independent variables.

When only ν is included in the fit, the dTKE corre-
lations, CdTKE(En), dTKE(En), are fairly large except for
those with En = 20 MeV where ν is not well known. In
this case, they are weakly anticorrelated. The e0-dTKE
coefficients, Ce0, dTKE(En), exhibit a relatively strong an-
ticorrelation except at 20 MeV where there is a weak cor-
relation. The x-dTKE coefficients, Cx, dTKE(En), show a
moderate correlation, ∼ 0.35 − 0.5, increasing to ∼ 0.9
at En = 14 MeV and becoming weakly anticorrelated
at En = 20 MeV. The correlation coefficient between
the energy-independent parameters e0 and x, Ce0,x, is
≈ −0.6, a rather significant anticorrelation. These re-
sults show that similar fits can be obtained by increasing
e0 while decreasing dTKE (or vice versa); changing x and
dTKE up and/or down together; or increasing e0 while
decreasing x (or vice versa).

On the other hand, when the spectra are included in
the fits, the correlation coefficients are all small and alter-
nating in sign from positive to negative except for Ce0,x

which equivalent to the value for the fit to ν alone. These
results suggest that, in this case, the inputs are essen-
tially uncorrelated.

We may also compute the covariance between the
spectral strength at different outgoing energies E using
Eq. (26). The resulting correlation coefficients CE1,E2

are
shown in Figs. 15 and 16 for En = 0.5 MeV when fitting
to ν alone and including the spectra, respectively. We
see that CE1,E2

≈ 1 (grey areas) when the two specified
energies lie on the same side of the crossover region, while
CE1,E2

≈ −1 (dark blue areas) when they lie on opposite
sides. The crossover region around 2.5 MeV indicates
that the spectrum tends to pivot around this point when
the parameter space is explored, similar to Ref. [6].

The correlation in Fig. 15 is somewhat noisy, especially
near the region where CE1,E2

changes from positive to
negative and also where E1 or E2 is large and the spec-
tral statistics is poorer. On the other hand, when the
spectra are included, CE1,E2

> 0, ∼ 0.8 while E1 and E2

are similar, gradually decreasing to a very weak anticor-
relation when the two energies are very different.

The choice of a BSFG level density parameterization
causes larger fluctuations in CE1,E2

than an energy-
independent level density, a = A/e0, as in an average
fission model. In this case the temperature is also inde-
pendent of En. Strong correlations are also observed in
other calculations based on average fission models such as
Madland-Nix [51]. Introducing the BSFG parameteriza-
tion, Eq. (15), at fixed U , ignoring the pairing energy, as
in our previous paper, introduces fluctuations in a which
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FIG. 15: (Color online) Contour plot of the correlation coeffi-
cient, see Eq. (26), between the spectral strengths at two dif-
ferent energies, CE1,E2

, as obtained for En = 0.5 MeV when
fitting to ν only. The correlation changes from values near
+1 in the reddish regions (lower-left and central regions) to
values near -1 in the bluish regions (near the two axes). Each
of the three straight lines connects points at which the two
neutrons have the same combined energy, E1 + E2 = 5, 10,
and 15 MeV.

soften the linear rise of a with A and reduce the sharp-
ness of the correlations. Including the back shift due to
the pairing energy further reduces the correlations, nar-
rowing the peak in the spectra. Thus the back shift inter-
feres with the correlations, introducing the noise shown
in Fig. 15. Including the spectra in the fits tends to wash
out this effect.
Similar correlation matrices are seen for both fitting

methods. The ν only fits exhibit increased fluctuations at
higher En with a wider crossover region between positive
and negative CE1,E2

. In addition, the pivot point moves
to slightly higher eneriges. In the case when the spectra
are included in the fits, E1 and E2 are correlated over a
wider range of ∆E, becoming uncorrelated when E1 and
E2 are both large.
Figures 17 and 18 show cuts at constant total neutron

energy, Ek + Ek′ . Similar results are found for all other
incident energies considered. The trends are the same
for both scenarios, large positive correlations at low ∆E,
becoming negative at larger ∆E. This is because when
model parameters are varied, the spectral shapes pivot
about a single energy, Epivot ∼ 2.5 MeV in these calcu-
lations. Thus when both E1 and E2 are less than Epivot,
the differential changes are in phase and CE1,E2

∼ 1. If
e.g. E1 < Epivot and E2 > Epivot, differential changes in
the spectra give an anticorrelation.

FIG. 16: (Color online) Contour plot of the correlation co-
efficient, see Eq. (26), between the spectral strengths at two
different energies, CE1,E2

, as obtained for En = 0.5 MeV
when the spectra are included in the fitting procedure. The
correlation changes from values near +1 in the reddish re-
gions (lower-left and central regions) to values near -1 in the
bluish regions (near the two axes). Each of the three straight
lines connects points at which the two neutrons have the same
combined energy, E1 + E2 = 5, 10, and 15 MeV.
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FIG. 17: (Color online) The spectral correlation coefficients,
CE1,E2

, along the three lines of constant combined energy
indicated in Fig. 15 for the fit to ν only at En = 0.5 MeV.

IV. BENCHMARK TESTS

There are several standard validation calculations that
can be used to test our PFNS evaluations. They are criti-
cal assemblies which test conditions under which a fission
chain reaction remains stationary, i.e. exactly critical;
activation ratios which can be used to test the model-
ing of the flux in a critical assembly; and pulsed sphere
measurements which test the spectra for incident neutron
energies of ∼ 14 MeV.
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FIG. 18: (Color online) The spectral correlation coefficients,
CE1,E2

, along the three lines of constant combined energy
indicated in Fig. 16 for the fit to ν only at En = 0.5 MeV.

To perform these tests, we replace the 239Pu PFNS in
the ENDL2011.0 database, identical to that in ENDF-
B/VII.0, with our evaluated spectra. Our evaluation
thus has the same format as the ENDF-B/VII.0 evalua-
tion and represents the spectra averaged over all neutron
multiplicities. In this section, we describe these tests and
the FREYA results.

A. Validation against critical assemblies

Critical assemblies, which are designed to determine
the conditions under which a fission chain reaction is
stationary, provide an important quality check on the
spectral evaluations. The key measure of a critical as-
sembly is the neutron multiplication factor keff . When
this quantity is unity, the assembly is exactly critical,
i.e. the net number of neutrons does not change so that
for every neutron generated, another is either absorbed
or leaks out of the system. For a given assembly, the de-
gree of criticality depends on the multiplicity of prompt
neutrons, their spectral shape, and the energy-dependent
cross section for neutron-induced fission.
Plutonium criticality is especially sensitive to the

prompt neutron spectrum because the 239Pu(n, f) cross
section rises sharply between En = 1.5 and 2 MeV, near
the peak of the fission spectrum. As a result, increasing
the relative number of low-energy neutrons tends to de-
crease criticality, lowering keff , while increasing the num-
ber of higher energy neutrons increases criticality.
Figure 19 shows calculations of keff for four different

plutonium assemblies from the criticality safety bench-
mark handbook [52]. Apart from the spectra, all data
used in these calculations were taken from ENDF/B-
VII.0 [8]. We show the keff for the two fits with our
evaluated spectra and ν from the ENDF-B/VII.0 evalua-
tion. The value of keff is significantly below the reported
uncertainties on the assemblies while the fit to ν alone is
typically within one standard deviation of the measured
value.
The energy-independent result of Ref. [6] led to values

of keff that were ≈ 1.5 standard deviations away from the
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FIG. 19: (Color online) Calculated values of keff for several
239Pu critical assemblies obtained using our fits to ν only
(filled violet squares) and fits to ν and the spectra (filled green
circles) in the Mercury code. The results are compared to
calculations using the ENDF-B/VII.0 (blue diamonds) and
proposed ENDF/B-VII.1 (open red squares) databases.

measured value for the Jezebel assembly which is sensi-
tive to fission induced by fast (En ≈ 1 MeV) neutrons.
By contrast, our results fitting to ν alone thus represent
some improvement.

We note that the other inputs to the Jezebel assembly
test were highly tuned to match the keff . The fact that
replacing only the PFNS without a full reevaluation of
all the inputs to the criticality tests leads to a result
that is inconsistent with keff ≡ 1 should therefore not
be surprising. For example, if the average energy of the
ENDF-B/VII.0 PFNS is high, the ν evaluation would be
forced higher to counter the effect on keff . In addition,
the inelastic (n, n′) cross section is not well known and
could require compensating changes that affect keff [53].

To make further improvements in the evaluations with
respect to assemblies, it would be useful to have an inline
version of FREYA for use in the simulations.
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B. Validation against activation ratios

In the 1970’s and 1980’s, LANL performed a series of
experiments using the spectra from the critical assem-
blies Jezebel (mainly 239Pu), Godiva, BigTen and Flat-
top25 (all primarily enriched uranium) to activate foils
of various materials [54]. The isotopic content of the foils
can be radiochemically assessed both before and after ir-
radiation. Thus these measurements of the numbers of
atoms produced per fission neutron are integral test of
specific reaction cross sections in the foil material. Con-
versely, a well-characterized material can also be used to
test the critical assembly flux modeling. We have simu-
lated several foils (239Pu, 233U, 235U, 238U, 237Np, 51V,
55Mn, 63Cu, 93Nb, 107Ag, 121Sb, 139La, 193Ir and 197Au)
which are tests of the (n, f) and (n, γ) reactions in the
Jezebel assembly. In all cases, our simulated values of
the activation rates in these foils are either consistent
with measured values or previous modeling using a mod-
ified version of the ENDF/B-VII.0 nuclear data library
[55]. As the fission cross sections for 233U, 235U, 238U,
and 237Np are accurately known and span all incident
neutron energies, these tests merely confirm our earlier
modeling of plutonium critical assemblies. The neutron
capture cross sections of the other foils are important for
incident neutron energies less then 1 MeV but they are
not known nearly as well as the fission cross sections.
Thus our Calculated/Experiment ratios scatter around
unity in these cases.
Because both the Jezebel and Godiva critical assem-

blies test the fast-neutron spectrum, with a significant
portion of their neutron fluxes above 5 MeV, either might
be used to test the high-energy portion of the 239Pu
PFNS. Unfortunately, none of the tests that have been
performed to date are useful for testing our FREYA PFNS
evaluation. While many of the studied materials have
high (≥ 10 MeV) (n, 2n) thresholds, the only (n, 2n)
threshold material tested in Jezebel is 169Tm. Unfortu-
nately, the 169Tm (n, 2n) cross section is poorly known.
There were also experiments with plutonium foils placed
in uranium assemblies, but these tests are not useful for
testing the 239Pu PFNS because the foils are too thin for
secondary scatterings to play a significant role. It would
particularly interesting to carry out a new set of (n, 2n)
foil measurements using well-characterized materials in a
primarily plutonium critical assembly to specifically test
the high-energy portion of the spectrum.

C. Validation with LLNL pulsed spheres

The ENDL2011.0 database [56], including our FREYA

evaluation, was tested against LLNL pulsed-sphere data,
a set of fusion-shielding benchmarks [57]. The pulsed-
sphere program, which ran from the 70’s to the early
90’s, measured neutron time-of-flight (TOF) and gamma
spectra resulting from emission of a 14 MeV neutron
pulse produced by d+t reactions occurring inside spheres
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FIG. 20: (Color online) The measured LLNL pulsed-sphere
test data [58] (points) compared to calculations using either
ENDF/B-VII.0 or ENDL2011.0 with the present FREYA eval-
uation included.

composed of a variety of materials [58]. Models of
the LLNL pulsed-sphere experiments using the Mercury
Monte Carlo were developed for the materials reported
in Goldberg et al. [59, 60].

Figure 20 compares results of our evaluation with
the experimental data [58] and calculations based on
ENDF/B-VII.0. The only difference between the Pu eval-
uations in these two calculations is the PFNS and associ-
ated ν, all other quantities remain the same. Relative to
the ENDF/B-VII.0 calculation, in both cases the FREYA

spectra yields better agreement with the data in the re-
gion around the minimum of the time-of-flight curve at
≈ 210 ns and up to ≈ 300 ns. However, it lies somewhat
lower than the ENDF/B-VII.0 curve and the data over
the plateau region for time-of-flight longer than 300 ns.

Such pulsed-sphere experiments test the PFNS at in-
cident energies higher than those probed in critical as-
sembly tests. The measured outgoing neutrons have a
characteristic time-of-flight curve, see Fig. 20. The sharp
peak at early times is due to 14 MeV neutrons going
straight through the material without significant inter-
action. The dip at around 200 ns and the rise imme-
diately afterward is caused by secondary scattering in
the material as the neutrons travel out from the center.
The location and depth of the dip is due to inelastic di-
rect reactions, the high-energy tail of the prompt fission
neutron spectrum, and pre-equilibrium neutron emission.
The last two items are directly addressed by the present
evaluation. A large part of the secondary interactions are
due to neutrons that have interacted in the material and
are thus less energetic than those from the initial 14 MeV
pulse. At late times, where the results from both evalu-
ations deviate from the data, the time-of-flight spectrum
is dominated by scattering in surrounding material such
as detector components and concrete shielding.
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FIG. 21: (Color online) The total average excitation energy
available for neutron emission (top), the average neutron ki-
netic energy (middle) and the average neutron multiplicity
(bottom) as a function of fragment mass number Af for ther-
mal neutrons (black circles), En = 4 (red squares), 9 (green
diamonds) and 14 (blue triangles) MeV. Here the FREYA dis-
persion on each Af is only shown for En = 4 MeV to simplify
the plots.

D. Additional observables

The mass-averaged fragment kinetic energies obtained
with FREYA are almost independent of the incident neu-
tron energy En. This feature is consistent with mea-
surements made with 235U and 238U targets over similar
ranges of incident neutron energy, 0.5≤En≤6 MeV [19]
and 1.2≤En≤5.8 MeV [62], respectively. In both cases,
the average TKE changes less than 1 MeV over the entire
energy range.
However, Ref. [62] also showed that, while the mass-

averaged TKE is consistent with near energy indepen-
dence, higher-energy incident neutrons typically give less
TKE to masses close to symmetric fission and somewhat
more TKE for AH > 140. Such detailed information is
not available for neutrons on 239Pu. We have therefore
chosen to use a constant value of dTKE at each energy.

Neutron observables are perhaps more useful for model
validation. The near independence of TKE(AH) on in-
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FIG. 22: (Color online) The total average excitation energy
available for neutron emission (top), the average neutron ki-
netic energy (middle) and the average neutron multiplicity
(bottom) as a function of fragment mass number Af for
En = 0.5 MeV. The fit results are shown for ν only (cir-
cles) and with the spectra included (squares). The calculated
dispersion for each value of Af is also shown.
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squares), 9 (green diamonds) and 14 (blue triangles) MeV.
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cident energy implies that the additional energy brought
into the system by a more energetic neutron will be pri-
marily converted into internal excitation energy. This is
illustrated in the top panel of Fig. 21 which shows the
fragment excitation E∗(Af ) for the representative inci-
dent energies considered in Fig. 10 (thermal, 4, 9 and
14 MeV): E∗(Af ) increases linearly with incident energy.
We note that the form of TKE(AH) (see Fig. 5) leads to
the familiar sawtooth form of E∗(Af ).

The average kinetic energy of the evaporated neutrons
is given by Ē = 2T for a single emission, where T is
the maximum temperature in the daughter nucleus, so
T 2 ∝ E∗ − Sn for the first emission. Consequently, Ē
should vary relatively little with Af , as is indeed borne
out by the results for Ē(Af ) shown in the middle panel
of Fig. 21. The average outgoing neutron kinetic energy
increases slowly with the incident neutron energy, with a
total increase of ≈ 20% through the energy range shown.
Although the width of the neutron-energy distribution is
given by σE = Ē/

√
2 for a single emission, the resulting

width grows faster than that with En due to the increased
occurrence of multiple emissions and thus the appearance
of spectral components with different degrees of hardness.

The relatively flat behavior of Ē(Af ) implies that the
neutron multiplicity ν(Af ) will resemble the fragment
excitation energy E∗(Af ), as is seen to be the case in the
bottom panel of Fig. 21 where the characteristic sawtooth
shape of ν(Af ) is apparent. The number of neutrons
from the heavy fragment increases somewhat faster with
En than the number from the light fragment.

Figure 22 shows the fragment excitation energy E∗,
the kinetic energy of the emitted neutron and the neu-
tron multiplicity, all as a function of Af for the two fits at
En = 0.5 MeV. The larger x of the ν only fit gives both
a stronger dependence of E∗ on Af and a sharper ‘saw-
tooth’ shape. The neutron kinetic energy is not strongly
affected by the value of x.

New measurements with the fission TPC [63] over
a range of incident neutron energies could provide a
wealth of data that could lead to improved modeling.
In addition, calculations of ‘hot’ fission that includes
temperature-dependent shell effects could enhance mod-
eling efforts by predicting trends that could be input into
FREYA and thus test the effects on the PFNS and related
quantities.

For reasons of computational simplicity, we have cho-
sen to use the same value of x over the entire energy
range considered. There are some limited data on ther-
mal neutron-induced fission of 235U [33] and spontaneous
fission of 252Cf [34] that suggest the light fragment emits
more neutrons than the heavy fragment, 40% more for
235U [33] and 20% more for 252Cf [34]. Our BSFG re-
sult, x ∼ 1.23, is consistent with these results. However,
‘hotter’ fission could equilibrate the excitation energies of
the light and heavy fragments which may result in more
neutron emission from the heavy fragment, also reducing
the sharpness of the sawtooth pattern.

Figure 23 shows the neutron multiplicity distribution
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FIG. 24: (Color online) The combined kinetic energy of the
two product nuclei (top) and their residual excitation prior
to photon emission (bottom) as functions of the neutron mul-
tiplicity ν for thermal neutrons and En = 4, 9, and 14 MeV.
The symbols are at the mean values and the vertical bars
show the dispersions of the respective distributions for each
value of the multiplicity.

P (ν) for the selected values of En. As expected, ν in-
creases with En and the distribution broadens. However,
each neutron reduces the excitation energy in the residue
by not only its kinetic energy (recall E = 2T ) but also by
the separation energy Sn (which is generally significantly
larger). Therefore the resulting P (ν) is narrower than a
Poisson distribution with the same average multiplicity.

The combined kinetic energy of the two resulting (post-
evaporation) product nuclei is shown as a function of the
neutron multiplicity ν in the top panel of Fig. 24. It de-
creases with increasing multiplicity, as one might expect
on the grounds that the emission of more neutrons tends
to require more initial excitation energy, thus leaving less
available for fragment kinetic energy.

The bottom panel of Fig. 24 shows the mass depen-
dence of the average residual excitation energy in those
post-evaporation product nuclei. Because energy is avail-
able for the subsequent photon emission, one may expect
that the resulting photon multiplicity would display a
qualitatively similar behavior and thus, in particular, be
anti-correlated with the neutron multiplicity. These re-
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sults show little sensitivity to the fit method.

V. CONCLUSION

We have included both multichance fission and pre-
equilibrium emission into FREYA [6, 7], a Monte-Carlo
model that simulates fission on an event-by-event basis.
This has enabled us to perform an extended evaluation
of the prompt fission neutron spectrum from 239Pu(n, f)
up to En = 20 MeV. Several physics-motivated model
parameters have been fitted to the ENDF-B/VII.0 eval-
uation of ν and the associated covariance matrix in two
alternate scenarios for the level-density parameterization.
The tests of our evaluation were inconclusive. Our

evaluation did not perform as well as the ENDF/B-VII.0
evaluation in critical assembly benchmarks. However, we
found improved agreement with the LLNL pulsed sphere
tests, especially just below the 14 MeV peak in the neu-
tron leakage spectrum. Although these mixed results
may limit the utility of our evaluation in applications,
they do give us hope that further improvements to the
evaluation will either tighten up agreement with the criti-
cal assemblies or point to other deficiencies in the ENDF-

B/VII.0 239Pu evaluation.

Further investigations will require fitting to other data
less sensitive to the ν̄ data employed in this work in-
cluding the albeit low quality PFNS data and ν̄(A) data.
Such data may be obtained from new fragment mass,
charge and TKE measurements with the fission TPC [63]
or high quality neutron spectral data to augment or re-
place older measurements.
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