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We present a new method to calculate the total ion-ion interaction potential in terms of building
blocks which we refer to as “single-particle interaction potentials”. This allows also to compose
the separate contributions from neutrons and protons to the interaction potentials. The method is
applied to nuclear collisions via the use of time-dependent Hartree-Fock theory.
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I. INTRODUCTION

The knowledge of interaction potentials between com-
posite many-body systems is of fundamental importance
for predicting the outcome of reactions involving such
entities. These are often modeled using empirical func-
tions that depend on macroscopic variables, such as the
distance between the two centers, treating the composite
objects as structureless particles and ignoring the mi-
croscopic origins of these potentials (e.g., Lennard-Jones
potential for rare-gas atoms [1], nucleon-nucleon poten-
tials [2]). On the other hand, microscopic approaches
try to obtain such potentials by including the interac-
tions of the constituents as the building-blocks and cal-
culating the whole potential as a function of some set of
macroscopic variables (e.g., Born-Oppenheimer approxi-
mation for molecules [3], deformed shell models for nu-
clei [4]). However, the total potential obtained this way
does not reveal the contribution coming from individual
single-particle states. Quoting Schrödinger, best knowl-

edge of a whole does not necessarily include best possible

knowledge of the parts. The entanglement of these con-
tributions may yield further insight as to the interaction
of many-body systems via a representative potential.

Most common microscopic approaches for calculating
interaction potentials usually employ the adiabatic or
sudden approximations for the relative motion of the in-
teracting systems [5]. Recently, we have introduced a
new microscopic approach for the calculation of ion-ion
potentials for nuclear collisions. This method is based
on the time-dependent Hartree-Fock (TDHF) descrip-
tion of nuclear collisions coupled [6] with a constraint
on the local density at the given instant of time. In-
teraction potentials obtained using the so-called density
constrained TDHF (DC-TDHF) method [7] have been
successful in describing fusion cross-sections for a num-
ber of systems [8]. The new approach we will describe
below is generally suitable for microscopic calculations
provided Koopmans’ theorem [9] is applicable.

II. FORMALISM

The microscopic approaches based on the mean-field
approximation often use the energy difference between
the combined system and the asymptotic energies of the
individual systems to calculate the ion-ion interaction po-
tential as

V (R) = EA1+A2
(R)− E

(0)
A1

− E
(0)
A1

, (1)

where EA1+A2
(R) is the total energy obtained for the

combined system as a function of the distance R be-

tween the two ions, and E
(0)
Ai

are the individual bind-
ing energies of the two systems calculated using the
same interaction. The binding energies are often cal-
culated either by integrating the energy density over
all space E =

∫

d3rH(r) or via Koopmans’ expression

E = 1
2

∑

α wα(tα+ǫα) , where wα denotes the occupation
probability of the single-particle state α. This mixture of
half kinetic energies tα and half single-particle energies
ǫα applies to Hartree-Fock calculations employing purely
two-body forces. For mean-field calculations based on
density-dependent effective forces [10] or energy-density
functionals [11] a rearrangement term needs to be added
to the above expression [12]. This can be disentangled to
single-particle energies and rearrangement term as

E =
1

2

∑

α

wα(tα+ǫα)−
1

2
Tr

(

< HF |
δv

δρ
|HF > ρ

)

, (2)

where v is the density-dependent part of the interaction.
We can deduce a generalized single-particle sum from
that by decomposing the second ρ in the rearrangement
term into single-particle densities as ρ =

∑

α ρα. This
yields

E =
1

2

∑

α

wα(tα + ǫα + ǫ̃α) , (3)

where ǫ̃α is the single-particle rearrangement energy aris-
ing from the above modification. All of the binding en-
ergies comprising the ion-ion interaction potential via
Eq. (1) can be expressed using the above form. In terms
of these expressions the ion-ion interaction potential can



2

be represented as a sum over single-particle interaction
potentials as

V (R) =
∑

α

wαvα(R) , (4)

with

vα(R) =
1

2

[

(tα + ǫα + ǫ̃α)(R)− (t0α + ǫ0α + ǫ̃0α)
]

, (5)

where the quantities with a superscript (0) denote the
asymptotic values. This decomposition is sensible if the
single particle energies are good representatives of the
corresponding separation energies according to Koop-
mans’ theorem [9] and if the rearrangement corrections
remain small. Such a situation is given in the applica-
tion example discussed below, namely nuclear mean field
calculations using Skyrme forces. In that case, the pro-
ton and neutron interaction potentials are obtained sim-
ply by summing the single-particle potentials vα(R) over
all protons, or neutrons respectively. Strictly speaking,
Koopmans’ theorem applies only to closed shell nuclei
and it remains valid only if there are no dramatic changes
in deformation when removing one particle. However, it
is generally found to be a good approximation for light
nuclei where pairing forces are negligible. For heavier
systems where pairing interactions become sizable, the
formalism can only be used for systems near closed shells
where the pairing gap vanishes. For electronic energy-
density functionals one has to employ a self-interaction
correction to restore Koopmans’ theorem approximately
[13, 14].

III. RESULTS

For the application of the above concepts we have used
the DC-TDHF approach [7]. In this approach TDHF
time-evolution takes place with no restrictions. At cer-
tain times during the evolution the instantaneous densi-
ties ρp/n(r, t) are used to perform a static Hartree-Fock
minimization while holding the neutron and proton den-
sities constrained to be this instantaneous TDHF densi-
ties [15]. In essence, this introduces the concept of an
adiabatic reference state for a given TDHF state. The
difference between these two energies represents the in-
ternal energy. The adiabatic reference state is the one
obtained via the density constraint calculation, which is
the Slater determinant with lowest energy for the given
density with vanishing current and approximates the col-
lective potential energy after the subtraction of the static
binding energies as shown in Eq. (1). All of the dynami-
cal features included in TDHF are naturally included in
the DC-TDHF calculations.
In practice, we have used the Skyrme SLy4 effective

nuclear interaction [16] for our calculations. The rear-
rangement terms described above can be written as

ǫ̃α = ǫ̃(3)α + ǫ̃(C)
α + ǫ̃(DC)

α , (6)

with

ǫ̃(3)α = −
γ

12
t3

∫
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[
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2
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2
+ x3)(ρ

2
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]
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2
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e2
∫

d3r ραρ
1

3

p , α ∈ {protons}

ǫ̃(DC)
α = −

1

2

∫

d3r ραλn,p(r) ,

where we have defined ρα = ψ∗

α(r)ψα(r), and λ(r) is the
coordinate dependent Lagrange multiplier for the density
constraint [15]. The subscripts n, p in the rearrangement
term for the density constraint indicates the choice cor-
responding to the isospin content of the index α. The
summation over α exactly reproduces the total rearrange-
ment energies obtained by direct integration.
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FIG. 1. (color online) Interaction potential for a head-on
collision of 16O+16O at Ec.m. = 12 MeV. The black curve
is the total ion-ion interaction potential. The red and blue
curves show the contribution to the total potential coming
from protons and neutrons, respectively. Also shown is the
point Coulomb potential.

The first collision studied is 16O+16O at Ec.m. =
12 MeV. In Fig. 1 we show the total interaction potential
(black curve) as well as the contributions coming from
neutrons and protons to this total potential. The to-
tal interaction potential is numerically identical to the
one obtained in standard DC-TDHF calculations using
the integral of the energy density to obtain the terms in
Eq. (1). In general, DC-TDHF calculations show that the
ion-ion potential depends on the energy Ec.m.. For light
systems like 16O+16O, the energy dependence is found
to be negligible (see Ref. [17], Fig.1), but for heavier sys-
tems such as 16O+208Pb [8] and 48Ca+238U [18] the en-
ergy dependence is appreciable. The individual neutron
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and proton contributions were obtained by doing the α
summation over the neutron and proton single-particle
orbitals, respectively. As a reference we also show the
point Coulomb interaction. As can be seen from the fig-
ure the outer part of the potential barrier is primarily
determined by the interaction potential between the pro-
tons of the two nuclei while the neutron potential is essen-
tially zero. In other words the neutron-proton interaction
does not influence the outer barrier region. While inside
the barrier neutrons provide all of the attraction and the
proton potential remains positive for all R values.
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FIG. 2. (color online) Contribution of neutron single-particles
to the interaction potential for a head-on collision of 16O+16O
at Ec.m. = 12 MeV. The sum of all these potentials give the
neutron curve in Fig. 1. The arrow marked RB indicates the
barrier top of the total potential shown in Fig. 1.

In Fig. 2 we show the individual neutron single-particle
potentials for the 16O+16O system. In spite of using
three-dimensional Cartesian coordinates, we are able to
calculate some quantum numbers when the solution pos-
sesses a good symmetry. In this case spherical initial
16O nuclei allow the use of spherical quantum labels at
the asymptotic position of the two nuclei. On the other
hand, when the nuclei overlap the system becomes ap-
proximately axially symmetric thus allowing the compu-
tation of parity and the z-component of total angular

momentum. The reassignment of parities and the be-
havior of the states as they evolve towards smaller R
values is noteworthy. For smallest R values the filling of
the levels resembles the one for a single-centered 32 par-
ticle system. The trend seen in the actual single-particle
energies is relatively easy to understand; the two oxygen
nuclei are initially far apart and are brought together.
While they are far apart and isolated the nuclei have
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FIG. 3. (color online) Same as Figure 2, but for protons.

identical energy levels. However, as the separation be-
tween the two nuclei becomes smaller the single-particle
states begin to overlap. The Pauli principle dictates that
no two nucleons in an interacting system may have the
same quantum state. Therefore, each (doubled) energy
level of the isolated nuclei splits into two orbitals, one
lower in energy than the original level and one higher.
This can be most easily seen for the two initial 1s1/2
states. However, in addition to energy splitting the par-
ity of one of these states also changes from positive to
negative since no more than two neutrons can be in the
1s1/2 state (each state is originally occupied by two neu-
trons, wα = 2). In the language of molecular physics the
states that attain a lower energy than their asymptotic
value are referred to as the bonding states, whereas the
states that evolve to a higher energy are the anti-bonding
states [3].
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FIG. 4. (color online) Interaction potential for a head-on
collision of the 16O+24O at Ec.m. = 12 MeV.

In the case of nuclear reactions leading to fusion, the
bonding states are the states driving the system towards
fusion whereas the anti-bonding states resist the fusion
process. We observe that not all neutron states are bond-
ing states but to the contrary about half are actually anti-
bonding in character for small R values. One of the p3/2
states (green curve) make a transition from anti-bonding
to bonding for smaller R values. Another manifestation
of the bonding and anti-bonding states is their spatial
localization. Bonding states are localized in the interior
part of the combined system as opposed to anti-bonding
states that are more spread out, as can been seen from
the single-particle moments. The time-dependent wave
functions in TDHF are conceptually very different from
the adiabatic basis states of the two-center shell model
(TCSM), being very complicated superpositions of these,
and a comparison is meaningful only in the initial phase
of very low-energy reactions [19].
Figure 3 shows the contribution of proton single-

particle states to the total ion-ion potential. The trend of
the proton states are essentially the same as the neutron
states with the exception of the rise from the zero poten-
tial line (dotted lines) due to the presence of the Coulomb
interaction. The sum of all these proton single-particle
potentials reproduces the point Coulomb potential for
the two incoming nuclei as can been observed in Fig. 1.
We have also performed calculations for head-on colli-

sions of 16O+24O at Ec.m. = 12 MeV, and for 40Ca+40Ca
at Ec.m. = 55 MeV. In Fig. 4 we show the neutron and
proton potentials for the 16O+24O system. We note that
in comparison to the 16O+16O system the potential min-
imum is considerably lower due to the presence of eight
extra neutrons. The surplus bending from the extra neu-
trons also affect the proton potential, bringing it down to
negative values for small R. We also note that the neu-
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FIG. 5. (color online) Same as Figure 4 but for a head-on
collision of the 40Ca+40Ca at Ec.m. = 55 MeV.

tron potential starts its dip to negative values at larger
R values than the 16O+16O case thus bringing the to-
tal barrier maximum to a lower value. Figure 5 shows
the same quantities for the 40Ca+40Ca system. The
behavior of the proton potential is significantly differ-
ent in this case. Inside the barrier the proton poten-
tial is essentially constant and it only rises as the mini-
mum value of R is reached. This is probably due to the
stronger Coulomb potential which counter-weights the
nuclear binding. While the neutron and total potentials
appear intuitively as expected, the proton potential be-
haves in an unexpected manner. This difference is due
to the fact that here we are dealing with a finite-extent
charge distribution at a microscopic level and not the
point-charge Coulomb potential. This is further evidence
that the total potential may be masking some interest-
ing features of its building blocks. In order to further
explore the proton potential behavior we have repeated
our calculations for a heavier system, 48Ca+132Sn, at
Ec.m. = 120 MeV. In Fig. 6 we show the breakdown of
the total ion-ion potential to neutron and proton parts
for this collision. We observe that in this case the proton
potential actually rises for smaller R values in compar-
ison to the 40Ca+40Ca case, which can be more clearly
seen in the insert to Fig. 6.

IV. CONCLUSIONS

We have introduced a general approach for the cal-
culation of single-particle interaction potentials as the
building blocks of the total interaction potential for two
fragments of finite fermion systems. The formulation is
general provided the Koopmans’ theorem is applicable
to the underlying energy functional used for the many-
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FIG. 6. (color online) Same as Figure 4 but for a head-on
collision of the 48Ca+132Sn at Ec.m. = 120 MeV. The insert
magnifies the barrier top region.

body calculations. The formalism is applied to calculate
ion-ion potentials for nuclear reactions using TDHF for
the time-evolution of the nuclear collision together with
the density constraint formalism to find the correspond-
ing adiabatic reference state. We show the contribution
of single-particle potentials to the total potential for the
16O+16O case. We identify repulsive and attractive con-
tributions as bonding and anti-bonding states. Perhaps
the more obvious aspect is the identification of neutron
and proton contributions to the total potential where we
see clearly the subtle interplay between Coulomb repul-
sion and nuclear attraction for the protons while neutrons
are always the dominant contributors to binding.
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