
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Charmed mesons have no discernible color-Coulomb
attraction

T. Goldman and Richard R. Silbar
Phys. Rev. C 85, 015203 — Published 19 January 2012

DOI: 10.1103/PhysRevC.85.015203

http://dx.doi.org/10.1103/PhysRevC.85.015203


CH10260

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

December 20, 2011
LA-UR-11-12286

Charmed Mesons Have No Discernable Color-Coulomb Attraction
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Starting with a confining linear Lorentz scalar potential Vs and a Lorentz vector potential Vv,
which is also linearly rising but has in addition a color-Coulomb attraction piece, −αs/r, we solve
the Dirac equation for the ground-state c and u quark wave functions. Then, convolving Vv with
the u-quark density, we find that the Coulomb attraction almost completely washes out, making an
essentially linear V̄v for the c-quark. A similar convolution using the c–quark density also leads to an
essentially linear Ṽv for the u-quark. For bound c̄-c charmonia, where one must solve using a reduced

mass for the c-quarks, we again find by convolution an essentially linear V̂v. Thus, the relativistic
quark model is consistent with the absence of a color-Coulomb attraction in the charmed-meson
mass spectrum.

To see if this near-linearity of Vv provides a reasonable model for the bound c̄-c charmonium states,
we then solve the radial Dirac equations for Vs and Vv, both with and without a color-Coulomb
attraction at shorter distances. We present and compare the predictions of their masses for the two
models. We find that a strictly linear Vv provides about as good a fit to the charmonia masses as
the one with a color-Coulomb attraction, despite having one less parameter.

PACS numbers: 12.39-x, 14.40.Lb, 14.40.Pq, 14.65.Dw

I. INTRODUCTION

By assuming mesons to be quark-antiquark bound states and using the so-called “Cornell potential,” [1]

VCor(r) = −CF
αs
r

+ κ2r , (1)

non-relativistic solutions of the Schrödinger equation have been remarkably successful in predicting features of the
meson spectrum in terms of two parameters. Here CF = 4

3 is the color factor, αs = g 2
s /4π, with gs being the

(running) quark-gluon coupling constant, and κ is the string tension (in fm−1). It is the linear term in VCor(r) that
confines the quarks, similar to the confinement in the relativistic bag model. [2]
However, non-relativistic potential models for charmonium states [4] have also done remarkably well at describing

these states with a simple linear confining potential (plus spin-spin and spin-orbit terms), absent any evidence for a
short distance color-Coulomb contribution. This finding is somewhat surprising as, early on, the high mass of the
charm quark suggested that the color-Coulomb region might be discernible, at least in the wave functions, if not the
eigenenergies. Here we find the effect to be negligible in the latter and not significant in the former, with a relativistic
quantum mechanical approach to c̄-c charmonium states using the Dirac equation.
For a relativistic model the two terms in VCor(r) have different Lorentz transformation properties. The color-

Coulomb potential, αs/r, is naturally the fourth component of a Lorentz vector, which we will take as a part of a
Lorentz vector potential, Vv(r). On the other hand, relativistic linear confinement requires a Lorentz scalar, which
we take as a scalar potential Vs(r). (The q-q vector interaction is attractive or repulsive depending upon whether the
two quarks are in a color 3̄ or color 6 irrep and so cannot confine directly. The scalar interaction avoids the repulsive
channel entirely.)
Explicitly, the coupled radial Dirac equations [6–8] we solve in this paper are, in dimensionless form,

gl
′(x) +

k

x
gl(x) − (Ẽ − Vv(x) + Vs(x) + m̃) fl′(x) = 0 ,

fl′
′(x) −

k

x
fl′(r) + (Ẽ − Vv(x)− Vs(r) − m̃) gl(x) = 0 , (2)
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where x = κr is a dimensionless distance and the dimensionless energy and mass are Ẽ = E/κ and m̃ = m/κ.
Also, l and l′ = 2j − l are the orbital angular momenta for the upper component g l(x) and lower component fl′(x),
respectively. The integer k is determined by the angular momentum quantum numbers according to

k = −(l + 1), if j = l+ 1
2 ; k = l, if j = l − 1

2 . (3)

The upper Dirac component ψa(x) is given (up to a phase) by g l(x)/x and the lower component ψb(x) by fl′(x)/x.
For real potentials, the radial wave functions can be chosen as real.
Note that the sign for Vv(x) in Eqs. (2) is opposite to that of the energy Ẽ, the fourth component of the momentum

four-vector, while that for Vs matches that for the (current) quark mass m̃, also a Lorentz scalar. We will choose the
parameters of the Vs(x) and Vv(x) confining potentials to reproduce the bound charmonia masses.
The vector potential is assumed to also be linearly rising, with the same slope as Vs(r). The reason for this is

that there is evidence in the baryonic spectrum that the spin-orbit interaction is suppressed.[5] Page, Goldman, and
Ginocchio (PGG) [9] have shown that this can be due to a cancellation between a scalar potential Vs and a vector
potential, Vv, having the same linear slope at large distances.
We have shown elsewhere [8], numerically, that this cancellation does occur if the (dimensionless) forms of the

potentials are

Vs(x) = x, Vv(x) = x− xv, with x = κr . (4)

Here we have chosen Vs(0) = 0 to satisfy chiral symmetry at short distances and the parameter xv > 0 displaces Vv
to lie below Vs. However, the addition of the color-Coulomb term to Vv,

Vv, Coul (x) = −
αs
x

+ x− xv , (5)

would break the PGG cancellation. This breaking could be considered desirable, since there is evidence for a non-
negligible spin-orbit interaction in the mesonic spectrum. For example, the 1P charmonium states χ0 and χ2 differ
in their masses by 142 MeV [11].
We have checked that a potential like Vs(x) = x and Vv(x) as in Eq. (5) produces a reasonable representation of the

charmonium spectrum to within ≈ 15 MeV. The details of this calculation are given in Sec. III and those following.
In doing such a calculation for Vv(x) with the color-Coulomb attraction, however, we encountered an argument

that suggests that the Coulomb attraction has no significant effect (hence the title for this article). We find that an
iterative, self-consistency requirement on these potentials leads to a vector potential that is virtually indistinguishable
from linear over the full range of interest. How this happens is discussed in Sec. II.
So, the question comes down to whether a strictly linear Vv(x) as in Eq. (4) can do as well in predicting the bound

charmonia masses. We find that it does. Details of calculations and comparison of results with and without the
Coulomb term are presented in Sec. III.

II. WHY THE COLOR-COULOMB TERM DISAPPEARS

A. Convolving the vector potential

To motivate why the Coulomb attraction might be ineffective, we begin by considering the relativistic approach to
the hydrogen atom. The Dirac equation is used for a reduced mass electron in a potential determined by the total
charge interior to the radial point under consideration. This approach has been studied intensively by, for example,
Friar and Negele [12]. For us, however, the closest analogy is to the case of D-mesons, with one light quark and a
heavy charm quark in the analogous role to that of the proton in Hydrogen.
As the light quark mass is negligible on the scale of interest (we neglect effects of electromagnetism), there is no

discernible reduced mass effect to consider. Furthermore, in hydrogen, the charge distribution within the proton (or
nucleus in more massive atoms) smears out the Coulomb divergence at zero separation. Here, the charm quark is the
color-Coulomb source but has no intrinsic internal structure. However, unlike the electromagnetic case, the strong
virtual emission and re-absorption of gluons produces significant fluctuations in the color source location; for a very
massive quark these are not negligible even to leading order.
Our approach is to take, as a first approximation, the charge distribution (RMS size) of the D-meson as setting

a relevant scale for these fluctuations in smearing the color Coulomb divergence. Although it may not be precise,
given that the RMS size is comparable to the inverse of the QCD mass scale, we consider this to be a very reasonable
starting point. We use this scale to modify smoothly the color-Coulomb potential with a quadratically flat “bottom”
and with slope equal to that of the −αs/r color-Coulomb potential at a matching point.
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We thus convolve the light quark wave function with the color-Coulomb potential in the manner of Friar and Negele
[12] to define the potential that the charm quark is subject to in the presence of the light quark. Finally, to check for
self-consistency, we convolve this charm quark wave function with the color-Coulomb potential to observe its effect
on the light quark. We find a consistent, almost precisely linear, effective vector potential radially out all the way to
the region where linear confining potentials are necessary for consistency with data. We provide the details of how
this happens in the next four sections.
For charmonium states we then repeat the convolution for the c-quark in interaction with a c̄-quark. Here reduced

mass effects are no longer negligible. We find (Sec. II F) a very similar result and conclude that there is indeed a
single, consistent, approximately linear color vector potential that reasonably describes all of these states. Thus, there
is no remaining evidence of the color-Coulomb potential in the charmed mesons, despite the relatively large mass of
the c-quark.

B. The vector potential containing color-Coulomb term

After some numerical experimentation we focused on the charmed D-mesons, c̄-u, and (bound) charmonia, c̄-c, as
resulting from scalar and vector potentials, Vs(x) and Vv(x), like those shown in Fig. 1. As stated earlier, these
potentials are dimensionless functions of a dimensionless radial coordinate x = κr, where κ2 is about 1 GeV/fm [10].
The asymptotically linear slopes of Vs and Vv were taken the same, in accordance with the small spin-orbit splitting
in the baryon spectrum [5, 9]. The Vs is quadratic out to x = 1.5 after which it is strictly linear:

Vs(x) =

{
x2/(2xs) if x < xs,
x− xs/2 otherwise ,

(6)

where the parameter xs is, for us, fixed at 1.5. The flatness near x = 0 is to preserve chiral symmetry at short
distances.
The Vv has, in addition to the linear confinement, a color-Coulomb contribution,

Vv(x) = −CF
αs
x

+ x− xv , (7)

as shown by the dashed part in Fig. 1.
However, this is the potential seen by, say, the light u-quark in the field of the heavy c̄-quark, which is itself moving

about somewhat in the field of the u-quark. Thus, as discussed above, it is reasonable to moderate the singularity at
x = 0. We did this simply by altering the potential to

Vv, Coul(x) =

{
CF αs (x

2 − 3x 2
D ) / 2x 3

D + x− xv, if x < xD,
−CF αs/x + x− xv, otherwise ,

(8)

assuming the smoothing to be about the size of the (electric) charge radius (RD) of the D(1869) meson. Here
xD = 0.16 is a reasonable guess (corresponding to RD ∼ 0.3 fm),
The plots in Fig. 1 are shown for the parameters αs and xv that give the best figures of merit we found for our fit

(described in Sec. III and below) for charmonium states:

κ2 = 0.900 GeV/fm, mc = 1.567 GeV, xv = 1.127, and αs = 0.3. (9)

The κ2 in Eq. (9) for the color-Coulomb case is the same as that used in Ref. [10] and is consistent with that used in
the Cornell potential, Eq. (1). For charmonia calculations, the mass in the coupled differential equations must be the
reduced mass, mc/2. The masses we fit are those of the ηc, J/ψ, η

′
c, ψ

′, χ0, and χ2. [11]
We will also, in Sec. III, compare how well the above-mentioned fit with a color-Coulomb attraction compares with

a Vv(x) which is strictly linear, i.e.,

Vv, linear (x) = x− xv . (10)

C. Convolving the Coulomb potential for the c̄-quark

As mentioned above, in Sec. II A, a more consistent way of moderating the Coulomb singularity is first to solve for
the light u-quark 1s ground-state wave functions [8] for the potentials Vs(x), Eq. (6), and Vv, Eq. (8), with xv = 1.127
and αs = 0.3. The corresponding energy eigenvalue Eu(1s) = 0.363 GeV.
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Given that u-quark wave function, the vector potential that the c̄-quark should be subject to is the (unrounded) Vv
given by Eq. (7) modulated by the density of that u-quark. That is, following Friar and Negele’s discussion of muonic
atoms [12], the Coulomb potential should be convolved with the local “charge” density defined by the u-quark Dirac
wave function. That, together with the linear contribution, gives a new vector potential for the c̄-quark,

V̄v(x) = Qin(x)/x+Qout(x) + x− xv , (11)

where

Qin(x)/x = −
αs
x

∫ x

0

x′ 2dx′ ψ†
u,1s(x

′)ψu,1s(x
′) = −

αs
x

∫ x

0

x′ 2dx′ [ψ2
a(x

′) + ψ2
b (x

′)] ,

Qout(x) = −αs

∫ ∞

x

x′dx′ ψ†
u,1s(x

′)ψu,1s(x
′) = −αs

∫ ∞

x

x′dx′ [ψ2
a(x

′) + ψ2
b (x

′)] . (12)

Here ψa(x) is the (real) upper Dirac component and ψb(x) the lower component.
Near x = 0,

Qin(x)/x ≈
|ψ(0)|2

x

∫ x

0

x′ 2dx′ =
|ψ(0)|2 x2

3
(13)

and it never gets more negative than about −0.2 before it increases again toward zero like −αs/r. As for Qout(x),
since the 1s upper component radial wave function is well-approximated as a Gaussian [10, 13], its integral gives,
approximately, −αs times a (narrower) Gaussian.
A plot of V̄v(x) calculated from the integrals of Eq. (12) is given in Fig. 2. Despite its appearance, it is not strictly

a straight line – there is some small curvature in the plot below x = 1. Nonetheless, we consider the high accuracy
of a linear approximation to be rather surprising, as we were expecting only a minor change in the effective value of
xD. The dashed line in Fig. 2 is a linear fit to V̄v(x) with slope 1.1045 and displacement −1.5008.

D. How ψc changes with the new potential

If one solves for the 1s state of the c̄-quark for mc = 1.567 GeV and the original potentials of Eq. (6) and Eq. (8),
one finds the c̄-quark eigenenergy to be Ec(1s) = 1.299 GeV. That is, the energy of the c-quark for these potentials
is some 200 MeV less than its mass. The upper and lower 1s radial wave functions are displayed in Fig. 3 as dashed
curves. The rise of ψa at the origin is reminiscent of the non-relativistic ground state wave function for a pure
Coulomb potential, which is a wave function that is a decaying exponential like e−αx.
However, solving for Ec(1s) with Vs(x) and the convolved V̄v(x), we find Ec(1s) = 1.538 GeV, now considerably

higher in energy because of the missing Coulomb well, although still a bit less than mc = 1.567 GeV. The upper and
lower component wave functions, shown as the solid curves in Fig. 3, are broader than those found for the original
potentials. (In both cases, however, the c̄-quark wave functions are not as broad as those for the u-quark.)
Thus, while the mass of a c̄-u D-meson depends strongly on Ec(1s), it is not very sensitive to the difference between

the original and convolved potentials, the wave functions are quite different. We therefore expect that quantities
such as transition strengths, which are more dependent on the details of the wave functions, will be more potential-
dependent than the masses are.

E. Convolving for the u-quark potential

Continuing, we find that the singular Coulomb piece of the vector potential seen by the u-quark is also smeared by
the motion of the somewhat more confined, slower moving c̄-quark. With formulae like Eqs. (11) and (12), but with
the density provided by |ψc(1s)|

2, we again found this second convolution is also very close to linear, as shown in Fig.

4. In making this plot we used the ψc(1s) found from using V̄v. Again, the dashed line is a linear fit to Ṽv(x) with
slope a0 = 1.167 and displacement a1 = −1.640.
The Ṽv is slightly more curved and a bit deeper than the V̄v shown in Fig. 2, but is essentially the same nearly-linear

potential as that which affects the c̄-quark. Although the linear fit parameters are slightly different, in a strictly linear
model one could reasonably assume the same linear potential for both quarks. We demonstrate this below.
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F. Convolving for charmonium

Similarly, we investigated the smearing of the Coulomb potential for c̄-c charmonia states. In this case we must
solve using the reduced mass, mc/2 = 0.784 GeV, but otherwise the calculation proceeds much as above. First we
find the wave functions for the c-quark for the original potentials, Vs(x) [Eq. (6)] and Vv [Eq. (8)]. Then, convolving

the singular Coulomb potential with |ψc, reduced|
2 as in Eqs. (11) and (12) we obtain the plot of, now, V̂v shown in

Fig. 5. The dashed line is a linear fit to Ṽv(x) with slope a0 = 1.169 and displacement a1 = −1.644. Note that the
linear fit parameters are quite close to the values that we found for the (effective) potential for the u-quark.

III. CHARMONIA STATES, WITH AND WITHOUT A COULOMB TERM

A. Setting the quark masses

To proceed, we need to set the masses and find the relativistic wave functions for the quarks of interest in this
paper, namely, q (standing for either u or d), and c. This involves solving Eqs. (2) for each (current quark) mass m to
obtain the energy eigenvalues E(nlj) for the different quarks and their respective upper and lower component wave
functions. We do this using a “shoot and match” technique described in detail in Ref. [8].
First, we treat the q quarks, which we assume are both of negligible mass, that is, we set mq = 0. It is because they

are light compared to the inverse size-scale of hadrons that we consider it necessary to go to a relativistic version of
the quark model of mesons. For the lowest bound q-q̄ states, namely the π and ρ mesons, the l = 0, j = 1

2 energy
Eq(1s), roughly 0.310 GeV, which is frequently thought of as a “constituent mass” for the massless quark, as opposed
to its “current” mass. In this paper, because of well-known complications of glueballs, channel coupling, and the axial
anomaly, we will not treat these and other q-q̄ light mesons.
For the case of the linear Vv, linear (x), we note that the wave functions found from solving the Dirac ODE’s of Eq.

(2) are invariant with respect to the combination Ẽ + xv. That is, Ẽ + xv is essentially the eigenvalue for the bound
state wave function. Thus, the desired Eq(1s) is obtained by adjusting xv to the value given in Eq. (16).
For fixing the charmed-quark mass, we can use the lightest 1S c q̄-mesons, MD(1869) and MD∗(2010). To do so,

we invoke a hydrogen-atom-like approximation, with the heavy c-quark acting as the proton,

MD = mc + Eq− < Tq > −3ECMI

MD∗ = mc + Eq− < Tq > +ECMI , (14)

where < Tq > is the kinetic energy of the light quark. This subtracted average corrects approximately for the motion
of the center of mass of the hydrogen-atom-like state due to the motion of the light quark. The experimental, weighted
average mass [11] of these 1S mesons is

M̄D(1S) = (MD + 3MD∗)/4 = 1.975 GeV

= mc + Eq(1s)−
< p2q >

2M̄D(1S)
= mc + Eq(1s)−

E 2
q (1s)

2M̄D(1S)
, (15)

where we used our approximation that mq = 0 in the last equation.
For the case with Vv, Coul, using the parameters in Eq. (9), integrating the radial equations yields Eq(1s) = 0.462

GeV. This energy is larger than the value relevant to light q-q̄ mesons, ≈0.310 GeV, which is to be expected since the
q-quark is here more tightly localized. Thus, from Eq. (15), mc = 1.567 GeV. This mc is larger than the PDG value
of about 1.250 GeV [14] but is not inconsistent, as that value is derived from data using a non-relativistic approach.
For the (strictly) linear Vv case, we simply take mc as one of two parameters to be fit, along with V0. (We also

fixed the value of xv at 1.7, based on the near-linear Vv(x)’s found in Sec. II and the discussion above regarding the

invariance of the ODE’s with regard to Ẽ + xv.) The best fit values we found are

mc = 1.518 GeV, and V0 = 1.253 GeV/fm. (16)

This charmed-quark mass is close to the value found from Eq. (15).
We can also use the splitting of the D and D∗ meson masses to fix the sizes of the color-magnetic interactions,

ECMI, in Eq. (14) and later on for the charmonia states. To do this we only need the q and c-quark 1s wave functions
and how the color-magnetic interaction depends upon them, discussed next.
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B. The Color-Magnetic Interaction – the Simple Cases

A large part of the attractive interaction between two quarks (or a quark and an anti-quark) comes from one-gluon
exchange between them, a four-vector interaction. The induced, effective scalar part of that interaction is considered
to be largely responsible for the linear confinement we invoked in Eq. (4). The three-vector part constitutes the
color-magnetic (or hyperfine) interaction, whose matrix element, the interaction energy for quarks “1” and “2”, is

MCM = −

∫
d3x1

∫
d3x2 ψ

†
1(x1) α ψ1(x1) · ψ

†
2(x2) α ψ2(x2) G(x1,x2) , (17)

where α is the usual Dirac matrix and G(x1,x2) is the gluon propagator, having dimensions of energy.
In this section we derive an expression for the simple cases of interest in this paper, where there is only one way of

forming a c-c̄ state with JPC from the single quark values of l1, j1 and l2, j2. This allows us to calculate the masses
of the following charmonium states: ηc(J

PC = 0−+) at 2.980 GeV, J/ψ(1−−) at 3.097 GeV, ηc
′(0−+) at 3.637 GeV,

ψ ′(1−−) at 3.686 GeV, χ0(0
++) at 3.415 GeV, and χ2(2

++) at 3.556 GeV. More complicated cases (not considered
here) in which some particular combination of l1, j1 and l2, j2 forms the state with JPC are not treated here, but
can be derived using techniques of Racah algebra [15].
For an s-state, the Dirac wave function ψ simplifies to

ψ(r) =

[
ψa(r)

−iσ · r̂ ψb(r)

]
Y00 χms

, (18)

where χ is a two-component Pauli spinor carrying the the magnetic quantum number ms = ±1/2.
One often takes G(x1,x2) to be a Yukawa propagator for the massless gluon exchange, with a cutoff e−µx to model

the shielding about the quarks. In this paper, however, we will use a Gaussian form for the propagator [10] that
allows us to perform the angular integrations in Eq. (17) more easily,

G(x1,x2) = λ e−µ(x1−x1)
2

, (19)

where the parameter µ is dimensionless and the parameter λ has dimensions of energy and is proportional to (CFαs)
2.

Since the actual spatial Green function is unknown, except for a finite range, there is no real preference for the choice
of a phenomenological propagator.
It turns out that our model’s predictions are quite insensitive to the value of µ, and we therefore choose it as 0.8

(corresponding to a cutoff separation scale between the quarks of about 0.5 fm). As stated above, we will fix the value
of the λ parameter from the mass splittings between the D∗(2010) and D(1869) mesons, then use that value of λ to
predict splittings of the bound charmonium mass states (1S, 2S, and 2P ).
After some algebra, we can reduce Eq. (17) to

MCM =
8

3
CF λ I(µ) < σ1 · σ2 >=

32

9
λ I(µ) < σ1 · σ2 > , (20)

The factor < σ1 · σ2 > is 1 for S = 1 states and −3 for S = 0 states. Here I(µ) is a dimensionless double integral
over the radial wave functions of quarks “1” and “2”,

I(µ) =
1

2µ2

∫ ∞

0

dx1

∫ ∞

0

dx2 ψ1,a(x1) ψ1,b(x1) ψ2,a(x2) ψ2,b(x2)×

{
(2µx1x2 − 1) e−µ(x1−x2)

2

+ (2µx1x2 + 1) e−µ(x1+x2)
2
}
. (21)

Using the radial wave functions found by solving the coupled ODE’s for the parameters of Eq. (9), we evaluate this
double integral using c(1s) and q̄(1s) ground state wave functions to find I(µ = 0.8), getting

Ic(1s), q(1s) =

{
0.0896 for Vv, Coul (x),
0.0736 for Vv, linear (x),

(22)

the difference here reflecting the differences in the wave functions.
We can now determine the color-magnetic energy scale from the 1S D∗-D experimental mass difference,

ECMI ≡MCM = (MD∗ −MD)/4 = 35.3 MeV . (23)

From Ic(1s),q(1s), ECMI, and Eq. (20), we find the Gaussian’s energy parameter in Eq. (19) to be

λ =

{
0.111 GeV, for Vv, Coul (x),
0.134 GeV, for Vv, linear (x).

(24)

We will assume that these values of λ are also valid for the charmonia states, c-c̄, since λ is proportional to αs, and
thus λ ought not be much different at these two different energies.



7

C. The masses of the 1S states, ηc and J/ψ

Using the mc = 1.567 GeV from Section III A, we can now proceed to calculate the various bound c c̄ charmonium
states. In these calculations, because of the equal masses of the two c-quarks, we must use the reduced mass, mc/2,
when we solve the ODEs of Eq. (2) to get the energy and wave functions of the ground state c-quark. We find, for
the parameters of Eqs. (9) and (16),

Ec, red(1s) =

{
0.718 GeV, for Vv, Coul (x),
0.790 GeV, for Vv, linear (x).

(25)

The 1s wave functions for the reduced-mass c-quark are displayed in Fig. 6 for both cases. These wave functions are
not as peaked as those displayed in Fig. 3
We first check the experimental value of the spin-averaged mass of the two 1S states,

M̄exp(1S) = (Mηc + 3MJ/ψ) / 4 = 3.068 GeV . (26)

In analogy to the hydrogen atom, the calculated value of the M̄(1S) average is

M̄calc(1S) = 2mc + EB(1s) , (27)

where the bound c-quark binding energy is

EB(1s) = Ec, red(1s)−mc/2 . (28)

From the above calculations, i.e., Eq. (25), we find

M̄calc(1S) =

{
3.068 GeV, for Vv, Coul (x),
3.067 GeV, for Vv, linear (x),

(29)

both very close to the experimental value.
To calculate the 1S mass splitting due to the color-magnetic interaction we use the reduced-mass c-quark radial

wave functions (displayed in Fig. 6) in Eq. (21), obtaining

Ic(1s), c(1s) =

{
0.1013 for Vv, Coul (x),
0.0891 for Vv, linear (x).

(30)

With these values we find from Eq. (20), using the D-D∗ value for lambda, Eq. (24),

Mηc = 2mc + EB(1s)− 3
32

9
λ Ic(1s), c(1s) =

{
2.948 GeV, for Vv, Coul (x),
2.940 GeV, for Vv, linear (x).

(31)

MJ/ψ = 2mc + EB(1s) +
32

9
λ Ic(1s), c(1s) =

{
3.108 GeV, for Vv, Coul (x),
3.110 GeV, for Vv, linear (x).

(32)

The splitting between these states is a bit larger than the experimental splitting. Refinements for this splitting are
discussed in Sec. III F.

D. The 2S States

To predict the excited 2S states, ηc
′ at 3.637 GeV and ψ ′ at 3.686 GeV (which are still bound with respect to

D-D̄ decay), we need the (reduced mass) energy for the c-quark in its excited 2s state. We solve the ODE’s again for
l = 0, j = 1

2 and the potentials having the parameters of Eqs. (9) and (16), but this time with a higher trial energy.
The wave functions ψa and ψb found for this excited state, not shown here, have the expected shapes [8] with one and
two nodes, respectively. Again, those for the color-Coulomb case are narrower than those for the linear case.
Following the equations given in the previous subsection, we compare the calculated quantities and masses for the

1S and 2S states in Table I.

Table I. Comparing results for the 1S and 2S bound charmonium states,
for the Color-Coulomb and linear vector potentials.
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1S states 2S states

Quantity Vv, Coul Vv, linear Experiment Quantity Vv, Coul Vv, linear Experiment

Ec, red(1s) 0.718 0.790 — Ec, red(2s) 1.297 1.423 —

EB(1s) -.066 0.031 — EB(2s) 0.513 0.664 —

M̄(1S) 3.068 3.067 3.068 M̄(2S) 3.647 3.700 3.674

Ic(1s), c(1s) 0.1013 0.0891 — Ic(2s), c(1s) 0.0375 0.0336 —

Mηc 2.984 2.940 2.980 Mηc ′ 3.603 3.652 3.637

MJ/ψ 3.108 3.110 3.097 Mψ′ 3.662 3.716 3.686

Despite M̄(2S) being fit in the iterations fixing the parameters for the linear potential, it comes out about 30 MeV
high compared with experiment. On the other hand, the Coulomb case finds M̄(2S) a bit low by the same amount.
Also, the predicted splitting between the J/ψ and ηc is larger than the experimental splitting, and it is more so for
the linear case. Likewise, the ψ ′ – ηc

′ splitting, ≈ 60 MeV, is more than the experimental 49 MeV. We discuss a
possible refinement to the splittings for these states in subsection III F.

E. The 1P States

There are four 1P states [11], but we will only predict the two that are simplest to evaluate, χ0 at 3.415 GeV and
χ2 at 3.556 GeV. The two J = 1 states, χ0 (3P1) and hc (1P1), lie between them with nearly equal masses, and
therefore they will mix with each other in an involved way, in contrast to the unmixed 3P0 and 3P2 states.
We model the χ0 meson as a c(2p 1

2 ) c̄(1s
1
2 ) state with J = 0, L = 1, and S = 1. We need to solve the (reduced-

mass) ODE’s of Eq. (2) (with appropriately changed boundary conditions) for the 2p 1
2 excited state, which enters

into the calculation of Mχ0
. We do likewise for χ2, a c(2p

3
2 ) c̄(1s

1
2 ) state with J = 2, L = 1, and S = 1.

The energies Ec,red(2p
1
2 ) and Ec,red(2p

3
2 ) are about 250 MeV lower than Ec,red(2s). Plots of the upper and lower

wave functions are as expected [8], again with the color-Coulomb wave functions narrower than the linear ones. For
p-wave states, we expect the color-magnetic interaction to be small, as the hyperfine interaction (mostly) only affects
s-wave states.

Table II. Comparing results for the 1P bound charmonium states,
for the color-Coulomb and linear vector potentials.

χ0, nlj = {2, 1, 12} χ2, nlj = {2, 1, 32}

Quantity Vv, Coul Vv, linear Experiment Vv, Coul Vv, linear Experiment

Ec, red(nlj) 1.068 1.138 — 1.132 1.158 —

EB(nlj) 0.284 0.379 — 0.348 0.399 —

Ic(2p),c(1s) -.0505 -.0517 — 0.1065 0.0957 —

Mχ
J

3.399 3.390 3.415 3.524 3.481 3.556

The splitting between these two 1P states is about 125 MeV in the Coulomb case and 91 MeV the linear case, both
of which are less than the experimental 141 MeV.

F. Can one improve the mass splittings?

As noted above, the predicted 1S and 2S mass splittings are somewhat larger than experiment. A somewhat
smaller λ, and thus smaller mass splittings, would be found if we use the ηc-J/ψ splitting instead of the D ∗ – D mass
splitting. From the c-quark wave functions we evaluate the I(cred1s, cred1s) and find

λ =

{
0.078 GeV, for Vv, Coul (x),

0.104 GeV, for Vv, linear (x).
, (33)

to be compared with the values in Eq. (24).
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IV. CONCLUSIONS

These results are consistent with the good spectral results found in non- and relativistic models for the charmonium
spectrum using linear confining potentials. It is unclear whether the slight differences in the effective linear potentials
merit the complications of a relativistic approach to the calculation of spectra until high accuracies become necessary.
Our convolution approach suggests that the good spectral results with a non-relativistic, linear potential are due to
the still relatively light mass of the charm quark. This in turn invites the question as to whether this status can still
hold for the bottom quark. Absent detailed comparisons with transition rates for charmonium and D-meson decays,
which one expects to be more sensitive to wave function details than are spectra, the color-Coulomb contribution to
the effective potential for quark binding remains undetermined from charmonium mass data alone. We intend to turn
next to bottom quark states to examine whether the spectra there can provide a definitive determination of this issue.
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FIG. 1: The scalar and vector potentials Vs(x) and Vv(x) as functions of a dimensionless radial coordinate, x.
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FIG. 2: The scalar potential Vs(x) and the convolved vector potential V̄v(x) for the c̄-quark as functions of x.
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FIG. 3: Comparing the c̄-quark radial wave functions for the original and convoluted potentials.
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FIG. 4: The scalar potential Vs(x) and the convolved vector potential Ṽv(x) for the u-quark as functions of x.
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FIG. 5: The scalar potential Vs(x) and the convolved vector potential V̂v(x) for charmonia states as functions of x.
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FIG. 6: Comparing the (normalized) reduced-mass c-quark 1s Dirac wave functions, ψa,b(x), for the two cases, Vv, Coul (x)
(solid curve) and Vv, linear (x) (dashed curve), for the parameters given in Eqs. (9) and (16).


