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Correlation measurements imply that anisotropic flow in nuclear collisions includes a novel tri-
angular component along with the more familiar elliptic-flow contribution. Triangular flow has
been attributed to event-wise fluctuations in the initial shape of the collision volume. We ask two
questions: 1) How do these shape fluctuations impact other event-by-event observables? 2) Can
we disentangle fundamental information on the early time fluctuations from the complex flow that
results? We study correlation and fluctuation observables in a framework in which flux tubes in an
early Glasma stage later produce hydrodynamic flow. The calculated collision-energy dependence
of multiplicity and transverse momentum fluctuations is in good accord with data from 62.4 GeV
Au+Au up to 2.76 TeV Pb+Pb.
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I. INTRODUCTION

Measurements of two particle correlations in nuclear
collisions exhibit a complex pattern of ridges, bumps,
and valleys as functions of relative pseudorapidity ∆η =
η1− η2 and azimuthal angle ∆φ = φ1−φ2 [1–9]. In a re-
cent advance, Alver and Roland showed that much of the
∆φ dependence of these correlations can be described in
terms of anisotropic flow [10]. Their key realization was
that a novel triangular flow contribution ∼ v3 cos 3∆φ
is needed to describe the data. Such contributions have
been attributed to fluctuations of the geometric shape
of the collision volume from event to event [10–21]. A
unique shape is determined in the first instants of each
collision event as the nuclei crash through one another.

Interestingly, fluctuations have been of measured in
nuclear collisions for many years, but for different rea-
sons. Event-by-event fluctuations of the multiplicity,
mean transverse momentum, and net charge are viewed
as probes of the QCD phase transition, although signa-
ture behavior has yet to be seen [22–24]. Such observa-
tions are explained by the variation of density, geometry,
thermalization, and flow; see, e.g., [25–29].

In this paper we explore the common influence that
the early-time dynamics of the system has on correla-
tions, flow, and fluctuations. We begin by asking how
geometric fluctuations impact other event-by-event ob-
servables. In Sec. II, we recall the relationship between
correlations and anisotropic flow. Next, we discuss the
relationship between fluctuations and correlations in Sec.
III. We exploit integral relationships obtained in Ref. [30]
to marry the dynamical language of flow and correlations
to the statistical formulation of fluctuation observables.
This yields model independent properties of experimental
observables. In particular, we find that geometric shape
fluctuations alone cannot explain measured multiplicity
and transverse momentum fluctuations.

We next ask what fluctuation and correlation measure-
ments can reveal about the early-time dynamics of the
collision system. The first evidence that correlations orig-

inate at early times in the collision is the long rapidity
range of the ridge [31, 32]. Correlations show a ridge-like
peak near ∆φ = 0. This ridge extends over a broad range
in ∆η, as do away-side features centered near ∆φ ∼ π [8].
Causality dictates that correlations over several rapidity
units must originate at the earliest stages of the collision
[31, 32]. With that in mind, we described the ridge as
a consequence of particle production in an early Glasma
stage followed by transverse flow in Refs. [31–34]. Our
description is part of a broader family of models in which
particles are initially correlated at the point of produc-
tion [11, 27, 35–40].

Identifying the impact of anisotropic flow on these cor-
relations adds considerable credence to this observation
[14]. Anisotropic flow is well understood as an early time
effect, since it is generated in part by the geometric con-
figuration of participant nucleons in the colliding nuclei;
see, e.g., [41, 42]. Correspondingly, the measured v2 co-
efficients vary little with rapidity.

To illustrate how correlations, flow, and fluctuations
result from the early-time dynamics, we apply the gen-
eral framework of Refs. [32, 33] in Sec. IV. We obtain
expressions for the correlation function and its Fourier
coefficients, (23), (24), and (25). This provides a unify-
ing framework for understanding hydrodynamic vn stud-
ies together with earlier work on the ridge. We also derive
expressions for transverse momentum fluctuations, (26)
and (27).

In Sec. V, we use fluctuation measurements to extract
information on the particle production mechanism. We
focus on the Color Glass Condensate formulation in Ref.
[31–33, 43], and argue that dynamic multiplicity fluctu-
ations R can provide information on particle production
that is independent of flow. Transverse momentum fluc-
tuations 〈δpt1δpt2〉 provide similar information, although
the results are somewhat sensitive to radial flow (but not
the vn). Constraining the flow contribution by calculat-
ing 〈pt〉 and v2, we compute the fluctuations for R and
〈δpt1δpt2〉. We find that the same model that described
the energy, target-mass, and pt dependence of the ridge
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also describes transverse momentum fluctuations mea-
sured at the Brookhaven Relativistic Heavy Ion Collider,
RHIC, and the CERN Large Hadron Collider LHC.

II. CORRELATIONS AND FLOW

Correlation measurements commonly center on the
pair distribution

ρ2(p1,p2) =
dN

dη1d2pt1dη2d2pt2
, (1)

where ηi = (1/2) ln((pi + pzi)/(pi − pzi)) is the pseu-
dorapidity and pti = |pti| is the transverse momentum
of particles i = 1, 2. In the absence of correlations,
ρ2(p1,p2)→ ρ1(p1)ρ1(p2), where the single particle dis-
tribution is ρ1(p) = dN/dηd2pt. Experiments typically
report ratios of ρ2 to either ρ1ρ1 or mixed event pairs
integrated over ranges of pt. To keep the notation sim-
ple, we will not make the η dependence explicit unless
needed.

To illustrate the connection between flow and correla-
tions, recall for the moment the traditional picture of flow
in which event-by-event fluctuations are neglected. It has
long been known that collisions at non-zero impact pa-
rameter b produce anisotropic flow [41, 42]. Anisotropy
derives from the change in the shape of the collision vol-
ume with respect to the reaction plane, i.e., the plane
spanned by b and the beam direction. The distribution
with respect to this plane is

ρ1(pt;ψRP
) = ρ1{1 + 2

∞∑
n=1

vn(pt) cos[n(φ−ψ
RP

)]}, (2)

where the coefficients depend only on the magnitude
pt = |pt| and η. An experimental analysis that does
not identify the reaction plane measures the distribution
(2π)−1

∫
ρ1(pt;ψRP

)dψ
RP

= ρ1, where the “bar” denotes
average over φ. The second equality follows because ρ1
is a function of φ− ψ

RP
.

Anisotropic flow introduces correlations because pairs
from the same collision event have the same reaction
plane. The reaction plane averaged pair distribution can
only be a function of the relative angle ∆φ, so that

ρ2 = ρ2{1 + 2

∞∑
n=1

an(p1, p2) cos(n∆φ)}. (3)

If geometry is the only source of correlations then
ρ2(pt1,pt2) is the product ρ1(pt1;ψ

RP
)ρ1(pt2;ψ

RP
) av-

eraged over ψ
RP

. In that case the Fourier coefficients of
(2) and (3) are related. For n = 0 we find

ρ2(p1, p2)→ ρ1(p1)ρ1(p2). uncorrelated (4)

while for n ≥ 2

an(p1, p2)→ vn(p1)vn(p2); uncorrelated (5)

these results hold only when fluctuations may be ne-
glected. Momentum conservation contributes to a1, mod-
ifying the v1(p1)v1(p2) term, as discussed by Borghini
and others [44–48].

Fluctuations introduce further anisotropy because the
shape of the collision volume is different in each collision
event. In collisions of identical nuclei, the event-averaged
interaction volume is symmetric in φ and fixed by b and
Ψ

RP
. If all events of a given b had the same interaction

volume, we then would expect only even n to contribute
to (2). Shape fluctuations cause the flow parameters vn
to vary from event to event and allow odd n to contribute.
The average pair distribution has the same form as (3),
but with coefficients

an(p1, p2) = 〈vn(p1)vn(p2)〉, (6)

where the brackets denote average over events (includ-
ing all event shapes) [19]. The measured azimuthal de-
pendence of two particle correlations are reasonably de-
scribed by (3) with n = 1, 2 and 3. We emphasize that
fluctuations in shape alone cannot alter ρ2 – this requires
further dynamical fluctuations which we discuss in the
next sections.

We remark in passing that one often discusses the
shape fluctuations in terms of a geometric eccentric-
ity εn. If one assumes that the relation between εn
and the resulting anisotropy of the fluid flow vn is ap-
proximately deterministic, then fluctuations of the ratio
vn(p1)/εn are negligible. In that case 〈vn(p1)vn(p2)〉 ≈
(vn(p1)/εn)(vn(p2)/εn)〈ε2n〉. This factorization conjec-
ture seems plausible, but currently requires further the-
oretical investigation [49].

III. FLUCTUATIONS

Fluctuation measurements study the variation of bulk
quantities, such as multiplicity or average transverse mo-
mentum, over an ensemble of events [22, 50, 51]. Suppose
that fluctuations of multiplicity N result in a variance
σ2

N
= 〈N2〉 − 〈N〉2. Uncorrelated particles would be de-

scribed by Poisson statistics, for which σ2
N
→ σ2

stat =

〈N〉. Correlations give rise to a difference σ2
N
− σ2

stat,
which we characterize by the dynamic variance

R =
〈N2〉 − 〈N〉2 − 〈N〉

〈N〉2
, (7)

as discussed in [30]. Similarly, many describe the dy-
namic fluctuations of transverse momentum using the
covariance

〈δpt1δpt2〉 =
〈
∑
i 6=j δptiδptj〉
〈N(N − 1)〉

, (8)

where δpti = pti − 〈pt〉 and the average transverse mo-
mentum is 〈pt〉 = 〈Pt〉/〈N〉 for Pt =

∑
i pti the total mo-

mentum in an event [52–55]. This quantity vanishes when
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particles i and j are uncorrelated. The brackets denote
average over events, including event shape together with
any other source of variation. Note that one can write
〈δpt1δpt2〉 in terms of the variance σ2

Pt
= 〈(Pt−N〈pt〉)2〉.

In the absence of correlations, that variance is σ2
Pt stat

=

〈N〉(〈p2t 〉 − 〈pt〉2). One can show that 〈δpt1δpt2〉 is the
difference σ2

Pt
−σ2

Pt stat
divided by the average number of

pairs 〈N(N − 1)〉.
To see the connection between fluctuation and corre-

lation measurements, observe that the integral of the
pair distribution ρ2 gives the average number of pairs
〈N(N − 1)〉. We then write (7) as

R =
1

〈N〉2

∫
r(p1,p2)dp1dp2, (9)

where we define

r(p1,p2) = ρ2(p1,p2)− ρ1(p1)ρ1(p2). (10)

Similarly, we can write (8) in terms of the correlation
function (10) as

〈δpt1δpt2〉 =

∫
dp1dp2

r(p1,p2)

〈N(N − 1)〉
δpt1δpt2. (11)

We stress that the densities ρ1 and ρ2 are event-averaged
quantities.

Fluctuation measurements probe the overall strength
of correlations in a manner that is independent of the
anisotropic flow. To see this, we combine (3) with (10) to
find that the cosn∆φ contributions vanish on integration
over 0 ≤ ∆φ ≤ 2π. We obtain

R =
1

〈N〉2

∫
r(pt1, pt2)dp1dp2, (12)

which depends only on the φ averaged function

r(pt1, pt2) = ρ2(pt1, pt2)− ρ1(pt1)ρ1(pt2). (13)

It is easy to understand whyR is not sensitive anisotropy
– N simply counts particles irrespective of where they are
flowing. Similarly, the

〈δpt1δpt2〉 =

∫
dp1dp2

r(pt1, pt2)

〈N(N − 1)〉
δpt1δpt2, (14)

Here too the cosn∆φ contributions to (3) vanish on inte-
gration. These fluctuations are independent of φ because
our definition of pti disregards direction.

Equations (12) and (13) have two striking implications
when combined with flow results from the previous sec-
tion. First, if the variation of the initial geometric shape
of the collision volume is the only source of fluctuations
then (4) implies that R and 〈δpt1δpt2〉 must both vanish.
Experiments have measured these quantities and they are
both nonzero; see e.g. Refs. [55–57] and Sec. V. Second,
the amplitudes r and ρ2 determine the overall magnitude
of correlations, as we see from (3). Anisotropic flow and

momentum conservation determine the coefficients (6)
and, therefore, the relative height of the near-side “ridge”
at ∆φ = 0 and away-side features near ∆φ = π. How-
ever, interpretation of the evolution of the ridge height
with beam energy or centrality requires an understanding
of r or R.

IV. SOURCE OF FLUCTUATIONS

Nuclear collisions vary sharply from event to event due
to differences in the number and configuration of the nu-
cleons struck in the initial impact. Each strike adds to a
transient color field that lasts a proper time of roughly
τ0 ∼ 1 fm. This field comprises an array of flux tubes con-
necting the fragments of the highly Lorentz-contracted
nuclei along the beam direction. The number of partic-
ipants determines the color charge and thus the overall
strength of the fields. The flux tubes fragment after τ0,
driving soft particle production. We emphasize that flux
tubes arise naturally in QCD and have long been the
core of phenomenological models such as PYTHIA. In
the next section we will focus on the Color Glass Con-
densate description, which incorporates these features in
the high density environment produced by nuclear colli-
sions and allows for systematic computations. For now,
we keep the discussion more general.

We assume that the number and geometrical distribu-
tion of flux tubes is the most important source of fluctu-
ations. Their fragmentation leads to density correlations
described by

c(x1,x2) = n2(x1,x2)− n1(x1)n1(x2), (15)

where n1 and n2 are the single and pair densities. In
the absence of correlations, n2(x1,x2) → n1(x1)n1(x2)
so that c vanishes. The integral of n2 over position gives
the number of pairs averaged over events, 〈N(N − 1)〉,
so that the integral of c is R〈N〉2, with R given by (7).
We now take the flux tubes to be longitudinally boost
invariant, so that the correlation function only depends
on transverse coordinates rt = r1, t − r2, t as well as the
average Rt = (r1, t+r2, t)/2. We further assume particles
from the same flux tube are primordially correlated and
that correlations with the reaction plane arise due to the
distribution of tubes. Since the transverse size of the flux
tube is small, the primordial correlations reflect common
spatial origins. We then write

c(x1,x2) = R〈N〉2 δ(rt)ρFT
(Rt). (16)

Here, ρ
FT

(Rt) is the probability distribution for finding
a flux tube at a transverse position Rt in the collision
volume. This function describes the distribution of shape
fluctuations discussed earlier. Following Ref. [32, 33], we
take ρ

FT
to roughly follow the participant distribution of

the colliding nuclei

ρ
FT

(Rt) ≈
2

πR2
A

(
1− R2

t

R2
A

)
(17)
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for Rt ≤ RA, and zero otherwise.
We now discuss the impact of these long range correla-

tions on the final-state distributions. Comoving partons
locally thermalize as the flux tubes fragment. Pressure
builds and transverse expansion begins. In this process,
partons from a flux tube at an initial space-time point
(t,x) will eventually acquire a final flow four velocity uµ.
In a blast wave model uµ is taken to have a Hubble-like
correlation, while hydrodynamic calculations provide a
more realistic uµ. In either case, the Cooper-Frye single
particle distribution is

ρ1(p) =

∫
f(x,p) dΓ, (18)

where f is one-body phase space distribution function
and dΓ = pµdσµ is the element of flux through the
four dimensional freeze out surface. In local equilib-
rium the distribution has the Boltzmann form f(x,p) =
(2π)−3 exp{−pµuµ/T}. The temperature T and fluid
four-velocity uµ are generally fixed by hydrodynamics,
which enforces the local conservation laws. In keep-
ing with the boost-invariant distribution (16), we as-
sume that freeze out occurs at a proper time τF , so that
pµdσµ = τFmt cosh(y−ζ)dζd2rt, where ζ = (1/2) ln((t+
z)/(t − z)) is the spatial rapidity and y = (1/2) ln((E +
pz)/E − pz)) is the rapidity.

The pair distribution has an analogous Cooper-Frye
form

ρ2(p1,p2) =

∫
f2(x1,p1,x2,p2)dΓ1dΓ2, (19)

where f2 is the two-particle Boltzmann distribution func-
tion. In local thermal equilibrium the two particle distri-
bution is

f2 = n2(x1,x2)
f(x1,p1)

n(x1)

f(x2,p2)

n(x2)
, (20)

where n1 and n2 are the single-particle and pair densities
discussed earlier, with n(x) =

∫
f(x,p)d3p. This expres-

sion satisfies a generalization of the Boltzmann transport
equation for f2; the factors of f cause the generalized
collision terms to vanish just as they do in the one body
equation. We omit momentum and energy conservation
terms that do not contribute to R and 〈δpt1δpt2〉.

We understand (20) as follows. In local equilibrium
we can divide the system into fluid cells, each of which is
in equilibrium at the local temperature T (x) and mean
velocity uµ(x). The momentum distribution in each cell
must therefore be f(x,p). The local equilibrium phase
space distribution (20) is correlated if there are density
correlations between cells or autocorrelations. These cor-
relations are described by the pair density n2(x1,x2).
The integral n2 over both positions gives the number of
pairs averaged over events 〈N(N −1)〉. In the absence of
correlations, n2(x1,x2)→ n1(x1)n1(x2).

In order to study the angular distribution of fluctua-
tions, we use (18), (19), (20), and (15) to write (10) as

r(p1,p2) =

∫
c(x1,x2)f(x1,p1)f(x2,p2)dΓ1dΓ2. (21)

We consider the angular correlation function

∆ρ(∆η,∆φ) =

∫
r(p1,p2) δ(∆φ− φ1 + φ2)

δ(∆η − η1 + η2) dp1dp2, (22)

where r(p1,p2) is given by (10). This function probes the
(∆η,∆φ) correlations of particles in the full range of |pt|.
Such correlations are dominated by the more abundant
low pt particles.

We follow Ref. [32, 33] and identify c(x1,x2) with (16),
a form that describes the system at its formation. This
identification omits the effects of diffusion described in
Ref. [58]. This omission is reasonable only as long as
correlations are dominated by pairs separated by |ζ1 −
ζ2| > 1.

To clarify the contributions of fluctuations and
anisotropic flow to correlations, we expand (22) as a
Fourier series. Equation (9) implies that the integral of
∆ρ over ∆φ in a rapidity range gives 〈N〉2R. We there-
fore write

∆ρ

〈N〉2
=
R
2π
{1 + 2

∞∑
n=1

An cos(n∆φ)}. (23)

Next, we compute the Fourier coefficients using (21) to-
gether with the correlation function (15 – 17). We find

An =

∫
d2rtρFT

(rt)[vn(rt)]
2 (24)

where we define the local flow coefficient

vn(rt) =

∫
dp

f(rt,p)

n(rt1)
cosnφ. (25)

Since ρ
FT

is essentially the probability distribution for a
given event shape, we interpret (24) as the average of v2n
over shape fluctuations; see Sec. III. An important caveat
is that momentum conservation corrections omitted here
will modify the low orders, particularly A1 [44–48]. We
will treat these corrections and present a detailed compu-
tation of flow parameters and flow fluctuations elsewhere.

We now compute 〈δpt1δpt2〉, combining (21) with (15
– 17) as before to evaluate (11). To simplify the denomi-
nator in (11), we note that (7) implies that 〈N(N−1)〉 =
〈N〉2(1 +R). We then obtain

〈δpt1δpt2〉 =
R

1 +R

∫
d2rtρFT

(rt)[g(rt)]
2, (26)

where the local momentum excess is

g(rt) =

∫
dp

f(rt,p)

n(rt)
(pt − 〈pt〉) . (27)

In contrast to the flow coefficients (24), we see that
〈δpt1δpt2〉 is proportional to R. However, both flow and
fluctuation quantities depend on ρ

FT
in a similar manner.

Observe that g vanishes if the velocity and temperature
are uniform.
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V. GLASMA FLUCTUATIONS

The azimuthal dependence of the correlation function
given by (23), (24), and (25) is essentially equivalent to
that used in hydrodynamic models [19]. The relative
height of the near-side ridge compared to the away-side
features in ∆φ depends on the shape fluctuations ρ

FT
,

the magnitude of the flow coefficients, and momentum
conservation. However, the overall scale of correlations
is set by the multiplicity fluctuations R. This scale is
crucial if one wishes to compare correlations at different
centralities or beam energies. The difficulty with inter-
preting the shape of the correlation function is that one
must disentangle information on the production mech-
anism contained in ρ

FT
from flow and viscosity effects.

Unless a number of simplifying assumptions hold true,
this may prove challenging [59].

It is easiest to appreciate the significance of R in
the context of Color Glass Condensate theory. Suppose
that each collision produces K flux tubes, and that this
number varies from event to event with average 〈K〉.
Each Glasma flux tube yields an average multiplicity of
∼ α−1s (Qs) gluons, where Qs is the saturation scale [60].
The number of gluons in a rapidity interval ∆y is then

〈N〉 = (dN/dy)∆y ∼ αs−1(Qs)〈K〉; (28)

for massless gluons y = η. In the saturation regime K
is proportional to the transverse area R2

A divided by the
area per flux tube, Q−2s [60]. In Ref. [32] we show that
the scale of correlations is set by

R =
〈N2〉 − 〈N〉2 − 〈N〉

〈N〉2
∝ 〈K〉−1. (29)

The dependence on 〈K〉 drops out of the product

RdN/dy = κα−1s (Qs), (30)

a result consistent with calculations of Dumitru et al. in
Ref. [31]. Gelis, Lappi, and McLerran have shown that
the multiplicity distribution P (N) in the Glasma follows
a negative binomial distribution [61]. We point out that
by definition their negative binomial parameter k

NBD
sat-

isfies R = 1/k
NBD

. Their calculated k
NBD

agrees with
(29) and (30).

The signature of the Glasma contribution to correla-
tions and fluctuations is that RdN/dy depends only on
Qs. Equation (30) therefore constitutes a scaling rela-
tion, since Qs depends on many collision variables in a
combination that can be computed from first principles.
The leading order formula in Ref. [60] relates Qs to the
beam energy and the number of participants per unit
area, which in turn depends on A and b. Measurements
of the ridge at various beam energies, target masses, and
centralities fix the dimensionless coefficient κ in (30) and
are in excellent accord with the leading-order dependence
[32, 33]. Uncertainties in the underlying description of
flow were the biggest source of uncertainty in comparing
(30) to ridge data.

0 50 100 150 200 250 300 3500
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0.04

Npart

R
0

0.5

1

1.5

2

2.5

3

0

dN
dyR

Au+Au 200 GeV

Pb+Pb 2.76 TeV

Au+Au 62.4 GeV

Au+Au 200 GeV
Au+Au 62.4 GeV

PHENIX data

(a)

(b)

FIG. 1. (Color Online) Prediction for RdN/dy as a function
on the number of participants Npart at three beam energies
(a). Calculated R compared to PHENIX data from [56] (b).

Multiplicity fluctuation measurements of R in princi-
ple circumvent the complexity of flow, facilitating the
search for this Glasma scaling or other production mech-
anism signatures. As discussed in Sec. III, R integrates
the correlation function (21), so that the cos(n∆φ) con-
tributions to (23) vanish. Predictions shown in Fig. 1
are obtained using (30) with the energy independent di-
mensionless coefficient κ fixed to fit the near side ridge
as in [32, 33]. The number of participants Npart is used
to indicate centrality.

PHENIX has measured multiplicity fluctuations at
RHIC [56, 62]. They report a negative binomial pa-
rameter k

NBD
. The best we can do is to compare their

k−1
NBD

= R to (30) divided by dN/dy measured elsewhere.
Results shown in the lower panel in Fig. 1 agree fairly well
in central collisions.

The experimental result that R is not zero shows that
geometric shape variation is not the only source of fluc-
tuations. To deduce anything beyond that, two caveats
are in order. First, (29) and (30) strictly apply only to
the number of gluons. Taking the number of particles
to be conserved through hadronization as discussed in
Ref. [60], we can identify R in (29) with the measured
multiplicity fluctuations (7). However, one is then un-
sure how to address phenomenological concerns such as
resonance decay. Second, experimenters must exercise
care in measuring R as a function of centrality, because
centrality selection can distort multiplicity fluctuations.
Using narrow multiplicity bins to select centrality will re-
move fluctuations entirely. One way to remove this bias
is to use a zero degree calorimeter to select centrality as
PHENIX has done [56]. See the appendix for details.
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FIG. 2. (Color Online) Average transverse momentum (a)
and elliptic flow v2 (b) as functions of Npart for the same
energies as in Fig. 1. Mean pt data in GeV are from [63–65]
and v2 data are from [66–68].

An alternative probe of Glasma scaling is 〈δpt1δpt2〉.
As with R, the anisotropic flow contributions vanish on
angular integration. The quantity 〈δpt1δpt2〉 is designed
to be independent of multiplicity fluctuations, reducing
our hadronization concerns [52, 53]. Moreover, it is ef-
fectively free of the multiplicity bias effect, as shown in
the appendix. Unlike R, momentum fluctuations depend
on the scale of the fluid velocity because flow enhances
pt. We can constrain this dependence using v2 and 〈pt〉
measurements.

In order to calculate 〈δpt1δpt2〉 from (26) and (27) we
must specify the relation between the initial transverse
position rt of a fluid cell and its final transverse flow ve-
locity vt. To maintain consistency with our ridge analy-
sis in Ref. [32, 33], we use a blast wave model. There we
assumed γvt = λrt and uniform temperature T , with pa-
rameters chosen to reproduce fits to 200 GeV Au+Au pt
spectra [32, 33]. Sorensen et al. subsequently pointed out
the importance of allowing for the ellipticity of the source
in describing the centrality dependence of the ridge [14].
To account for the ellipticity of the collision volume, we
now take γvt = λ(εxxx̂+ εyyŷ), where ε2x,y = 1± ε. The
average vt and freeze out temperature in 62 GeV and
200 GeV Au+Au collisions are the same as those used
in [32, 33] and are based on an analysis in [69]. At 2.76
TeV the velocity is scaled up from the 200 GeV values by
6% and the temperature is scaled up by 7%. We present
these parameters in Fig. 3; note that the change in vt
and T with beam energy is rather small. The eccentric-
ity ε is chosen to fit the observed centrality dependence

Npart

T  

vt

Data PHENIX Au+Au 200 GeV
Pb+Pb 2.76 TeV
Au+Au 200 GeV
Au+Au 62.4GeV
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0
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FIG. 3. (Color Online) Blast-wave parameters for temper-
ature (a, in GeV) and average velocity (b) as functions of
centrality. Data are from Ref. [69].

of elliptic flow v2 in 62 and 200 GeV Au+Au collisions
and 2.76 TeV Pb+Pb collisions [66–68]. The top panel
in Fig. 2 compares these calculations to data from Refs.
[63–65]. We then use (25) to compute v2 and compare
to v2{2}, which includes fluctuations. To see how well
these blast wave parameterizations work for the problem
at hand, we calculate the average transverse momentum
〈pt〉 =

∫
ptρ1dp/

∫
ρ1dp using (18). The agreement is

shown in Fig. 2.

We now compute 〈δpt1δpt2〉. The multiplicity variance
R is obtained from (30). We employ (26) and (27) com-
bined with (17), and use the blast wave parameters dis-
cussed above. These are compared to data from Ref.
[55, 57] in Fig. 4. The STAR collaboration at RHIC and
the ALICE collaboration at LHC measure 〈δpt1δpt2〉 for
charged particles rather than pions. There is little differ-
ence between these quantities at RHIC, but at LHC the
K/π and p/π ratios are appreciably larger than expected
in the observed range 0.15 < pt < 2 GeV [70]. Using
the measured 〈pt〉 and particle ratios for kaons and pro-
tons gives 〈pt〉ch/〈pt〉π ∼ 1.13; PYTHIA gives ∼ 1.07.
The top solid curve in Fig. 4 is our computation with the
measured K/π and p/π ratios, while the dashed curve
assumes PYTHIA ratios. Agreement with data is very
good for central collisions where our local equilibrium as-
sumptions are most applicable. Deviations in peripheral
collisions may be due in part to incomplete thermaliza-
tion, see [25, 26].
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FIG. 4. (Color Online) Transverse momentum fluctuations
〈δpt1δpt2〉dN/dη as a function on the number of participants
Npart at the same three beam energies. Data is from [55, 57].
Dashed and solid 2.76 TeV curves represent different K and
p contributions to charged particle fluctuations as discussed
in the text.

VI. DISCUSSION

In this paper we have studied the connection between
long range correlations, fluctuations, and flow. While our
results in Sec. V primarily address fluctuations, we dis-
cuss flow in Sec. IV so that we can isolate its effect. As
anticipated, our flow coefficients and their fluctuations
obtained from (23-25) depend on the spatial distribution
of flux tubes – the “shape fluctuations” – described by
the probability distribution ρ

FT
. Consequently, the rel-

ative magnitude of near and away-side features in ∆φ
correlations depends on these shape fluctuations. How-
ever, it is only in this relative sense that hydrodynamic
response to initial shape fluctuations explains long range
correlations [49].

The scale of correlations R is important in comparing
correlations at different centralities and energies. In par-
ticular, Refs. [32, 33] compared calculations to the peak
height of the ridge at ∆φ = 0 for Au+Au and Cu+Cu col-
lisions for a range of energies and kinematic conditions.
Experimenters normalize the peak ∆ρ to the number of
pairs from mixed events

√
ρref . When jet and momen-

tum conservation contributions are omitted, our results
have the form ∆ρ/

√
ρref = R(dN/dy)F (∆φ), where F

depends only on flow. We found the beam-energy, cen-
trality, and A dependence of R to be consistent with
data; see [33] for details. To relate this to the current
context, observe that the Fourier decomposition of F
gives (23). This supports the arguments regarding the
physical significance of the height of the ridge stated in
[31–33, 43]. A limitation of Refs. [31–33, 43] is that it
is difficult to distinguish flow from Glasma effects when
concentrating exclusively on the ridge.

Fluctuation studies provide an alternative set of ex-
perimental techniques for attacking correlation physics.
In Sec. III we showed that multiplicity and pt fluctua-
tions are independent of anisotropic flow. Measurement

of such fluctuations remove much of the hydrodynamic
uncertainty of ridge studies [31–33, 43]. We emphasize
that the mere fact that the measured R and 〈δpt1δpt2〉
are nonzero proves that event-wise variation of the initial
geometric shape is not the only source of fluctuations.

In Sec. V we related the correlation strength to two
fluctuation observables R and 〈δpt1δpt2〉. Glasma calcu-
lations of R in Fig. 1 and 〈δpt1δpt2〉 in Fig. 4 are in good
accord with data, except for peripheral collisions. The
deviation in peripheral collisions may reflect the break-
down of the assumption of local equilibrium. The onset of
thermalization in peripheral collisions modifies the corre-
lation function. In particular, this effect has been shown
to modify 〈δpt1δpt2〉 at low numbers of participants [25].
Partial thermalization describes peripheral RHIC data
very well and, moreover, allows one to describe pp and
AA collisions in the same model [26].

We also remark that CMS has observed a small ridge
in high multiplicity proton-proton collisions at the LHC
[71]. It is possible to explain these measurements using
our model with a suitable ansatz for transverse flow [72].
Partial thermalization may also explain the source of that
flow. However, one can also explain the pp ridge using
CGC effects alone [73].

The fact that long range correlations can account for
the measured 〈δpt1δpt2〉 leaves us with a puzzle. There
are two types of fluctuations in nuclear collisions. First,
each collision produces a different multi-particle sys-
tem. Second, the partonic system produced in each
event undergoes dynamic fluctuations as it evolves and
hadronizes. We have focused on the source of long range
correlations, where causality precludes the second type.
However, fluctuation observables integrate both long and
short range effects. Short range effects include jets and
jet quenching, HBT, resonance decay, hadronization and
hadro-chemical effects – not to mention novel fluctua-
tions due to the phase transition. These effects modify
correlations in the range ∆η ∼ 1 − 2 units or less. Jet-
quenching, which most strongly affects central collisions,
was estimated in Ref. [74].

Measurement of charge-dependent fluctuations may
help distinguish long and short range contributions. Long
range effects such as flow are charge independent. Net-
charge fluctuations are therefore sensitive primarily to
short range effects and, indeed, data show the appropri-
ate rapidity dependence [75]. Measurement of Rab and
〈δpt1δpt2〉ab for identified particle species a, b may further
reveal short range effects.

We have emphasized momentum fluctuations partly
because STAR and ALICE have measured both
〈δpt1δpt2〉 and the ridge, allowing direct comparison to
our earlier work [32, 33]. Only PHENIX has measured
multiplicity fluctuations, but they have a different ac-
ceptance and no untriggered correlation measurements
with which to compare. It would be useful if experi-
ments could measure RdN/dy and 〈δpt1δpt2〉 together
with correlations.

To summarize, we return to the two questions stated
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in the abstract. We first asked how the event-wise shape
variation inferred from triangular flow and the ridge con-
tributes to other fluctuation observables. In Sec. III we
showed that multiplicity and pt fluctuations are essen-
tially independent of shape fluctuations. In contrast,
fluctuations of the azimuthal flow coefficients vn are de-
termined by a combination of shape and multiplicity fluc-
tuations; see (23-25). Combining these measurements
therefore eliminates the uncertainty due to anisotropic
flow from studies of the ridge alone [32, 33].

We next asked whether one can disentangle fundamen-
tal information on early time dynamics from the purely
geometrical shape fluctuations. We have argued that the
initial dynamical state determines a factor R that drives
the beam-energy dependence of multiplicity and pt fluc-
tuations. In Glasma theory, the energy dependence of R
follows from its signature variation with the saturation
scale Qs; see (30). The agreement with data in Fig. 4
indicates that the answer to this second question may be
“yes”. Combined, our answers to these two questions im-
ply that measurements of multiplicity and pt fluctuations
probe early time dynamics regardless of anisotropic flow.
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Appendix A: Experimental Considerations

In this appendix we discuss experimental issues that
affect the measurement of the fluctuation observables R
and 〈δpt1δpt2〉. We show that biases can modify R if
multiplicity is used to identify centrality in fluctuation
observables, but that 〈δpt1δpt2〉 is largely unaffected. Ex-
perimental considerations in fluctuation measurements
were discussed in Ref. [30]. These observables were con-
structed to be independent of experimental acceptance
and efficiency effects, and many contributions that alter
R were estimated. We extend the treatment in Ref. [30]
to include 〈δpt1δpt2〉.

Assume that the collision produces K independent
‘sources’ which then produce particles; one can think of
each source as a flux tube or a wounded nucleon, depend-
ing on one’s favorite model. A set of events with fixed K

produces the single and pair densities that scale as:

ρ1 = ρ̂1K, ρ2 = ρ̂2K + ρ̂1ρ̂1K(K − 1). (A1)

Suppose that experimenters measure a multiplicity m
to identify centrality. Each m bin receives contribu-
tions from a range of K, so that the measured quan-
tities are averaged over that ensemble. The multiplic-
ity of a particular particle species will roughly satisfy
〈N〉m = 〈

∫
ρ1〉m ∝ 〈K〉m. Equations (7), (9), and (A1)

imply that multiplicity fluctuations satisfy

Rm =
A

〈K〉m
+
〈K2〉m − 〈K〉2m

〈K〉2m
. (A2)

where A is a model-dependent constant, see Ref. [30] for
details. The first term represents the average fluctuations
per source. The second term comes from fluctuations
in the number of sources. Unconstrained, independent
sources follow Poisson statistics, 〈K2〉m−〈K〉2m = 〈K〉m.

To illustrate the effect of centrality cuts on Rm, con-
sider the following opposite extremes. Suppose for the
moment that m and N are multiplicities measured in
the same rapidity interval, so that one can approximate
m ∝ K ∝ N . Then the fluctuations of K for fixed m
vanish. On the other hand, if we take m to be the signal
in a zero degree calorimeter, then m and K are correlated
only by the impact parameter b. Fluctuations of K may
then dominate (A2) and be Poissonian [32].

We now consider transverse momentum fluctuations
〈δpt1δpt2〉. We combine (A1) with (11), first noting that
〈pt〉 =

∫
ptρ1/

∫
ρ1 implies that

∫
ρ1δpt ≡ 0. Therefore,

the numerator of (11) satisfies
∫
ρ2δpt1δpt2 ∝ 〈K〉m. The

denominator of (11) is 〈N(N − 1)〉m = 〈N〉2m(1 +Rm).
This implies that

〈δpt1δpt2〉m =
B

〈K〉m
1

1 +Rm
, (A3)

where B is another constant. This quantity has no addi-
tional contribution from K fluctuations as in (A2). How-
ever, a small centrality-bias effect may result from the
Rm in the denominator.

To estimate this effect, observe that our CGC calcula-
tion gives R ∼ 0.0017 for central 2.76 GeV PbPb colli-
sions, and 0.02 for the most peripheral value computed,
which corresponds to Npart ≈ 10 participants. The ef-
fect of centrality bias on 〈δpt1δpt2〉 is therefore negligible.
However, it might be important in pp collisions with a
multiplicity trigger. Of course, the effect could be elim-
inated by normalizing to 〈N〉2 rather than 〈N(N − 1)〉,
but that would have consequences regarding the cancel-
lation of efficiencies.
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