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This article extends previous studies on the effect of tensor terms in the Skyrme energy density
functional by breaking of time-reversal invariance. We have systematically probed the impact of
tensor terms on properties of superdeformed rotational bands calculated within the cranked Hartree-
Fock-Bogoliubov approach for different parameterizations covering a wide range of values for the
isoscalar and isovector tensor coupling constants. We analyze in detail the contribution of the tensor
terms to the energies and dynamical moments of inertia and study their impact on quasi-particle
spectra. Special attention is devoted to the time-odd tensor terms, the effect of variations of their
coupling constants and finite-size instabilities.
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I. INTRODUCTION

Recent years have seen a renewed interest in the role
of the effective nucleon-nucleon tensor force for nuclear
structure, sparked by the finding that it provides one
of the possible sources for the evolution of nuclear shell
structure with neutron and proton numbers. Indeed, the
contribution of tensor interactions to single-particle ener-
gies depends on the filling of shells. It (nearly) vanishes
in spin-saturated nuclei, whereas it might be significant
when only one out of two spin-orbit partner levels is filled
for one or even both nucleon species [1].
Up to now, none of the standard parameterizations

of any mean-field approach considered an explicit ten-
sor part, cf. Ref. [2] for a historical overview. The first
studies of the effective tensor interaction within self-
consistent mean-field approaches concentrated on single-
particle spectra in chains of semi-magic spherical nuclei
covering all successful models, i.e. the non-relativistic
Gogny force [3, 4] and Skyrme interactions [2, 5–7], as
well as relativistic mean-field approaches [8, 9]. More re-
cently, the impact of the tensor terms on more complex
structure properties has been studied as well, such as
the topography of deformation energy surfaces [10] and
various spin- and spin-isospin excitation modes in Quasi-
particle Random Phase Approximation (QRPA) using
Skyrme functionals [11–17] and Gogny interactions [4].
These QRPA calculations deal with a very different

aspect of an effective tensor interaction than the analy-
sis of single-particle energies. This becomes most obvious
when using the Skyrme energy density functional (EDF).
The Skyrme EDF can be separated into two parts: the
first one composed of densities and currents that are even
under time reversal such as the normal and kinetic den-
sities, and a second one grouping combinations of time-
odd densities such as spin density or current. The latter

part of the EDF is usually called the “time-odd” part,
although strictly speaking the EDF itself is time-even by
construction. While these time-odd densities are zero for
the HFB ground states of even-even nuclei, they become
non-zero for

(i) blocked quasiparticle states, i.e. the self-consistent
calculation of non-collective low-lying states in odd-
A and odd-odd nuclei, or K isomers in even-even
ones. The time-odd terms contribute to the total
energy [7, 18–23] and their presence can strongly
modify the expectation values of time-odd observ-
ables such as magnetic moments [24, 25],

(ii) rotational states calculated by the cranked HFB
method [26–32], where they affect the alignment of
single-particle levels with the rotational axis and
thereby the moments of inertia,

(iii) time-dependent Hartree-Fock (-Bogoliubov)
(TDHF(B)) [33–35] and its linear response limit,
the (Quasiparticle) Random Phase Approximation
((Q)RPA),

(iv) configuration mixing such as symmetry restora-
tion or Generator Coordinate Method calcula-
tions, or adiabatic Time-dependent Hartree-Fock-
Bogoliubov calculations (ATDHFB) [33, 36, 37].

The study of excitation modes of unnatural parity, such
as for example M1, spin-dipole or Gamov-Teller exci-
tations in (Q)RPA provides a sensitive benchmark for
the time-odd terms in the EDF. Indeed, for those the
residual interaction is entirely determined by the time-
odd terms, cf., for example, Refs. [38–43] and references
therein. For the other phenomena listed above, the time-
odd terms provide a correction to the dominant time-even
terms that might become substantial in some cases. One
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such observable are the moments of inertia at high spin
in superdeformed (SD) rotational bands of heavy nuclei
[44–46]. These will be the object of our study.
Skyrme’s two-body tensor force contributes to the

time-even and time-odd parts of the EDF. Studies of the
eigenvalue spectrum of the single-particle Hamiltonian of
even-even nuclei only probe the contribution to the time-
even part. The corresponding time-odd terms affect how
the nucleus responds to its collective rotation, thereby
modifying its moment of inertia and how it evolves with
spin. Of course, the time-even tensor terms also influence
the moments of inertia.
The aim of the present study is to investigate the

generic influence of tensor terms on high-spin properties.
The following questions will be addressed:

• How do the time-odd tensor terms behave when
increasing the total spin of the nucleus?

• How does the presence of time-even and time-odd
tensor terms influence the dynamical moments of
inertia in superdeformed rotational bands at high
spin?

• How much of these changes is caused by the time-
even part of the EDF, i.e. the modification of
the single-particle spectrum at spin zero, and how
much by the time-odd part of the EDF?

• How much of these changes is caused by the tensor
terms themselves, and how much is caused by the
rearrangement of all other terms during the fit of
the parameterizations?

Studies of the impact of time-odd terms on the moments
of inertia in superdeformed bands have been performed
before in the context of Skyrme interactions [28, 40] and
relativistic mean-field Lagrangians [30, 32], but none of
these studies considered time-odd terms associated with
genuine tensor interactions.
The present article complements the studies of spheri-

cal single-particle energies of Ref. [2] and of the deforma-
tion energy curves of Ref. [10]. We will refer to these
references as Articles I and II. The present Article is
structured as follows: In Section II we briefly review
the properties relevant for our discussion of the Skyrme
EDF including tensor terms. In Sect. III, we analyze
in detail how sensitive is the superdeformed rotational
band in 194Hg when the coupling constants of the Skyrme
EDF are varied. In Sect. IV, we check the generality
of our conclusions for 194Hg by similar calculations for
the SD ground-state band of 152Dy, and Sect. V sum-
marizes our results. Appendices provide further techni-
cal information about the interrelations between the cou-
pling constants of the Skyrme EDF (Appendix A), the
representation of local densities and currents in our code
(Appendix B) and about the Landau-Migdal interaction
corresponding to the standard Skyrme EDF with tensor
terms (Appendix C).

II. THE SELF-CONSISTENT MEAN-FIELD

METHOD

The energy of the atomic nucleus can be expressed by
means of an energy density functional [47–50], containing
five parts: the kinetic energy, a Skyrme potential energy
functional modeling the strong force in the particle-hole
channel, a pairing energy functional, a Coulomb energy
functional, and terms to approximately correct for the
spurious-motion caused by broken symmetries

E = E kin + ESk + Epairing + ECoulomb + Ecorr . (1)

For the kinetic energy and the Coulomb energy func-
tional comprising a direct term and the exchange term
in Slater approximation we use the same expressions
as presented in Ref. [48]. For all parameterizations
used throughout this Article, the center-of-mass recoil
effect is approximately taken into account by subtract-
ing Ecorr =

〈
∑

k p
2
k

〉

/2mA from the total energy, which
amounts to an A-dependent renormalization of the nu-
cleon mass. In the following Sections we will introduce
the ingredients of the Skyrme EDF, its explicit form and
the equations of motion.

A. Densities and currents

Under the assumption that the single-particle states
are either neutron or proton states, the Skyrme part of
the energy density functional ESk depends on the follow-
ing local densities and currents

ρq(r) = ρq(r, r
′)
∣

∣

r=r
′
, (2a)

τq(r) = ∇ ·∇′ ρq(r, r
′)
∣

∣

r=r
′
, (2b)

Jq,µν(r) = − i
2 (∇µ −∇′

µ) sq,ν(r, r
′)
∣

∣

r=r
′
, (2c)

jq(r) =
1
2i (∇−∇

′) ρq(r, r
′)
∣

∣

r=r
′
, (2d)

sq(r) = sq(r, r
′)
∣

∣

r=r
′
, (2e)

Tq(r) = ∇ ·∇′ sq(r, r
′)
∣

∣

r=r
′
, (2f)

Fµ,q(r) =
1
2

∑

ν=x,y,z

(∇µ∇
′
ν +∇′

µ∇ν) sq,ν(r, r
′)
∣

∣

r=r
′
.

(2g)

which are the density ρq(r), the kinetic density τq(r), the
spin-current (pseudo-tensor) density Jq,µν(r), the cur-
rent (vector) density jq(r), the spin (pseudo-vector) den-
sity sq(r), the spin-kinetic (pseudo-vector) density Tq(r),
and the tensor-kinetic (pseudo-vector) density Fq(r) for
protons and neutrons (q = n, p). All densities and cur-
rents can be recoupled to isoscalar t = 0 and isovector
(t = 1, t3 = 0) densities (e.g. ρ0(r) = ρp(r) + ρn(r) and
ρ1(r) = ρn(r) − ρp(r)). They are constructed from the
density matrix in coordinate space and its derivatives up
to second order [50, 51]

ρq(r, σ, r
′σ′) = 〈a†(r′, σ′, q)a(r, σ, q)〉 ,
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= 1
2ρq(r, r

′)δσσ′ + 1
2 〈σ|σ̂|σ

′〉 · sq(r, r
′) ,
(3)

with

ρq(r, r
′) =

∑

σ=±1

ρq(rσ, r
′σ) , (4)

sq(r, r
′) =

∑

σσ′=±1

ρq(rσ, r
′σ′) 〈σ′|σ̂|σ〉 , (5)

and σ̂ are the Pauli spin matrices. From the properties
of the density and the spin density matrices under time-
reversal [33]

ρTq (r, r
′) = ρq(r

′, r) , (6)

sTq (r, r
′) = −sq(r

′, r) , (7)

it follows that

ρTq (r) = ρq(r) , τ
T
q (r) = τq(r) , J

T
q,µν (r) = Jq,µν(r) ,

sTq (r) = −sq(r) , j
T
q (r) = −jq(r) ,T

T
q (r) = −Tq(r) ,

FT
q (r) = −Fq(r) . (8)

One notes that ρq(r), τq(r), and Jq,µν(r) are time-even,
whereas sq(r), jq(r), Tq(r), and Fq(r) are time-odd.
When time reversal is a self-consistent symmetry, the
time-odd densities vanish. When intrinsic time-reversal
invariance is broken, both time-even and time-odd den-
sities contribute to the energy and the single-particle
Hamiltonian.
For the part of the EDF that describes the pairing

correlations, Epairing, we also need to introduce the skew-
symmetric pair tensor [52]

κq(r, σ, r
′, σ′) = 〈a(r′, σ′, q)a(r, σ, q)〉 , (9)

or, equivalently, the pair density matrix [53]

ρ̃q(r, σ, r
′, σ′) = −σ′〈a(r′,−σ′, q)a(r, σ, q)〉

= −σ′κq(r, σ, r
′,−σ′) . (10)

The pair density matrix presents the interest that it en-
ables to construct a local pair density

ρ̃q(r) =
∑

σ=±1

ρ̃q(r, σ, r, σ) , (11)

that facilitates the construction of a local pairing EDF
as used here. The pair density ρ̃q(r) is neither time-even
nor time-odd and becomes complex when intrinsic time-
reversal symmetry is broken.

B. The energy density functional

1. The Skyrme energy functional

Skyrme functionals have been discussed extensively in
the literature [2, 27, 33, 49–51, 54]. We restrict ourselves

here to aspects relevant for this work. As outlined in the
Introduction, the Skyrme EDF can be separated into two
parts

ESk =

∫

d3r
∑

t=0,1

[

Ht.e.
t (r) +Ht.o.

t (r)
]

, (12)

a part Ht.e.
t that contains only time-even densities

Ht.e.
t = Cρ

t [ρ0]ρ
2
t + C∆ρ

t ρt∆ρt + Cτ
t ρtτt + C∇·J

t ρt∇ · Jt

− CT
t

z
∑

µ,ν=x

Jt,µνJt,µν

− 1
2C

F
t

[(

z
∑

µ=x

Jt,µµ

)2

+

z
∑

µ,ν=x

Jt,µνJt,νµ

]

(13a)

and another oneHt.o.
t that contains bilinear combinations

of time-odd densities

Ht.o.
t = Cs

t [ρ0]s
2
t + C∇s

t (∇ · st)
2 + C∆s

t st ·∆st − Cτ
t j

2
t

+ CT
t st ·Tt + CF

t st · Ft + C∇·J
t st · ∇ × jt .

(13b)

The common practice to call these energy densities
“time-even” and “time-odd” refers to the properties un-
der time reversal of the densities and currents they are
built from and not to the properties of the energy density
itself, as the EDF is time-reversal invariant by construc-
tion [55].
All coupling constants of (13a) and (13b) could be cho-

sen to be density dependent. 1 In practice, however, the
density-dependence is usually restricted to the Cρ

t and
Cs

t coupling constants, and chosen to be a non-integer
power of the isoscalar density [54, 56]

Cρ
t [ρ0] = Cρ

t [0] +
(

Cρ
t [ρnm]− Cρ

t [0]
)

(

ρ0
ρnm

)α

, (14)

Cs
t [ρ0] = Cs

t [0] +
(

Cs
t [ρnm]− Cs

t [0]
)

(

ρ0
ρnm

)α

, (15)

where ρnm is the value of the isoscalar density ρ0 in sat-
urated infinite nuclear matter.

2. Choice of independent coupling constants in the EDF

The Skyrme energy density functional (EDF) can
be introduced in two non-equivalent ways [49]. One
can start from a density-dependent zero-range two-body

1 If all coupling constants are density-dependent, there appear ad-
ditional terms containing the nabla or Laplacian operator acting
on a local density, as some bilinear forms are not equivalent under
partial integration anymore [55].
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interaction as proposed by Skyrme [57, 58] and de-
fine the Skyrme EDF as its Hartree-Fock expectation
value [33, 50, 54]. We refer to this approach as force-
generated EDF. It is customary that the pairing func-
tional is calculated from a different pairing interaction,
such that only the direct and exchange terms in the
particle-hole channel refer to the same interaction, but
not those in the pairing channel. The same expression for
the energy densitiesHt.e.

t andHt.o.
t is obtained when writ-

ing down all possible bilinear combinations of the local
densities (2a)-(2g) up to second order in the derivatives
that are invariant under parity, time reversal, rotations
and Galilean transformations [28, 55]. Then, the coupling
constants of most time-odd terms can be chosen indepen-
dently of those of the time-even terms. By contrast, in a
force-generated EDF, the coupling constants of time-odd
terms depend on those of the time-even ones; the 9 free
parameters of the most general density-independent two-
body Skyrme force determines all 18 coupling constants
C of the corresponding EDF (13a-13b). The various pos-
sible choices for the coupling constants of time-odd terms
that correspond to the same time-even part of the EDF
have been reviewed in Article II.

Galilean invariance is a necessary constraint to obtain
a functional that depends only on the relative momenta
of the nucleons, but not on the total momentum. This
invariance is particularly important for dynamical calcu-
lations such as TDHF and TDHFB [34] or cranked HFB
such as performed here [59–61] since it ensures that the
results of the calculation will not depend on the frame
of reference. In relativistic approaches, the EDF has to
be constructed to be Lorentz invariant instead [30, 32].
Galilean invariance is automatically fulfilled for an EDF
generated from the Skyrme force. In a functional ap-
proach, it is automatically fulfilled for some terms and
has to be imposed by taking specific combinations of
other terms [28, 33]. This results in the presence of
Cτ

t , C
∇·J
t , CT

t , and CF
t in both the time-even and the

time-odd energy density (13a-13b). Since several time-
odd terms of an EDF are not constrained by symmetry
requirements, the number of independent coupling con-
stants is always smaller for a force-generated EDF. This
renders the mapping of an arbitrary local EDF onto a
density-dependent Skyrme force a priori impossible when
time-reversal invariance is broken.

In the literature, there also exist hybrid approaches
which adopt the larger freedom of functionals for some
terms in the functional only and follow the “force-
generated” philosophy for all others. We will come back
to this in Sect. II F.

3. Skyrme’s tensor interaction

A zero-range tensor force with two terms was originally
proposed by Skyrme [57, 58] 2

vt(r) =
te
2

{

[

3(σ1 · k
′)(σ2 · k

′)− (σ1 · σ2)k
′2
]

δ(r)

+ δ(r)
[

3(σ1 · k)(σ2 · k) − (σ1 · σ2)k
2
]}

+
to
2

{

3(σ1 · k
′)δ(r)(σ2 · k)− (σ1 · σ2)k

′ · δ(r)k

+ 3(σ2 · k
′)δ(r)(σ1 · k)− (σ1 · σ2)k · δ(r)k′

}

.

(16)

The inclusion of this tensor force gives rise to new
terms in the force-generated energy density [2]

Ht =BT
t

(

st ·Tt −

z
∑

µ,ν=x

Jt,µνJt,µν

)

+B∆s
t st ·∆st + C∇s

t (∇ · st)
2

+ CF
t

[

st · Ft −
1
2

(

z
∑

µ=x

Jt,µµ

)2

− 1
2

z
∑

µ,ν=x

Jt,µνJt,νµ

]

.

(17)

The first two terms also appear in the EDF constructed
from a central Skyrme force, whereas the latter two occur
for genuine two-body tensor forces only. They differ in
the way derivatives and Pauli matrices are coupled. In
the first two terms, the scalar products are between one
derivative and the other, and between one Pauli matrix
and the other. In the last two terms, the scalar products
are between derivatives and Pauli matrices.
In a force-generated EDF, each coupling constant CT

t

and C∆s
t results from two contributions. Following Ar-

ticle I, we label the contributions coming from the cen-
tral Skyrme interaction by the letter A and those gen-
erated by the tensor part of the interaction by B. The
inclusion of a tensor force thus increases the flexibility
for the choice of the coupling constants CT

t and C∆s
t in

a force-based approach. At the same time, the tensor
force introduces additional terms in the EDF that couple
derivatives and Pauli-spin matrices in a unique manner.
The most appropriate way would be to label tensor

terms as those generated by the tensor force, Eq. (16).
However, the above discussion shows that these terms
cannot be easily singled out with respect to similar terms
generated by the central part of the EDF. Therefore,
throughout this article, we will call “tensor terms” those
terms in the EDF that couple two Pauli matrices and

2 Skyrme’s tensor force is sometimes given in a different, slightly
simpler form [2, 10, 62–64]. Both forms give rise to the same
EDF, but not to the same residual interaction, for example, in
QRPA.
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two derivatives. Although not all of them are related to
a two-body tensor force, they are of the same order as
the terms bilinear in the spin-current tensor density that
have been called tensor terms in Articles I and II.

4. The pairing energy

As in our previous studies, we have chosen a density-
dependent zero-range interaction to describe the pairing
correlations [49, 53, 65], which leads to a functional of
the form

Epairing =
∑

q=p,n

Vq

4

∫

d3r

[

1−
ρ0(r)

ρc

]

ρ̃q(r) ρ̃
∗
q(r) , (18)

where the switching density ρc determines whether the
pairing is more active in the volume of the nucleus or
on its surface. The functional depends on the local pair
density ρ̃q and the local density ρq.

C. The cranked HFB method

The superdeformed rotational bands will be calcu-
lated by the self-consistent cranked HFB approach. This
method can be seen as a semi-classical description of the
collective rotation of a finite system with a constant an-
gular velocity ω. In particular, it takes into account the
distortion of the nucleus’ intrinsic state due to the cen-
trifugal and Coriolis forces that are induced by the col-
lective rotation [52, 59, 66, 67].
The variation of the EDF including constraints on par-

ticle number, orthonormality of the quasiparticle states
and rotational frequency leads to the cranked HFB equa-
tion
(

h− λ− ωzJz ∆
−∆∗ −h∗ + λ+ ωzJ

∗
z

)(

Uµ

Vµ

)

= Eµ

(

Uµ

Vµ

)

,

(19)
where Uµ and Vµ are the two components of the quasi-
particle wave functions and Eµ the quasiparticle energies,
often called Routhian in this context. The effective in-
teraction enters the HFB Hamiltonian through the mean-
field Hamiltonian h and the pairing field ∆

hij =
δE

δρji
, ∆ij =

δE

δκ∗
ij

. (20)

The Fermi energies λ for protons and neutrons and the
rotational frequency ωz in Eq. (19) are the Lagrange mul-
tipliers of the constraints, which are self-consistently ad-
justed to fulfill auxiliary conditions for the mean values
of the particle number and of the projection along z of
the angular momentum. The component Jz of the angu-
lar momentum J is chosen along the axis perpendicular
to the axes of longest elongation. At high spins and large
deformation, the solution of Eq. (19) can be shown to be

an approximation of a variation after projection on an-
gular momentum [68]. As such, the model is particularly
well adapted for the description of superdeformed bands.
All calculations have been carried out using the tri-

axial self-consistent cranking code CR8 documented in
Refs. [27, 65, 69]. The HFB equation is complemented
by the Lipkin-Nogami (LN) prescription to avoid a sud-
den breakdown of pairing correlations as a function of
rotational frequency.
We recall that for constrained calculations, as dis-

cussed below, the constraints do not contribute to the
observable total energy, whereas the eigenvalues Eµ of
the HFB Hamiltonian used to construct the quasiparti-
cle Routhians contain a contribution from the constraint.

D. The single-particle Hamiltonian

The isospin representation of the EDF is the most ap-
propriate one to discuss its physics content. However,
a representation where proton and neutron densities are
explicitly used is more convenient for numerical imple-
mentations. In this case, one possibility to write the
Skyrme EDF is [27]

ESk =

∫

d3r
[

H(r) +
∑

q=p,n

Hq(r)
]

(21)

with

H(r) = b1 ρ2 + b3
(

ρτ − j2
)

+ b5 ρ∆ρ+ b7 ρ2+α

+ b9
(

ρ∇ · J+ j ·∇× s
)

+ b10 s2 + b12 ραs2

+ b14

(

z
∑

µ,ν=x

JµνJµν − s ·T
)

+ b16

[(

z
∑

µ=x

Jµµ

)2

+

z
∑

µ,ν=x

JµνJνµ − 2 s ·F
]

+ b18 s ·∆s + b20
(

∇ · s
)2

, (22)

containing the total density ρ = ρp + ρn and similar for
all the other local densities and currents, 3 and

Hq(r) = b2 ρ2q + b4
(

ρqτq − j2q
)

+ b6 ρq∆ρq + b8 ρα0 ρ2q

+ b9q
(

ρq∇ · Jq + jq ·∇× sq
)

+ b11 s2q + b13 ραs2q

+ b15

(

z
∑

µ,ν=x

Jq,µνJq,µν − sq ·Tq

)

+ b17

[(

z
∑

µ=x

Jq,µµ

)2

+

z
∑

µ,ν=x

Jq,µνJq,νµ − 2 sq ·Fq

]

3 Even though the “total” local densities and currents are identical
to the “isoscalar” local densities and currents, we use a different
notation to clearly distinguish between the isospin representation
and the proton-neutron representation used in our codes.



6

+ b19 sq ·∆sq + b21
(

∇ · sq
)2

, (23)

containing the proton and neutron local densities and
currents. The relation between the coupling constants
in the isospin representation, Eq. (13a) and (13b), and
the parameters in the proton-neutron representation,
Eq. (21), is given in Appendix A. The single-particle
Hamiltonian for protons and neutrons is given by

ĥq =−∇ ·Bq(r)∇ + Uq(r) + Sq(r) · σ̂

−
i

2

z
∑

µ,ν=x

[Wq,µν(r)∇µσν +∇µσνWq,µν(r)]

−
i

2
[Aq(r) ·∇+∇ ·Aq(r)]

−∇ · [σ̂ ·Cq(r)]∇ −∇ ·Dq(r) σ̂ ·∇ . (24)

The expressions obtained in [27] for the inverse effective
mass Bq(r), the single-particle potential Uq(r), and the
time-odd field Aq(r) are not affected by the introduc-
tion of tensor terms. The local potentials that contain
contributions from the tensor terms are given by

Wq,µν(r) =−

z
∑

κ=x

ǫκµν
(

b9 ∇κρ+ b9q ∇κρq
)

+ 2 b14 Jµν + 2 b15 Jq,µν

+ 2 b16

(

Jνµ +

z
∑

κ=x

Jκκδµν

)

+ 2 b17

(

Jq,νµ +

z
∑

κ=x

Jq,κκδµν

)

, (25a)

Sq,µ(r) =−
(

b9 ∇× j+ b9q ∇× jq
)

µ

+ 2 b10 sµ + 2 b11 sq,µ

+ 2 b12 ρ
α sµ + 2 b13 ρ

α sq,µ

− b14 Tµ − b15 Tq,µ

− 2 b16 Fµ − 2 b17 Fq,µ

+ 2 b18∆sµ + 2 b19∆sq,µ

− 2 b20∇µ(∇ · s)− 2 b21∇µ(∇ · sq) , (25b)

Cq,µ(r) =− b14 sµ − b15 sq,µ , (25c)

Dq,µ(r) =− 2 b16 sµ − 2 b17 sq,µ , (25d)

The scalar central potential Uq(r) ≡ δE/δρq(r),
the position-dependent inverse effective mass Bq(r) =
~
2/2m∗

q(r) ≡ δE/δτq(r), and the spin-current tensor po-
tential Wq,µν (r) ≡ δE/δJq,µν(r) are all time-even fields,
whereas Aq(r) ≡ δE/δjq(r) and Sq(r) ≡ δE/δsq(r),
Cq(r) ≡ δE/δTq(r), and Dq(r) ≡ δE/δFq(r) are time-
odd fields. The vector potentials Aq(r) and Sq(r) are
nuclear counterparts of electromagnetic potentials that
couple orbital movement and spin to magnetic fields. The
field Cq(r) introduces a spin dependence of the position-
dependent effective masses of protons and neutrons. Fi-
nally, the fieldDq(r) contributes to a non-diagonal tensor
effective mass that is position- and spin-dependent. As

long as time-reversal invariance is not broken, the time-
odd fields remain zero.
For density-independent Cτ

t , C
T
t , and CF

t , in a static
calculation, and for our choice of symmetries (see Ap-
pendix B on conserved symmetries) the single-particle
Hamiltonian (24) can be reduced to

ĥq =−∇ ·Bq(r)∇ + Uq(r) + Sq(r) · σ̂

− i

z
∑

µ,ν=x

Wq,µν(r)∇µσν − iAq(r) ·∇

−∇ ·
[

σ̂ ·Cq(r)
]

∇−∇ ·Dq(r) σ̂ ·∇ . (26)

As already mentioned in the Introduction, the con-
tribution of the tensor interaction to the eigenvalues of
the single-particle Hamiltonian depends on the filling of
shells. This is due to the near cancelation of the contri-
butions of two spherical spin-orbit partners to the spin-
current tensor Jµν when both levels are filled. As a con-
sequence, the time-even terms bilinear in Jµν (nearly)
vanish in spin-saturated nuclei, whereas they might be
quite large when only one level out of two spin-orbit part-
ners is filled, cf. the discussion in Articles I and II and
references given therein. It is noteworthy that none of
the various time-odd terms associated with the tensor
force has such property. Apart from the usual cancela-
tion of Kramers-degenerate levels that are connected by
time reversal, there is no additional dependence of these
time-odd terms on shell structure as such.
Further technical information about the detailed form

and symmetries of the local densities and fields as imple-
mented in the CR8 code is presented in Appendix B.

E. Landau parameters

The gross properties of the spin-spin interaction in
nuclei are often characterized by the so-called Landau-
Migdal parameters [14, 39, 40, 70, 71]. In Landau theory
for normal Fermi liquids [72], the Landau-Migdal param-
eters represent the strength of the residual interaction
between particles on the Fermi surface. Being a sim-
ple number in each partial wave and spin-isospin channel
of the central and tensor interaction, they cannot rep-
resent all details of the effective interaction in a finite
system. Still, they provide an often useful first indica-
tion about its relative strength. Relevant for our present
study are the Landau parameters in the spin- and spin-
isospin channels of the central residual interaction and in
the tensor channel

g0 = 2N0

[

Cs
0 +

(

CT
0 + 1

3 C
F
0

)

k2F
]

,

g′0 = 2N0

[

Cs
1 +

(

CT
1 + 1

3 C
F
1

)

k2F
]

,

g1 = −2N0

(

CT
0 + 1

3 C
F
0

)

k2F ,

g′1 = −2N0

(

CT
1 + 1

3 C
F
1

)

k2F ,

h0 = 1
3 N0 C

F
0 k2F ,
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FIG. 1: Coupling constants CJ
0 and CJ

1 , where CJ
t = −CT

t +
1

2
CF

t , for the parameterizations discussed in the article.

h′
0 = 1

3 N0C
F
1 k2F . (27)

We use the convention of Refs. [39, 40] where the normal-
ization factor is defined as the average level density N0 ≡
2kFm

∗
0/~

2π2 at the Fermi momentum kF = (32π
2ρ0)

1/3,
in whichm∗

0 is the isoscalar effective mass associated with
a given parameterization, but other choices are some-
times found in the literature. All higher Landau param-
eters are zero by construction for a Skyrme EDF that
contains only terms up to second order in derivatives.
In a force-based framework, the central and tensor

parts remain separated in the residual Landau interac-
tion, such that h0 and h′

0 are entirely determined by te
and to of Eq. (16), which at the same time do not con-
tribute to fℓ, f ′

ℓ, gℓ or g′ℓ, cf. the expressions given in
Ref. [14]. In a functional-based framework as assumed
in Eq. (27), however, this clear separation is lost, as can
be seen from the appearance of CF

t in all six Landau
parameters. The reason is that one has to combine con-
tributions from the JµνJµν , JµνJνµ, Jµµ, s ·F, and s ·T
terms to recover the structure of the tensor operator that
multiplies h0 and h′

0, cf. Appendix C for details of the
derivation.

F. Parameterizations

In Article I, a set of 36 parameterizations for the
Skyrme interaction including a zero-range tensor force
has been determined using a fitting protocol almost iden-
tical to the one used for the SLyx parameterizations
[47, 48]. These parameterizations, labeled TIJ , system-
atically cover a wide range of the CJ

t ≡ −CT
t + 1

2C
F
t cou-

pling constants of the tensor terms in spherical symmetry,
see Articles I and II for further details. In the present
study, we restrict ourselves to a subset of four of these
parameterizations, T22, T26, T44, and T62 (see Figs. 1

and 2). T22 has been constructed to give vanishing con-
tributions of the tensor terms in spherical symmetry and
time reversal invariance. It is aimed to have properties
close to those of SLy4, which does not include a tensor
interaction and for which the contributions of the cen-
tral part of the interaction to tensor terms have been ne-
glected. However, the tensor terms of T22 can be differ-
ent from zero when spherical symmetry or time-reversal
invariance are broken, cf. Article II for the breaking of
spherical symmetry. In the same way, time-odd terms
CT

t st ·Tt and CF
t st ·Ft do a priori not cancel each other.

The T22 and T44 parameterizations have an isovector
CJ

1 coupling constant equal to 0. The isoscalar coupling
constant CJ

0 has the same value 120 MeV fm5 for T26,
T44, and T62, while the isovector CJ

1 coupling constants
respectively take the values 120 MeV fm5, 0 MeV fm5,
and −120 MeV fm5. As a consequence, the tensor terms
in spherical symmetry are purely between particles of
same isospin for T26, purely proton-neutron for T62 and
a mixture of both for T44.

As will be discussed in Sect. III B, the force-generated
values of at least one of the C∆s

t and C∇s
t coupling con-

stants of all TIJ parameterizations leads to an unphys-
ical solution of the cranked HFB equation at high spin.
Unless noted otherwise, we have set C∆s

t and C∇s
t to zero

for those parameterizations.

As a reference without tensor terms, we have also per-
formed calculations with the SLy4 parameterization [48]
for which CT

t is put to zero during the fit. To fix the
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FIG. 2: Coupling constants CT
t and CF

t for the parameteri-
zations discussed in the article.
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FIG. 3: Coupling constants C∆s
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t as obtained in a
force-generated EDF for the parameterizations discussed in
the article.
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time-odd terms, we have adopted a hybrid point of view
that has already often been used in the literature before
[27, 73–76] : a force-generated point of view is taken for
the coupling constant Cs

t , whereas we use the functional
point of view to set the coupling constant of the C∆s

t st·∆s

to zero such that all three terms of second order in the
derivatives and Pauli matrices vanish C∆s

t = CT
t = 0.

This choice is not unique. Other groups use SLy4 in
their cranked HFB or QRPA calculations by setting just
CT

t = 0, keeping Cs
t and C∆s

t at their Skyrme-force val-
ues [21, 28, 40].
For the the pairing EDF (18), we choose a surface-

type interaction with ρc = 0.16 fm3 and a strength of
Vq = −1250 MeV fm−3 for both protons and neutrons,
together with a 5 MeV cut-off above and below the Fermi
level as explained in [73].

III. RESULTS FOR SUPERDEFORMED BANDS

IN 194HG

A. General comments

In contrast to superdeformed bands in nuclei around
A = 150, the high-spin properties of nuclei in the Hg
region are sensitive to pairing correlations. In cranked
Woods-Saxon and Nilsson-model calculations [77, 78],
the gradual increase of the dynamical moments of inertia
J (2) as a function of the rotational frequency results from
both the alignment of the intruder orbitals and from a
gradual disappearance of pairing correlations. The prop-
erties of the ground superdeformed (SD) bands have been
studied extensively within self-consistent cranked HFB
models using an effective EDF. In general, a very good
agreement with experiment is obtained for the Hg region
[65, 69, 79–81]. In view of this success, we choose the
ground SD band in 194Hg as a laboratory for the study
of tensor terms on high-spin properties.

Our discussions are mainly based on the behavior of
the dynamical moment of inertia J (2) as a function of
~ω

J (2) =
∂〈Jz〉

∂ω
, (28)

where 〈Jz〉 is the average value of the projection of the
angular momentum on the rotation axis. The relevance of
this quantity for the purpose of our study becomes clearer
when realizing that J (2) is proportional to the derivative
of the EDF with respect to rotational frequency [67, 82,
83]

J (2) =
1

ω

∂E

∂ω
, (29)

which allows to calculate the contribution of each term
in the EDF (13a-13b) to J (2) separately. The moment
of inertia can also be decomposed into the neutron and
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FIG. 4: (color online) (a) Dependence of the C∆s
0 s0 ·∆s0 term

of a variant of the T22 parameterization on the value of C∆s
0

for the Jz = 54~ state in the ground-state superdeformed
band of 194Hg (see text). (b) Dependence of all other time-
odd terms containing the spin density st relative to their value
at C∆s

0 = 0 in the same calculations.

proton contributions to Jz using Eq. (28). These con-
tributions, however, do not correspond to the decompo-
sition of the EDF into neutron-neutron, proton-proton
and proton-neutron terms.

The numerical determination of J (2) is far from be-
ing trivial. To obtain a smooth dependence of J (2) as a
function of ~ω, it requires a very high degree of conver-
gence of the calculations. The derivatives with respect
to ω are determined by finite differences formulas. It
should be noted that Eqns. (28) and (29) might lead to
slightly different J (2) , especially when convergence to a
very high degree is difficult to attain. In general, the
〈Jz〉 are converged to a higher degree than the energy E ,
hence Eq. (28) is expected to be more stable.

The experimental value of ~ω is given by Eγ/2, and

the one of the dynamical moment of inertia by J (2) =
4~2/∆Eγ , where ∆Eγ is the difference between two suc-
cessive γ-ray energies populating and depopulating a
level. Note that both can be determined without an an-
gular momentum assignment of the level, as is the case
for the ground-state SD band in 194Hg.
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B. Finite-size instabilities

In our calculations of the SD rotational bands with
TIJ parameterizations mentioned before, we systemati-
cally encountered non-convergence of the code when us-
ing force-based coupling constants for all time-odd terms.
After careful analysis, this behavior turned out not to be
a numerical problem, but a property of these parameter
sets. Switching to a functional framework, systematic
variation of coupling constants reveals that large posi-
tive or negative values of either C∆s

t or C∇s
t lead to an

unphysical finite-size instability of a given parameteriza-
tion of the interaction.

As a typical example, Fig. 4 presents the energies of
time-odd terms containing the spin density for the SD
Jz = 54~ state in 194Hg as a function of the value of
C∆s

0 for a variant of the T22 parameterization. Panel
(a) displays the absolute energy of the C∆s

0 s0 ·∆s0 term,
whereas panel (b) presents the evolution of other time-
odd terms that contain the spin density relative to their
value at C∆s

0 = 0. In this calculation, the coupling con-
stants of all time-even and time-odd terms are set to their
force-based values, except for C∆s

1 = C∇s
0 = C∇s

1 = 0
which are set to zero, and C∆s

0 that is systematically
varied. For larger or smaller values of C∆s

0 than those
shown in Fig. 4 our calculations do not converge. When
approaching C∆s

0 ≈ 36 MeV fm5, the energy of the
C∆s

0 s0 ·∆s0 term displays a steep downwards slope. Si-
multaneously, all other terms containing the spin density
are strongly amplified, in particular the Cs

0 s
2
0 term, indi-

cating a strong change in spin polarization. Still, in spite
of their strong variation, the absolute contribution of all
these terms to the total energy of 194Hg remains less than
0.3 % even at the threshold of the finite-size instability.
Also, a strong dependence of the spin terms on the cou-
pling constant is not a necessary condition for the onset
of an instability of the C∆s

0 s0·∆s0 term. This can be seen
when approaching C∆s

0 ≈ −24 MeV fm5, beyond which
the interaction also becomes unstable. Similar results are
obtained for the variation of the C∆s

1 ; an instability sets
in at the same values as for C∆s

0 . In fact, the instabil-
ity of the C∆s

t st · ∆st terms at large positive values of
C∆s

t ' 36 MeV fm5 has already been pointed out earlier
[21, 84].

In a similar manner, we find that values of C∇s
t out-

side the interval [−56, 92] MeV fm5 lead to instabilities as
well. The limits of the stable regions, however, should be
taken with a grain of salt because their values are sensi-
tive to the details of the calculation, the mass number of
the nucleus, or the other parameters of the EDF. In fact,
even when using an a priori unstable parameterization,
a finite-size instability might fortuitously remain unde-
tected in the calculation of a finite nucleus, depending
on convergence criteria, cutoffs in the numerical repre-
sentation, the initial conditions of the calculations and
other numerical choices made. An unambiguous way to
identify one class of finite-size instabilities is through the
calculation of the response function of the model system

of isotropic homogeneous infinite nuclear matter (INM)
to perturbations of the density in random phase approx-
imation (RPA) [84]. When an instability occurs at infi-
nite wavelength, the entire bulk of homogeneous nuclear
matter undergoes a transition into a different homoge-
neous state of nuclear matter. This kind of instability
can be identified from the values of the Landau parame-
ters discussed in Sect. II E [14, 70, 84]. If instead the in-
stability occurs at a finite wavelength, the homogeneous
nuclear matter can undergo a phase transition into an
inhomogeneous phase, i.e. it exhibits a finite-size insta-
bility. The former instabilities are driven by the bulk
terms in the EDF, whereas the latter are driven by the
terms that contain a nabla or Laplacian acting on a den-
sity and that are zero in homogeneous INM. Recently,
the calculation of the linear response of the full Skyrme
EDF (13a-13b) with tensor terms in force-based [85] and
general functional [86] frameworks has become available.
There might also be, however, a second class of insta-
bilities which are related to surface modes [87]. A more
detailed analysis of the finite-size instabilities will be re-
ported elsewhere [88].
In a force-base framework and for the forces consid-

ered here, there is at least one of the C∆s
t st · ∆st and

C∇s
t (∇ · st)

2 terms causing non-convergence (see also
Fig. 3). To suppress this unphysical behavior, these four
coupling constants are set to zero in all calculations re-
ported below unless stated otherwise.

C. General features

Before discussing the rotational properties of 194Hg, we
analyze the evolution of the total energy and the single-
particle spectra as a function of deformation.
The total contribution of the tensor terms relative to

their value at spherical shape is plotted in the panel (a) of
Fig. 5. For T22, the time-even tensor EJJ contribution is
close to zero for all deformations. For the other param-
eterizations, it increases relative at small deformations
and then follows an almost ’oscillatory’ pattern. As can
be seen from panel (b), the differences between the pa-
rameterizations seen in panel (a) are strongly attenuated
in the energy curves. As discussed in Article II, this last
result comes from an intricate compensation between all
energy contributions to the EDF. The location and depth
of the superdeformed minimum around β2 = 0.65 that is
the key point for the subsequent discussion is very similar
for all parameterizations.
The proton and neutron Nilsson diagrams are pre-

sented in Fig. 6. We recall the conclusion of Article II
on deformed nuclei that for parameterizations with differ-
ent strength of the tensor terms the differences between
the single-particle spectra at sphericity are almost com-
pensated at large deformation by the changes in slope
for of the single-particle energies in the Nilsson diagram.
Hence, the single-particle spectra around the Fermi en-
ergy for strongly deformed nuclei are often found to be
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(a)

(b)

FIG. 5: (color online) Change of the (a) contribution from
the tensor terms relative to the values at the spherical shape
and (b) deformation energy relative to the spherical shape for
194Hg obtained with the parameterizations T22, T26, T44,
and T62. The energy scale is the same for the two panels.

very close for all TIJ tensor parameterizations in spite
of significant changes at sphericity. The same property
is observed in the case of 194Hg. At the Z = 80 superde-
formed shell gap, the single-particle spectra for all pa-
rameterizations except T62 lie on top of each other. The
neutron single-particle spectra follow each other closely
for T22 and T44 with some small deviations for T26 and
T62.

1. SLy4, T22, and T44

We first compare results obtained with the SLy4, T22
and T44 parameterizations.

The dynamical moments of inertia J (2)are plotted as
a function of ~ω in panel (a) of Figure 7 and the charge
quadrupole moments Qc in panel (b). The differences
between the J (2) calculated with SLy4 and T22 are
marginal, even though they correspond to very different
coupling constants CT

t and CF
t . The J (2) obtained with

T44 increases slightly faster with a plateau appearing for
a smaller value of ~ω but, overall, the moments of inertia
obtained with three interactions present the same behav-
ior. As discussed in Article II, the position of deformed
minima may depend on the parameterization but this is
not the case here as can be checked from panel (b) of
Fig. 7 and also Fig. 5. The charge quadrupole moments
Qc values obtained with the three parameterizations dif-

FIG. 6: (color online) Proton and neutron Nilsson diagrams
in 194Hg for the T22, T26, T44, and T62 parameterization.

fer only by about 1% at all spins. This indicates that the
differences between the moments of inertia are mainly
due to the differences in the relative weight of the con-
tributions in the EDF, and not to a change in the shape
of the nucleus.
In Figs. 8 and 9, we present the contributions of various

time-even and time-odd terms to the total energy as a
function of ~ω. Their labels refer to their density content
in the EDF. The total energy is the sum of the kinetic
(Ekin +Ec.m.), the pairing (Epair +ELN), the time-even
(ESk (time even)) and the time-odd (ESk (time odd))
Skyrme parts of the EDF.
The excitation energy at 〈Jz〉 = 54 ~, which is the value

at which we stopped the calculations, is 14.1 MeV for
SLy4 and T22 and 13.6 MeV for T44. All parts of the
EDF contribute to this excitation energy in a very simi-
lar way for all parameterizations, around 7 MeV for the
pairing energy, 5 MeV for kinetic energy, 2 MeV for the
Skyrme EDF and 0.5 MeV for Coulomb. The Skyrme
contribution results from a cancelation between the time-
even (5 MeV) and time-odd (-3 MeV) parts.
As expected from the Coriolis-anti pairing effect [52],

the pairing energy shows the largest variation with ~ω,
decreasing to less than half its value at spin zero. The
energies of the kinetic, Coulomb and time-even terms of
the Skyrme EDF change only by a small fraction of their
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FIG. 7: (color online) (a): Proton (π), neutron (ν), and total
(t) dynamical moments of inertia as a function of the rota-
tional frequency for the SD band in 194Hg with the SLy4,
T22, and T44 parameterization. (b): The charge quadrupole
moment in as a function of the rotational frequency for the
SLy4, the T22, and the T44 parameterization.

absolute values when going from 〈Jz〉 = 0 ~ to 〈Jz〉 =
54 ~. The time-odd terms of the EDF start from zero at
spin zero and increase in absolute value with ~ω. The
sum of all time-odd contributions is negative and cancels
more than half of the contribution brought by the time-
even terms in the Skyrme EDF.
Let us first discuss the energy contributions of the

time-even terms, plotted in Fig. 8. As discussed in Arti-
cle II, the relative contributions of all terms in the EDF
differ between each of the TIJ parameterizations. As
a result, the magnitude of the various energy contribu-
tions is slightly different for the three parameterizations.
Their ~ω dependence, however, is very similar. By con-
struction, the tensor contribution EJJ is exactly zero for
SLy4 and almost zero for T22 at all angular momenta.
One can note that the energy contribution Eρ∇J is more
attractive for T44 than for T22 and SLy4. As discussed
in Article I, this results from the strong correlation be-
tween the spin-orbit and tensor coupling constants. In
fact, the ratio of Eρ∇J (T 22)/Eρ∇J(T 44) is very close to
the ratio of the coupling constants C∇J

t (T 22)/C∇J
t (T 44).

The time-odd contributions to the EDF are plotted in
Fig. 9. From top to bottom and left to right are shown
(a) the spin terms Ess, (b) the time-odd terms coupled by
Galilean invariance to the time-even effective mass Ejj ,

FIG. 8: (color online) Evolution of the time-even terms in the
EDF as a function of the rotational frequency ~ω for SLy4,
T22, and T44 for the ground-state superdeformed band of
194Hg.
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FIG. 10: (color online) Dynamical moments of inertia of
different terms in the EDF as a function of the rotational
frequency for SLy4, T22, and T44 in the calculation of the
ground-state superdeformed band of 194Hg.
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FIG. 11: (color online) Same as Fig. 10, but for the time-odd
terms in the Skyrme EDF.

(c) the spin-current tensor EsT + EsF and (d) the time-
odd spin-orbit Es∇×j . The sum of the spin terms that
contribute to the equation of state of infinite homoge-
neous spin-polarized nuclear matter is shown in panel (e),
and the sum of all time-odd contributions in panel (f).
We recall that the Es∆s and E∇s∇s terms not shown in
the figure are set to zero as they cause finite-size instabil-
ities, see Sect. III B. All time-odd terms start from zero
and change rapidly with increasing ~ω. The EsT + EsF

term is zero by construction for SLy4 and is negligible
for T22. For T44, it decreases down to −800 keV at
〈Jz〉 = 54 ~.

All other time-odd contributions are very similar for
SLy4 and T22. This is not surprising since the coupling
constants of these terms are very similar. It indicates also
that the additional CT

t st ·Tt and CF
t s·Ft terms of T22 do

not introduce a large polarization. The situation is differ-
ent for T44, for which all time-odd terms but −Cτ

t j
2
t take

very different values. These changes are due to the larger
CT

t and CF
t coupling constants and the increased spin-

polarization they induce. All time-odd terms containing
the spin density, however, tend to cancel each other for
all parameterizations, such that the sum of all time-odd
terms is very close to Ejj .

Using Eq. (29), the dynamical moment of inertia can
be decomposed into various contributions to the EDF
that are plotted in Figs. 10 and 11. The offset in total
energy between the parameterizations has no effect on
the moments of inertia.

The evolution with ~ω of the energy contributions be-
ing similar for all parameterizations, the general pat-
tern of the contributions to J (2) is the same for most
terms. At low ~ω, the main contribution to J (2) is pro-
vided by the pairing energy Epair +ELN and represents
about 75%. The Skyrme contribution brings the remain-
ing 25%, the contributions from Ekin + Ec.m. and Ecoul

being very small. These two contributions grow rapidly
with ~ω reaching about 65% at high spin whereas the
pairing contributions shrinks to approximately 25%. The
Coulomb contribution grows slowly with spin but never
exceeds 10% of the J (2) .

The time-even and time-odd contributions coming
from the Skyrme EDF have opposite signs and to large
extent cancel each other at high spin as the total con-
tribution of the Skyrme EDF to J (2) does not exceed
±10%. This cancelation however, is not a generic feature,
as will be seen with the examples of other parameteri-
zations and other nuclei, although the ESk (time-even)
and ESk (time-odd) counteract each other in all cases
encountered. For all parameterizations Ejj is the largest
time-odd contribution. This was already found in an
earlier study of the time-odd components of the Skyrme
EDF [55], where it was concluded that the cranking term
mainly induces a nonzero flow of nuclear matter as mea-
sured by the Ejj term.

Concentrating on the tensor contributions, the time-
even EJJ for T44 is small and varies between -4% at
low spin and 2% of the J (2) at high spin. On a similar
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scale, the time-odd EsT + EsF contribution lowers the
J (2)by at most 7%. Moreover, Ess and EsT + EsF tend
to counteract each other for T44, the total contribution
Ess +EsT +EsF being less than 1%. As already argued
in Articles I and II, the presence of the tensor terms has
an impact through rearrangements of other coupling con-
stants in the fit and through self-consistency of the HFB.
This combined effect modifies all time-even and time-
odd Skyrme J (2) contributions, whereas the pairing and
Coulomb contributions do not change.
In Figs. 12 and 13, we present the proton and neu-

tron quasiparticle Routhians, i.e. the eigenvalues of Eq.
(19), as a function of ~ω for SLy4, T22 and T44. All
Routhians are characterized by their parity and signa-
ture, by the j-component of the dominant single-particle
state in the quasi-particle wave function along the axis
of largest elongation at ~ω=0, and by their particle (p)
or hole (h) character. As discussed before, the proton
and neutron Nilsson diagrams of T22 and T44 display
only small differences (Fig. 6) . This is reflected in the
quasi-particle spectra in Fig. 12 and 13. At ~ω=0, the
ordering of the lowest quasi-particle states is the same
for SLy4, T22, and T44, although the values of the en-
ergy are parameterization-dependent. For the protons,
the three lowest quasi-particle Routhians are the p 5/2+

and the h 1/2− and h 1/2+. The first significant differ-
ence between T44 and the two other parameterizations
is the position of the h 3/2+ state, which is much closer
to the h 1/2+ level for T44. This position affects the
alignment of the p 5/2+ Routhian with increasing ~ω,
making it slightly faster for T44 because of a stronger
interaction with the higher-lying positive-parity states.
In the same way, for the neutrons, the exchange in po-
sition of the h 3/2− and the p 5/2− quasiparticle states
at ~ω=0 has an impact on the alignment of the h 5/2−

state. Indeed, the h 3/2− quasiparticle Routhian occurs
lower in energy for T44. Since it aligns more rapidly
than the p 5/2− state, the interaction with the h 5/2−

state takes place at a lower frequency, which affects the
alignment of this last quasiparticle Routhian.

2. T26, T44, and T62

We now proceed to a comparison between results ob-
tained using the T26, T44, and T62 parameterizations.
They differ by their value of the isovector CJ

1 coupling
constant while they share the isoscalar CJ

0 = 120 MeV
fm5 constant. This comparison probes the direct impact
of a variation of CJ

1 , but also its indirect impact due
to the changes of the other coupling constants that are
readjusted for each parameterization.
The dynamical moments of inertia J (2) and the charge

quadrupole moments are presented in respectively panel
(a) and (b) of Fig. 14, respectively.
Whereas the J (2) obtained with the T22 and T44 pa-

rameterizations (Fig. 7) have a different slope, the be-
havior of the J (2) for T26, T44 and T62 is similar up
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to 0.3~ω and differs at large spins by the height of the
plateau. The proton moment of inertia displays a peak
for T62, which is absent for the other parameterizations.
This difference can be related to the proton quasiparticle
Routhians, presented in Fig. 15. In contrast to the other
parameterizations, it is not the p 5/2+ but the h 3/2+

Routhian that is the lowest quasiparticle state for T62.
The p 1/2+, is at 1.8 MeV for T26 and higher for all other
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FIG. 14: (color online) (a) Proton (π), neutron (ν), and total
(t) dynamical moments of inertia in 194Hg as a function of
the rotational frequency for the SD band in 194Hg with the
T26, the T44, and the T62 parameterization. (b) The charge
quadrupole moment in 194Hg as a function of the rotational
frequency for the T26, the T44, and the T62 parameteriza-
tion.

parameterizations but T62 for which it is only at 1.6
MeV. With increasing ~ω, the energy of its negative sig-
nature partner decreases quickly up to a bending around
0.4 ~ω, which is the frequency at which the moment of
inertia displays a peak for T62. The charge quadrupole
moments differ by less than 1%, see Fig. 14(b).

The contributions to the dynamical moments of iner-
tia J (2) of respectively the time-even and the time-odd
terms in the Skyrme EDF are presented in Figs. 17 and
18. All contributions to the J (2) have a similar behavior
for the three parameterizations, except for the Eρρ+Eρτ

terms.

As for the total moment of inertia, the peaks obtained
in most terms at large ~ω are the most pronounced for
T62 and the smoothest for T26. Similar to the decompo-
sition of the J (2) for SLy4, T22, and T44, the time-even
and time-odd Skyrme contributions are of equal impor-
tance because they are of the same order of magnitude.
The more pronouncedly peaked the behavior of the other
contributions to the J (2), the more the Skyrme contri-
bution tends to counteract it. Indeed, whereas the dif-
ference in height of the peak between the T26 and the
T62 parameterization is approximately 60 ~

2 MeV−1 for
the Ekin + Ec.m. contribution, a difference that is even
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FIG. 15: Same as Fig. 12, but for the T26, T44, and T62
parameterization.
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FIG. 16: Same as Fig. 15, but for neutrons.

more intensified by the contribution of Epair +ELN and

Ecoul, the difference between the total J (2) of the re-
spective parameterization in Fig. 14 is only about 30 ~

MeV−1. The Skyrme contributions are responsible for
the decreased difference in peak-height of the J (2).

D. Time-odd terms

The parameters of the EDF are usually adjusted to
binding energies and r.m.s. radii of doubly-magic nu-
clei and on properties of infinite nuclear matter [47]. As
discussed in Sect. II B 2, for a force-generated EDF,
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FIG. 17: (color online) Same as Fig. 10 but for the T26, the
T44, and the T62 parameterization.
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FIG. 18: (color online) Same as Fig. 10, but for the time-odd
terms in the Skyrme energy density functional with the T26,
the T44, and the T62 parameterization.

the coupling constants of the time-odd part are en-
tirely fixed by those of the time-even part although
they are rarely directly constrained by observables. By
contrast, the coupling constants of the time-odd terms
that are not constrained through Galilean invariance
are a priori undetermined in a more general EDF.
Their adjustment has been the subject of several studies
[22, 26, 28, 31, 32, 40, 55, 89, 90]. The possibility of using
band terminating states to constrain the time-odd terms
is discussed in Refs. [31, 89] and in Ref. [40] the ef-
fect of the spin-isopin coupling constants of the Skyrme
EDFs on predictions for Gamow-Teller distributions is
investigated. In the latter study, a local fit of the Cs

1 [0],
Cs

1 [ρnm], C∆s
1 , and CT

1 coupling constants to the existing
data was performed.
To study the effect of time-odd tensor terms in rotating

nuclei, we proceed in the following way. Until now, the
coupling constants of the st ·∆st and (∇·st)

2 terms have
been set to zero for all TIJ parameterizations because
these terms can induce finite-size instabilities. In Sect.
III B, we have determined empirical limits between which
these instabilities do not appear. To maximize the effect
of these time-odd terms on J (2), we have taken values for
C∆s

t and C∇s
t close to their respective limits of stability.

The other time-odd tensor terms st·Tt and st·Ft are re-
lated to time-even tensor terms through Galilean invari-
ance. It is therefore not desirable to vary their coupling
constants directly and we have proceeded in an indirect
way. We have seen in Sect. III C 1 that the contribu-
tions of Ess and EsT +EsF to J (2) act in opposite ways.
We have therefore changed the values of Cs

t [ρnm] by ±50
MeV fm3 around their Skyrme force values at the satura-
tion density of nuclear matter, which are Cs

0 [ρnm] ≈ 150
MeV fm3 and Cs

1 [ρnm] ≈ 100 MeV fm3 for all parameteri-
zations. In addition, all Cs

t have been taken independent
of density, choosing its value at the saturation density
of nuclear matter for the coupling constant that is not
varied. All variations stay within the stability limits of
the conditions outlined in [14]. The discussion of Fig. 26
below will indeed confirm that a variation of the Cs

t [ρ0]
coupling constant has an indirect effect on the st ·Tt and
st · Ft tensor terms.

1. SLy4

Let us first limit ourselves to the SLy4 parametrization
and determine whether the effect of the variation of the
time-odd coupling constants can be differentiated from a
pairing effect. The dynamical moments of inertia deter-
mined with reduced and increased pairing strengths are
plotted in Fig. 19. As expected at low spins, a reduction
of pairing increases J (2) , whereas an increase lowers it.
The height of the plateau at high spins moves in opposite
direction but it appears for similar values of ~ω.
In Fig. 20, we show the dependence of J (2) on the

isoscalar Cs
0 and isovector Cs

1 coupling constants. The
only noticeable change in J (2) is a slight shift of the
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.

plateau for Cs
0 . The effect is small but clearly different

from the effect of a variation of the pairing strength; also,
it is larger for t = 0 than for t = 1.

2. T22, T26, T44, T62

We now turn to interactions including a tensor term.
In Figs. 21-24 we present the variations of J (2) as a func-
tion of (a) C∆s

t , (b) C∇s
t , and (c) Cs

t for T22, T26, T44,

g0 g′0 g1 g′1 h0 h′
0

SLy4 1.387 0.901 - - - -

T22 0.856 -0.066 0.502 0.972 -0.100 -0.194

T26 0.916 -0.074 0.463 0.976 0.295 0.192

T44 0.400 0.060 0.959 0.846 0.198 -0.169

T62 -0.097 0.194 1.430 0.715 0.108 -0.536

TABLE I: Spin and spin-isospin Landau parameters for SLy4,
T22, T26, T44, and T62 parameterizations.

g0 g′0
Cs

0 = 100 Cs
0 = 200 Cs

1 = 50 Cs
1 = 150

SLy4 0.904 1.808 0.452 1.356

T22 0.413 1.328 -0.514 0.401

T26 0.446 1.354 -0.522 0.387

T44 -0.044 0.870 -0.388 0.526

T62 -0.507 0.415 -0.253 0.669

TABLE II: Spin and spin-isospin Landau parameters g0 and
g′0 for the density independent variations of the Cs

t [0] coupling
constants of SLy4, T22, T26, T44, and T62 described in the
text. The units of the Cs

t [0] coupling constants is MeV fm3.

and T62 respectively. In the panels (a), one can see that
the dynamical moment of inertia presents a significant
decrease at high ~ω for a positive value of C∆s

t (t = 0
and t = 1) and is nearly unaffected by the st · ∆st for
a negative value. The result is inverted for the (∇ · st)

2

term, (panels (b)), for which the coupling constant has
to be negative to have a visible effect.
This behavior can be understood by looking to Fig.

4, which is devoted to C∆s
0 but is representative for all

four coupling constants. The energy of the s0 ·∆s0 term
varies rapidly as a function of C∆s

0 when it is positive
and close to the value leading to instabilities. Owing
to self-consistency effects, several other time-odd terms
vary rapidly for values of C∆s

0 close to its maximal value
before instabilities appear. For negative values of C∆s

0 ,
the corresponding energy behaves much more smoothly
and therefore does not affect significantly the moment of
inertia. The picture is the same for C∆s

1 and and for C∇s
t ,

except that then, rapid changes of some energy terms are
obtained for negative values of the coupling constant.
The panels (c) show how J (2) is affected by variations

of Cs
t . The changes are very similar for T22 and T26

and much larger for T44 and T62 when the t = 0 cou-
pling constant is varied. Naively, one would expect that
the changes of the J (2) with respect to the “original”
J (2) (obtained with the force-generated value of Cs

t )
should be similar for all parameterizations. Our result
clearly indicates that the dynamical moment of inertia is
not sensitive to the individual values of the various cou-
pling constants but rather to some specific combinations
of them.
The values of the Landau parameters (see Sect. II E) in

the spin and the spin-isospin channels are given in Table I
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FIG. 22: (color online) Same as Fig. 21, but for the T26 parameterization.
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FIG. 23: (color online) Same as Fig. 21, but for the T44 parameterization.

for all parameterizations considered in this work. Table II presents the g0 and g′0 Landau parameters corresponding
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FIG. 24: (color online) Same as Fig. 21, but for the T62 parameterization.

to the variations of Cs
t that we consider in Figs. 21-24.

A close inspection of these Tables and of Figs. 21-24 (c)
puts in evidence some clear trends:

• For a given interaction, an increase (decrease) of
g0 increases (decreases) the value of ~ω where the
moment of inertia is maximum. It also broadens
(sharpens) the peak of the J (2) curve.

• Similar values of g0 lead to a comparable depen-
dence of J (2) on ~ω, as is e.g. the case for T22
and T26 for the three values of g0 given in the Ta-
bles but also for T22, T26, and T44 (Cs

0 = 200 MeV
fm3), which have g0 ≈ 0.9, or for T44 (Cs

0 = 100
MeV fm3) and T62 where g0 ≈ −0.1.

• The behavior of J (2) as a function of ~ω does not
depend much on g0 values larger than 0.4. Its vari-
ation as of a function of g0 is much larger for g0
lower than 0.4.

This confirms and extends a conclusion of Bender et

al. [40]. These authors have shown in a similar man-
ner and for another Skyrme parametrization SkO’ that
the dynamical moment of inertia J (2) of the SD band
of 152Dy depends mainly on the spin-isospin Landau pa-
rameter g′0 and not so much on the actual values of the
individual coupling constants Cs

1 and CT
1 . Different com-

binations of EDF coupling constants leading to the same
value of g′0 were found to change little to the J (2). Note
that these authors have also varied C∆s

1 , extending their
study well outside the limits for which we find instabili-
ties. This discrepancy might be due to the use a different
technique for solving the mean-field equations, i.e. by
means of an expansion on an oscillator basis instead of
using a cartesian mesh.
Note also that empirical values for g0 ≈ 0.4 [91] and

1.4 ≤ g′0 ≤ 1.6 [92–94] have been derived from M1 and
Gamow-Teller response. The values quoted in Table I
and II are in all cases except one very different from the
empirical values.
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FIG. 25: (color online) Contributions to the dynamical mo-
ment of inertia coming from the time-even terms of the EDF
as a function of the rotational frequency for variations of the
Cs

t coupling constant. All coupling constants not explicitly
mentioned are determined by the T44 parameterization. The
Cs

t coupling constants are expressed in units MeV fm3

.

The previous analysis shows that the Cs
t , C

F
t and CT

t ,
coupling constants are linked by their contribution to the
values of the Landau parameters g0 and g′0. One might
wonder whether variations of Cs

t affect mainly the terms
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FIG. 26: (color online) Same as Fig. 25, but for the time-odd
terms in the Skyrme EDF.

in the EDF depending on the spin-density st. To ana-
lyze how all terms in the EDF are affected by a variation
of Cs

t , we have decomposed the J (2) obtained for the
modified T44 parameterizations in the same way as in
Figs. 25 and 26. Differences appear only for large values
of ~ω. At ~ω=0.4, taking Cs

0 = 100 MeV fm3 modifies
the total energy obtained with the T44 parameterization
by about 600 keV. This change results from the partial
cancelation of larger changes with different signs of all
terms of the EDF, including the pairing and Coulomb en-
ergy. In particular, the Skyrme time-even and time-odd
contributions decrease the energy by about 900 keV and
500 keV respectively. The energy differences obtained for
Cs

0 = 200 MeV fm3 are of the same order of magnitude,
but are much smaller for variations of Cs

1 . These energy
changes at high ~ω affect the slope of the different en-
ergy contributions and therefore their contributions to
the J (2) . These are plotted in Figs. 25-26. One clearly
sees that the modification of the coupling constant of a
relatively small term, in casu the Ess, affects all other
terms through self-consistency and how little changes in
the energy can make a large difference in the J (2).

Our analysis demonstrates that the variations of pair-
ing and of the time-odd terms have clearly distinguish-
able effects on the shape of the J (2) . The time-odd terms
influence the slope of the J (2) and the ~ω at which the
plateau occurs. While the effect of variations of the C∇s

t

and C∆s
t coupling constants on the J (2) is rather small

and depends on the sign of the coupling constant, varia-
tion of the Cs

0 coupling constant may lead to significant
changes in the J (2).

IV. RESULTS FOR THE SUPERDEFORMED

BAND IN 152DY

A. General comments

The superdeformed rotational bands known in 152Dy
exist in a very different regime than the one of 194Hg.
SD band in the A ≈ 150 region have only been detected
for spins higher than 20~. For such angular momenta,
pairing correlations are strongly weakened by the Cori-
olis anti-pairing effect. Hence, pairing is expected to
play only a minor role in that region. Early studies
by Bengtsson et al. [95] using the Nilsson-Strutinsky
approach have demonstrated that the behavior of the
SD bands is strongly influenced by the number of nu-
cleons that occupy the intruder orbitals. SD bands in
the Dy-region have been studied extensively within self-
consistent mean-field approaches [32, 40, 73, 96]. More-
over, they have been used as a laboratory to study the
time-odd terms in the EDF [28, 40, 55].

B. General features

The dynamical moments of inertia (panel (a)) and the
charge quadrupole moments (panel (b)) are shown in Fig.
27 for SLy4, T22, and T44 and in Fig. 28 for the T26,
T44, and T62. As for 194Hg, the J (2) calculated with
SLy4 and T22 are very close, with small differences at
low spin. The main difference between the parameteri-
zations is the presence of a strong peak at low spin for
T62, which is less pronounced for T44 and absent for the
other parameterizations. In all cases, the difference be-
tween the J (2) is caused by the neutrons. The Qc values
presented in the panels (b) differ by less than 2% and all
display the same behavior, increasing until ~ω=0.6 MeV
after which they slowly start decreasing again.
The total energy and the J (2) are decomposed into

their time-even and time-odd components in Figs. 29-30
and 31-32, respectively, as it was done for 194Hg. Decom-
positions are only shown for the SLy4, T22 and T44. The
results for T26 and T62 are very similar. The difference
of energy between the lowest (〈Jz〉 = 28~) and highest
(〈Jz〉 = 74~) states that we have calculated amounts to
26.3 MeV for SLy4 and T22 and 25.5 MeV for T44. All
parts of the EDF give contributions of the same order of
magnitude to this change in energy, about 12 MeV for
the Skyrme EDF, 10 MeV for the kinetic energy, 7 MeV
for the pairing energy and −2 MeV for the Coulomb en-
ergy. The Skyrme contribution can be decomposed into
18 MeV from the time-even and −6 MeV from the time-
odd terms.
Focussing on the time-even contributions (Fig. 29),

their ~ω dependence is very similar for all parameter-
izations, which is also reflected in the corresponding
contributions to J (2) presented in Fig. 31. As ex-
pected, the pairing energy is smaller than in the A ≈
190 region, because the superdeformed bands in the
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FIG. 27: (color online) (a) : Proton (π), neutron (ν), and
total (t) dynamical moments of inertia as a function of the
rotational frequency for the SD ground band in 152Dy with
the SLy4, the T22, and the T44 parameterization . (b) :
The charge quadrupole moment in 152Dy as a function of
the rotational frequency for the SLy4, the T22, and the T44
parameterization.

A ≈ 150 region only occur at higher spin. The ratio
Eρ∇J (T 22)/Eρ∇J(T 44) is again approximately equal to
the ratio of the corresponding coupling constants. For
the time-odd terms (Fig. 30), the contributions of EsT

and EsF terms that appear for T44 cancel out the Ess

term, which is much larger without the inclusion of a
tensor term.

The time-even and time-odd contributions to the J (2)

(Figs. 31-32), indicate that the ESk (time-even) is the
largest contribution at low ~ω, amounting up to 96% of
the total value for T22 and about 80% for T44. The
pairing energy Epair is the second largest contribution,
averaging about 70%, and is mostly canceled out by Ecoul

(about -40%) and the time-odd ESk terms (about -25%).
The Ekin + Ec.m. contribution is negligible at low ~ω .
With increasing ~ω, the Epair + ELN and Ecoul con-
tributions drop to 13% and 2% respectively, while the
Ekin + Ec.m. contribution quickly grows to about 50%.
Whereas the time-odd ESk contribution stays more-or-
less constant with ~ω , the time-even part of ESk reduces
to about 70%. Hence, in contrast to 194Hg, the Skyrme
EDF plays a more important role in the decompositions
of the total energy and of the J (2) . Even though changes
the time-even and time-odd components of the Skyrme
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FIG. 28: (color online) (a) : Proton (π), neutron (ν), and
total (t) dynamical moments of inertia as a function of the
rotational frequency for the SD ground band in 152Dy with
the T26, the T44, and the T62 parameterization. (b) : The
charge quadrupole moment in 152Dy as a function of the ro-
tational frequency for the T26, the T44, and the T62 param-
eterization.

EDF no longer almost cancel out, they still counteract
each other.
Finally, the proton and neutron quasiparticle Routhi-

ans for the SLy4, T22 and T44 parameterization are pre-
sented in Figs. 15-16. Again, the low-lying quasiparticle
Routhians are very similar for all parameterizations and
subtle differences are observed in the alignment of the
Routhians. The main difference observed between the
parameterizations is the location and evolution of the
neutron h 1/2+ state. When going from SLy4 to T22
and further on to T44, the h 1/2+ quasiparticle state
starts of at lower energy and the minimum becomes more
pronounced.

V. DISCUSSION AND CONCLUSION

We have studied the impact of the introduction of ten-
sor terms in the Skyrme energy density functional on the
dynamical moments of inertia of superdeformed bands.
The excellent description of these bands by conventional
EDFs was a major success of microscopic mean-field
models in the 90s. Therefore, it is important to verify
that the inclusion of a zero-range tensor force does not de-
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FIG. 30: (color online) Same as Fig. 29, but for the time-odd
terms in the Skyrme energy density functional.
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eterizations in the calculation of the ground state superde-
formed band of 152Dy.
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terms in the Skyrme energy density functional.
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FIG. 34: Same as Fig. 33, but for neutrons.

stroy this agreement. In our study, special attention was
paid to the time-odd tensor terms in the Skyrme EDF,
which are zero when self-consistent time-reversal symme-
try is not broken, as is the case for the ground states of
the spherical and deformed nuclei that were studied in
Articles I and II.

In order to disentangle their respective role, we have
tested a selection of four TIJ parameterizations, intro-

duced in Article I, which represent a wide range of values
for the isoscalar and isovector tensor coupling constants.
As a reference without tensor terms, we have included the
SLy4 parameterization. We have found that the inclu-
sion of tensor terms in the Skyrme EDF does not change
the overall behavior of the dynamical moments of inertia,
although differences in slope and location of plateau do
occur. This results from an intricate compensation mech-
anism due to the self-consistency that is implemented at
two different levels in our method: in the fitting proce-
dure of the interactions considered and in the solution of
the mean-field equations.
Even though the energy contribution of the time-even

EJJ tensor terms is in general an order of magnitude
larger than that of the time-odd EsT +EsF tensor terms,
the time-odd tensor terms evolve more rapidly as a func-
tion of rotational frequency such that their contribution
to J (2) is of the same order of magnitude as the one of the
time-even tensor terms. Similarly, the Skyrme time-even
and time-odd energy contributionsESk typically differ by
three orders of magnitude but have similar contributions
to J (2). In all cases encountered, the time-odd ESk con-
tributions to the J (2) partially cancels out the time-even
ESk contribution.
A detailed study of the time-odd terms in the Skyrme

EDF has shown the following features:

1. We have seen that the values of the coupling con-
stants of the time-odd tensor terms that contain
derivatives of spin densities (Es∆s and E∇s∇s) have
to be chosen within strict limits to avoid finite-size
instabilities. Such instabilities were encountered
for all TIJ parameterizations considered. There-
fore, we adopted the functional point of view in
our study and put their coupling constant to zero.
By contrast, these instabilities are not encountered
in spherical QRPA studies using the same TIJ pa-
rameterizations [11–17], presumably because of the
non-variational character of QRPA. A point of spe-
cial interest will be the analysis of finite-size insta-
bilities using the technique of Ref. [84, 85] that is
currently underway.

2. The effect of modifications in the strength of the
pairing interactions can be clearly distinguished
from modifications of the time-odd terms in the
Skyrme EDF that are not restricted by symmetry
considerations.

3. The energy changes that are introduced through
the presence of the time-odd tensor terms EsT +
EsF are partially cancelled out by the presence of
the other time-odd terms that contain the spin den-
sity st. Consequently the time-odd ESk is almost
entirely determined by the Ejj contribution. Varia-
tions of the Cs

t coupling constant indicate that only
combinations of the EsT +EsF and Ess terms with
similar values of g0 and/or g′0 act independently.

When comparing the dynamical moments of inertia
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obtained for an EDF including tensor terms to the ex-
perimental ones, the agreement for T22 and T26 is as
satisfactory as for SLy4. The T62 parametrization that
acts only between neutrons and protons in spherical
symmetry exhibits a pronouncedly peaked behavior that
does not compare well with the experimental J (2). Fi-
nally, the results obtained with the T44 parameteriza-
tion, which was one of the two parameterizations lead-
ing to the best results for low-lying collective states in a
RPA calculation of 208Pb and 40Ca [17], are found to be
in good comparison with the experimental results.
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Appendix A: Coupling constants of the Skyrme

energy density functional in the isospin and the

proton-neutron formulation

In Table III, we provide the relation between the cou-
pling constants of the Skyrme EDF in the isospin formu-
lation (13a-13b) and those appearing in the Skyrme EDF
in the proton-neutron formulation (21).

Appendix B: Densities and currents in cr8

In this appendix, we provide the expressions of the
densities and currents as they are implemented in our
cranked Hartree-Fock-Bogoliubov solver cr8. This ex-
tends the discussion of Ref. [27] by the densities and cur-
rents entering the tensor terms.
The cr8 code uses a coordinate-space representation

of the wave functions and fields. The HFB equations are
solved with the so-called two-basis method, where in an
iterative scheme the HFB Hamiltonian (19) is diagonal-
ized in a single-particle basis that converges towards the
eigenstates of the mean-field Hamiltonian h, Eq. (20).
The densities needed to construct the local fields are cal-
culated in the canonical single-particle basis, which is ob-
tained by diagonalization of the density matrix ρ. For a
detailed discussion of our method of solving the cranked
HFB equations we refer to Refs. [65, 69].
The cr8 code assumes triaxial symmetry of the nu-

cleus, where all single-particle wave functions have a
plane reflection symmetry about the x = 0, y = 0 and
z = 0 planes. There are several possible choices to

TABLE III: Coupling constants in the isospin formulation of
the EDF as a function of the coupling constants in the proton-
neutron formulation of the EDF in the format C =

∑
i
aibi,

where the factors ai are given in the Table.

b1 b2 b3 b4 b5 b6 b7 b8

Cρ
0

1 1/2 0 0 0 0 ρα0 ρα0 /2

Cρ
1

0 1/2 0 0 0 0 0 ρα0 /2

Cτ
0 0 0 1 1/2 0 0 0 0

Cτ
1 0 0 0 1/2 0 0 0 0

C∆ρ
0

0 0 0 0 1 1/2 0 0

C∆ρ
1

0 0 0 0 0 1/2 0 0

b9 b9q b10 b11 b12 b13 b14 b15

C∇J
0 1 1/2 0 0 0 0 0 0

C∇J
1 0 1/2 0 0 0 0 0 0

Cs
0 0 0 1 1/2 ρα0 ρα0 /2 0 0

Cs
1 0 0 0 1/2 0 ρα0 /2 0 0

CT
0 0 0 0 0 0 0 -1 -1/2

CT
1 0 0 0 0 0 0 0 -1/2

b16 b17 b18 b19 b20 b21

CF
0 -2 -1 0 0 0 0

CF
1 0 -1 0 0 0 0

C∆s
0 0 0 1 1/2 0 0

C∆s
1 0 0 0 1/2 0 0

C∇s
0 0 0 0 0 1 1/2

C∇s
1 0 0 0 0 0 1/2

achieve this [97]. The cr8 code chooses the single-particle
wave functions Φk(r, σ) to be eigenstates of

(i) parity

P̂Φk(r, σ) = Φk(−r, σ) = pkΦk(r, σ), pk = ±1 ,
(B1)

(ii) z signature

R̂zΦk(r, σ) = eiπĴzΦk(r, σ) ,

= iηkΦ(r, σ), ηk = ±1 , (B2)

(iii) y T -simplex

ŜT
y Φk(r, σ) = T̂ P̂ R̂yΦk(r, σ) ,

= Φk(r, σ) , (B3)

where T̂ is the time-reversal operator.

A wave function is completely determined by four real
functions Ψk,α (α = 1, . . . , 4) that correspond to the real
(Re) and imaginary (Im) parts of the spin-up and spin-
down components of Φk. A different numbering of these
four components was adopted for wave functions of pos-
itive and negative signature in [27]
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TABLE IV: Parities of the components Ψk,α of a wave func-
tion Φk of parity pk with respect to the x = 0, y = 0, and
z = 0 planes.

α x y z

1 + + pk

2 − − pk

3 − + −pk

4 + − −pk











Ψk,1(r)

Ψk,2(r)

Ψk,3(r)

Ψk,4(r)











=











Re Φk(r,+)

Im Φk(r,+)

Re Φk(r,−)

Im Φk(r,−)











for ηk = 1, (B4)











Ψk,1(r)

Ψk,2(r)

Ψk,3(r)

Ψk,4(r)











=











Re Φk(r,−)

Im Φk(r,−)

Re Φk(r,+)

Im Φk(r,+)











for ηk = −1. (B5)

This choice ensures that each of the four real functions
Ψk,α has the same definite reflection symmetry about the
x, y and z planes, listed in Table IV independently of its
signature.
In our code, the local densities and currents (2a)-(2f)

entering the Skyrme EDF are constructed in the canon-
ical basis. There, they can be expressed as

ρq(r) =
∑

k,σ

v2k Φ†
k(r, σ)Φk(r, σ) , (B6a)

τq(r) =
∑

k,σ

v2k [∇Φk(r, σ)]
† ·∇Φk(r, σ) , (B6b)

Jq,µν(r) = − i
2

∑

k,σ,σ′

v2k {Φ
†
k(r, σ)σν;σ,σ′ [∇µΦk(r, σ

′)]

− [∇µΦk(r, σ)]
† σν;σ,σ′ Φk(r, σ

′)} , (B6c)

jq(r) = − i
2

∑

k,σ

v2k {Φ†
k(r, σ) [∇Φk(r, σ)]

− [∇Φk(r, σ)]
† Φk(r, σ)} , (B6d)

sq(r) =
∑

k,σ,σ′

v2k Φ
†
k(r, σ)Φk(r, σ

′) σ̂σ,σ′ , (B6e)

Tq(r) =
∑

k,σ,σ′

v2k [∇Φk(r, σ)]
† · [∇Φk(r, σ

′)] σ̂σ,σ′ ,

(B6f)

Fq(r) =
1
2

∑

k,σ,σ′

v2k

{

[∇ · σ̂σ,σ′Φk(r, σ)]
† [∇Φk(r, σ

′)]

+ [∇Φk(r, σ)]
† [∇ · σ̂σ,σ′Φk(r, σ

′)]
}

, (B6g)

where v2k are the occupation probabilities and µ, ν =
x, y, z. Expressed in terms of the functions Ψk,α, the

scalar local densities take the form

ρ(r) =
∑

k

v2k

4
∑

α=1

Ψ2
k,α , (B7a)

τ(r) =
∑

k

v2k

4
∑

α=1

(∇Ψk,α)
2 , (B7b)

whereas the vector densities are given by

j(r) =
∑

k

v2k
(

Ψk,1∇Ψk,2 − Ψk,2∇Ψk,1

+Ψk,3∇Ψk,4 −Ψk,4∇Ψk,3

)

, (B8a)

sx(r) =
∑

k

2v2k
(

Ψk,1Ψk,3 +Ψk,2Ψk,4

)

, (B8b)

sy(r) =
∑

k

2v2kη
(

Ψk,1Ψk,4 −Ψk,2Ψk,3

)

, (B8c)

sz(r) =
∑

k

v2kη
(

Ψ2
k,1 +Ψ2

k,2 −Ψ2
k,3 −Ψ2

k,4

)

, (B8d)

Tqx(r) =
∑

k

2v2k
{

[∇Ψk,1] · [∇Ψk,3]

+ [∇Ψk,2] · [∇Ψk,4]
}

, (B8e)

Tqy(r) =
∑

k

2v2kηk
{

[∇Ψk,1] · [∇Ψk,4]

− [∇Ψk,2] · [∇Ψk,3]
}

, (B8f)

Tqz(r) =
∑

k

v2kηk {[∇Ψk,1] · [∇Ψk,1]

+ [∇Ψk,2] · [∇Ψk,2]− [∇Ψk,3] · [∇Ψk,3]

− [∇Ψk,4] · [∇Ψk,4]} , (B8g)

Fq,µ(r) =
∑

k

v2k
{

φk,1[∇µΨk,1] + φk,2[∇µΨk,2]

+ φk,3[∇µΨk,3] + φk,4[∇µΨk,4]
}

, (B8h)

where we defined the spinor

∇·σ̂Ψk =











φk,1

φk,2

φk,3

φk,4











=











∇xΨk,3 + η(∇yΨk,4 +∇zΨk,1)

∇xΨk,4 − η(∇yΨk,3 −∇zΨk,2)

∇xΨk,1 − η(∇yΨk,2 +∇zΨk,3)

∇xΨk,2 + η(∇yΨk,1 −∇zΨk,4)











.

(B9)
Finally, the spin-current tensor densities are

Jµx =
∑

k

v2k

{

Ψk,1[∇µΨk,4]−Ψk,2[∇µΨk,3]

+ Ψk,3[∇µΨk,2]−Ψk,4[∇µΨk,1]
}

, (B10a)

Jµy =
∑

k

v2k ηk

{

−Ψk,1[∇µΨk,3]−Ψk,2[∇µΨk,4]

+ Ψk,3[∇µΨk,1] + Ψk,4[∇µΨk,2]
}

, (B10b)

Jµz =
∑

k

v2k ηk

{

Ψk,1[∇µΨk,2]−Ψk,2[∇µΨk,1]
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TABLE V: Parities of the nucleon densities with respect to
the x = 0, y = 0, and z = 0 planes

x y z

ρ, τ + + +

sx, Tx, Fx − + −

sy , Ty, Fy + − −

sz, Tz, Fz + + +

jx, Jxz, Jzx + − +

jy − + +

jz , Jxx, Jyy , Jzz − − −

Jxy , Jyx + + −

Jyz, Jzy − + +

−Ψk,3[∇µΨk,4] + Ψk,4[∇µΨk,3]
}

. (B10c)

for µ = x, y, z. The symmetries (B1), (B2) and (B3) of
the single-particle wave functions impose reflection sym-
metries on the components of the local densities and cur-
rents, which are listed in Table V.

Appendix C: The Landau-Migdal interaction

1. General considerations

Landau theory for normal Fermi liquids provides a
framework for the study of the long-wavelength response
of a many-body system [72, 98]. In this framework,
the residual interaction is provided by the so-called Lan-
dau interaction. It determines the response of the sys-
tem but cannot be used to calculate its ground state.
Based on this, Migdal developed the Landau-Migdal the-
ory of finite Fermi systems and applied it successfully to
study collective modes in atomic nuclei [98]. The resid-
ual Landau-Migdal interaction acts between two par-
ticles with momenta q1 and q2 at the Fermi surface,
|q1| = |q2| = kF , and is given by

vres(q1,q2) =

N0

{

F (q1,q2) + F ′(q1,q2) (τ 1 · τ 2)

+G(q1,q2) (σ1 · σ2) +G′(q1,q2) (σ1 · σ2)(τ 1 · τ 2)

+
q2

k2F

[

H(q1,q2) +H ′(q1,q2) (τ 1 · τ 2)
]

S12(q̂)
}

.

(C1)

The normalization factor is defined as the average level
density N0 ≡ 2kFm

∗/~2π2 at at the Fermi momentum
kF = (32π

2ρ0)
1/3, with m∗

0 being the isoscalar effective
mass. The tensor operator

S12(q̂) = 3 (σ1 · q̂) (σ2 · q̂)− σ1 · σ2 (C2)

depends also on the angle between the direction q̂ =
q/|q| of the momentum transfer q = q1 −q2 and the di-
rection of the particles’ spins. Because the single-particle
momenta are restricted to the Fermi surface, the param-
eters F , F ′, G, G′, H , H ′ depend only on the angle
between q1 and q2 and can be expanded into Legendre
polynomials, i.e.

F =
∑

ℓ

fℓ Pℓ(cos θ) , (C3)

and similar for the other parameters.

2. The Landau parameters derived from the

Skyrme energy density functional

To establish the relationship between the Landau pa-
rameters in (C1) and the coupling constants of the
Skyrme EDF in symmetric nuclear matter, we follow the
procedure outlined in [71, 84]. Starting from the Skyrme
energy density functional, the residual particle-hole in-
teraction in coordinate space is obtained as

〈r′1σ
′
1τ

′
1,r

′
2σ

′
2τ

′
2|Vph|r1σ1τ1, r2σ2τ2〉 =

δ2ESk

δρ(r1σ1τ1, r′1σ
′
1τ

′
1)δρ(r2σ2τ2, r′2σ

′
2τ

′
2)

. (C4)

From this, the momentum-space matrix elements of the
residual Landau interaction (C1) are obtained through
the substitutions ∇1 = iq1, ∇2 = iq2, ∇

′
1 = −iq1, and

∇
′
2 = −iq2 in the Landau limit where initial and final

momenta q1 and q2 are both on the Fermi surface. This
results in momentum-space matrix elements of the form

〈q1,q2|Vph|q1,q2〉 =
{

W ss(q1,q2) +W sv(q1,q2) (τ 1 · τ 2)

+
∑

µ,ν

W vs
µν (q1,q2)σ

µ
1 σ

ν
2

+
∑

µ,ν

W vv
µν (q1,q2) (τ 1 · τ 2)σ

µ
1 σ

ν
2

}

. (C5)

with

W ss(q1,q2) = 2Cρ
0 [ρ0] + 4

∂Cρ
0

∂ρ0
ρ0 +

∂2Cρ
0

∂ρ20
ρ20

+ Cτ
0 (q1 − q2)

2 (C6)

W vs(q1,q2) = 2Cρ
1 [ρ0] + Cτ

1 (q1 − q2)
2

W vs
µν(q1,q2) =

(

2Cs
0 [ρ0] + CT

0 (q1 − q2)
2
)

δµν

+ CF
0 (q1 − q2)µ(q1 − q2)ν (C7)

W vv
µν (q1,q2) =

(

2Cs
1 [ρ0] + CT

1 (q1 − q2)
2
)

δµν

+ CF
1 (q1 − q2)µ(q1 − q2)ν . (C8)
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The tensor operator S12(q̂) is easily recognized in (C5)
when we rewrite W vs

µν and W vv
µν

W vs
µν(q1,q2) =

(

2Cs
0 [ρ0] + (CT

0 +
1

3
CF

0 )(q1 − q2)
2
)

δµν

+
1

3
CF

0 q2
(

3q̂µq̂ν − δµν
)

(C9)

W vv
µν (q1,q2) =

(

2Cs
1 [ρ0] + (CT

1 +
1

3
CF

1 )(q1 − q2)
2
)

δµν

+
1

3
CF

1 q2
(

3q̂µq̂ν − δµν
)

. (C10)

Because q1 and q2 are both on the Fermi surface,
(q1 − q2)

2 can be rewritten as 2kF (1 − cos θ), with θ
being the angle between q1 and q2. A straightforward
comparison between (C1) and (C5) then finally gives us
the relation between the Landau parameters and the cou-
pling constants in the Skyrme EDF

f0 = N0

[

2Cρ
0 [ρ0] + 4

∂Cρ
0

∂ρ0
ρ0 +

∂2Cρ
0

∂ρ20
ρ20 + 2Cτ

0 k
2
F

]

,

f1 = −2N0C
τ
0 k

2
F ,

f ′
0 = N0

[

2Cρ
1 [ρ0] + 2Cτ

1 k
2
F

]

,

f ′
1 = −2N0C

τ
1 k

2
F ,

g0 = 2N0

[

Cs
0 +

(

CT
0 + 1

3 C
F
0

)

k2F
]

,

g′0 = 2N0

[

Cs
1 +

(

CT
1 + 1

3 C
F
1

)

k2F
]

,

g1 = −2N0

(

CT
0 + 1

3 C
F
0

)

k2F ,

g′1 = −2N0

(

CT
1 + 1

3 C
F
1

)

k2F ,

h0 = 1
3 N0C

F
0 k2F ,

h′
0 = 1

3 N0C
F
1 k2F . (C11)
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Sagawa, and G. Colò, Phys. Rev. C 79, 041301(R)
(2009).
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[95] T. Bengtsson, S. Åberg, and I. Ragnarsson, Phys. Lett.

B 208, 39 (1988).
[96] P. Bonche, H. Flocard, P.-H. Heenen, Nucl. Phys. A 598,

169 (1996).
[97] J. Dobaczewski, J. Dudek, S. G. Rohoziński, and T. R.
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