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The in-pseudoscalar-meson condensate can be represented through the pseudoscalar-meson’s
scalar form factor at zero momentum transfer. With the aid of a mass formula for scalar mesons,
revealed herein, the analogue is shown to be true for in-scalar-meson condensates. The concept
is readily extended to all hadrons so that, via the zero momentum transfer value of any hadron’s
scalar form factor, one can readily extract the value for a quark condensate in that hadron which is

a measure of dynamical chiral symmetry breaking.

PACS numbers:

Dynamical chiral symmetry breaking (DCSB) and its
connection with the generation of hadron masses was first
considered in Ref. [1]. The effect was represented as a vac-
uum phenomenon. Two essentially inequivalent classes of
ground-state were identified in the mean-field treatment
of a meson-nucleon field theory: symmetry preserving
(Wigner phase); and symmetry breaking (Nambu phase).
Notably, within the symmetry breaking class, each of an
uncountable infinity of distinct configurations is related
to every other by a chiral rotation. This is arguably the
origin of the concept that strongly-interacting quantum
field theories possess a nontrivial vacuum.

With the introduction of the parton model for the de-
scription of deep inelastic scattering (DIS), this notion
was challenged via an argument [2] that DCSB can be
realised as an intrinsic property of hadrons, instead of
via a nontrivial vacuum exterior to the observable de-
grees of freedom. This perspective is tenable because
the essential ingredient required for dynamical symmetry
breaking in a composite system is the existence of a diver-
gent number of constituents and DIS provided evidence
for the existence within every hadron of a divergent sea
of low-momentum partons. This view has, however, re-
ceived scant attention. On the contrary, the introduction
of QCD sum rules [3] as a method to estimate nonper-
turbative strong-interaction matrix elements entrenched
the belief that the QCD vacuum is characterised by nu-
merous, independent, non-vanishing condensates.

Notwithstanding the prevalence of this belief, it does
lead to problems; e.g., entailing a cosmological constant
that is 10%6-times greater than that which is observed
[4, 5]. This unwelcome consequence is partly respon-
sible for reconsideration of the possibility that the so-
called vacuum condensates are in fact an intrinsic prop-
erty of hadrons. Namely, in a confining theory — and
confinement is essential to this view — condensates are
not constant, physical mass-scales that fill all spacetime;
instead, they are merely mass-dimensioned parameters
that serve a practical purpose in some theoretical trun-
cation schemes but otherwise do not have an existence
independent of hadrons [5-8]. Regarding the quark con-
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densate, this perspective was recently elucidated for light
pseudoscalar mesons [7]. Herein we propose an extension
of the concept to all hadrons.

We start with Ref. [9], which presents the relation
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where m, is the pion’s mass and H,, is that part of
the hadronic Hamiltonian density which explicitly breaks
chiral symmetry. It is important to observe that the op-
erator expectation value in Eq. (1) is evaluated between
pion states. In terms of QCD quantities, Eq. (1) entails

Vg ~ 0, m>s =mi,;S5(0), (2)
85(0) = —(x(P) |} (au + dd)|x(P)), (3)
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where m; ; = mg+mg, m,, , are the current-quark masses

at a renormalisation scale ¢, and S¢(0) is the pion’s scalar
form factor at zero momentum transfer, Q> = 0. The
right-hand-side (rhs) of Eq. (2) is proportional to the pion
o-term (see, e.g., Ref. [10]). Consequently, using the con-
nection between the o-term and the Feynman-Hellmann
theorem, Eq. (1) is actually the statement
0
= mg d6—<m727. (4)
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Recall now that one may use the axial-vector Ward-
Takahashi identity to prove [11]: for any pseudoscalar
meson, P, constituted from quarks ¢ and @, whether
ground-state, excited-state or hybrid,

fpmip = (m§ +mg)pp, (5)
where mgy g are the current-quark masses and
Z'fPI{u = <O|Q'75'7HQ|P> (6)
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(K? = —m%; ki = k + K/2, without loss of general-
ity in a Poincaré covariant approach.) Here, fp is the
pseudoscalar meson’s leptonic decay constant and the
rhs of Eq. (6) expresses the axial-vector projection of the
P-meson’s Bethe-Salpeter wavefunction onto the origin
in configuration space. Likewise, Eq.(7) describes the
pseudoscalar projection of the P-meson’s Bethe-Salpeter
wavefunction onto the origin. It is therefore just another
type of P-meson decay constant. Plainly then, both fp
and p% are intrinsic properties of the hadron. Moreover,

wp = —(Qq)p = —fr(01QsalP) = frpp  (8)
is the in-hadron condensate introduced in Ref. [12].

A A d'k
We note that [ := [ 2
a Poincaré-invariant regularization of the integral, with
A the ultraviolet regularization mass-scale; I'p(k; P) is
the pseudoscalar meson’s canonically-normalised Bethe-

Salpeter amplitude; viz.,
Lp(k; K) =5 [iEp(k; K) + v - KFp(k; K)
+7v-kGp(k; K) — ok, K, Hp(k; K)]; (9)

in Egs. (6), (7) represents

Sy, Sg are the dressed-propagators of the ¢- and Q-

quarks; and Z5 4(C, A) are, respectively, the quark wave-

function and Lagrangian mass renormalisation constants.
Using Eq. (5), one obtains
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Equation (10) is valid for any values of m,, g, including
the neighbourhood of the chiral limit, wherein

0 | ¢ pi} _ P2 o
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The superscript “0” indicates that the quantity is com-
puted in the chiral limit. It is well known that f0 # 0
if (and only if) chiral symmetry is dynamically broken
in QCD: it is an order parameter for DCSB. Less widely
appreciated is that in the chiral limit the numerator is
another well-known quantity; viz., using QCD’s quark-
level Goldberger-Treiman relations, one can prove [11]:

F2p5Y = —(aq)*°, (12)

where the rhs is the so-called vacuum quark condensate.
Thus, as demonstrated previously [7, 11, 12], the vacuum
quark condensate is actually the chiral-limit value of the
in-pion condensate; i.e., it describes a property of the
chiral-limit pion. Importantly, Ref.[13] establishes that
the rhs of Eq. (12) is precisely the same condensate that
appears: as a constant in the operator product expansion
[14]; via the Banks-Casher formula [15]; and through the
trace of the chiral-limit dressed-quark propagator.

With Egs. (2), (10), (11), (12), one has shown that in
the neighbourhood of the chiral limit
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Neither PCAC nor soft-pion theorems were employed in
analysing the rhs of Eq.(2). The analysis emphasises
anew that what is commonly regarded as the vacuum
condensate is truly a property of the pion: it is simulta-
neously the chiral limit value of the in-pion condensate
and proportional to the value of the chiral-limit pion’s
scalar form factor at zero momentum transfer. N.B. Dy-
namically generated gluon and quark masses remain large
in the chiral limit, a fact important to our analysis [16].

Given Eq. (5), Eq. (10) is plainly a particular case of a
more general statement; viz.,
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where P,q is any pseudoscalar meson constituted from
the current-quarks ¢, ). The left-hand-side is this me-
son’s scalar form factor at Q% = 0, which is here shown to
be completely determined by the meson’s leptonic decay
constant and in-meson condensate, and their evolution
with current-quark mass.

It is noteworthy that for each quark line within the
bound-state, the Q? = 0 operator insertion in Eq. (14)
acts as a differentiation of the affected dressed-quark
propagator with respect to the current-quark mass. On
a dressed-quark in isolation, this would produce the vac-
uum chiral susceptibility [17] but here the observation
establishes a clear connection between S and measure-
ment of the chiral susceptibility within the hadron.

We have already considered the chiral-limit behaviour
of SquQ; viz., Eq. (11). An exact result is also obtained
in the heavy-quark limit: m¢g — oo, mg/mg — 0. Fol-
lowing Ref. [18] one may demonstrate

¢
K
mgqQ—»00 P,
C}CD ) f}%qQ = —ZQ ) (16)
mq

C mQ—)OO
K =
Peq

where CICD is an interaction-dependent constant. Hence
mp,, = Mg+ mg and

¢

meQ—00 'k‘./P
6, = 252 =128} . (17)

quQ

It is notable that whilst for light current-quark masses,
fp is an order parameter for DCSB, its evolution and
essence are very different in the heavy-quark limit.

A single case remains; namely, pseudoscalar mesons
constituted from current-quarks Q1 and @), with roughly
equal masses, both of which become large: mqg, =~ mqg,,
mgq, — 0o. Equations (16) are not valid in this instance.
Instead, the results depend on the nature of the inter-
action at short distances. However, that is known to be
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FIG. 1. Solid curve, Sp,,; and dashed, Ss,,. The dotted line
is the heavy-quark limit: mq — oo, mu/mQ = 0= S840 =
My + mg. (S%QQ = 1.39GeV, qu@ = 2.06 GeV; m,, is fixed

at 7MeV and mq > ma.)

Coulomb-like in QCD, so that one can show [19]

mQ%OO 3
K0, Ch, (Mg, + Mg,)?, (18)
q
K
meg—00 PQ1Q2
200 P10 19
P, o (19)

with M} = M(—im%@l%), where M (k?) is the
renormalisation-point-independent dressed-quark mass-
function described, e.g., in Ref.[16]. (In the limit con-
sidered here, Mg becomes equivalent to the “pole-mass”

in the effective field theory for quarkonium systems.) It
follows therefore that, in precise analogy with Eq. (17),

mQy~MQy ¢

¢ mQy =0 HPQ1Q2 o ¢
PQiqs 2f2 2BPQ Qa2 (20)
Poiq,
In order to illustrate, we have computed ngqQ using a

symmetry-preserving regularisation and rainbow-ladder
truncation of a vector x vector contact-interaction [20].
The result, obtained with the light-quark parameters
fixed therein, is depicted in Fig.1. The behaviour is
typical: SquQ is a positive-definite, monotonic function,

bounded below by its chiral limit value (BICDSQ) and above
by its large current-quark mass value (2B§3qQ).

With Sf_—,, therefore, we have identified a quantity, de-
fined for any and all pseudoscalar mesons, which directly
measures the strength of helicity-coupling interactions
within the hadron and whose value is between one- and
two-times that strength. Moreover,

heavy
quark(s
rk(s) 215,

aQ’ (21)

0 20 ¢o 2 ¢
(quQ) SPqQ = Kp,, and quQSPqQ
as illustrated in Fig. 2, where m; is the in-pseudoscalar-
meson condensate introduced in Ref.[12]. The matrix
element SICD thus appears ideal for use in extending the
definition of in-hadron quark condensates to other states.
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FIG. 2. Left panel — solid curve, [quQSqu] /3. dashed,

[ fgq oSs qQ]l/ 3. and dotted lines, heavy-quark-limit values of

[2k40]*/? computed from Egs. (6), (7) and Egs. (23), (24), re-
spectively. Right panel — [kq0]*/® computed from Egs. (6),(7)
(pseudoscalar, solid curve) and Egs. (23), (24) (scalar, dashed
curve). The figure illustrates that fquSqQ is a smoothly vary-
1ng measure of DCSB and confirms Egs. (21), (27). (NB.

K% o = (0.24 GeV)?; my, is fixed at 7MeV and mqg > my,.)

Further support for expansion of the in-hadron concept
via this matrix element is provided by considering scalar
mesons. Applying the method of Ref.[11] to the vector
Ward-Takahashi identity, we have established that
(22)

2 s q
fSQQquQ = TMaQPS»

where 1y = mg —mg and

A
[s.o Ky =22 trCD/ VuSq(k+ ) s, (ki K)Sq(k-), (23)
k
A

= —Zytrep ; Sq(k+)l“qu (k; K)SQ(k_). (24)
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The scalar meson leptonic decay constant changes sign
under charge conjugation and vanishes for equal-mass
constituents [21]. Hence, Eq. (22) does not reveal much
about scalar meson masses in the chiral limit nor those
composed of equal-mass heavy constituents. On the
other hand, much can be learnt in the heavy-quark limit.
Indeed, one can prove analogues of Eq. (16); viz.,

mqQ—>00 KSqQ

mo—00
Kqu Q: CS) .quQ - —C > (25)
me
and hence
Ssq mQHOO 2B< mQHOO 2B< mQ%OO SP (26)

where Sg,,, is defined by obvious analogy with Eq. (14).
(The structure of light-quark scalar mesons is a con-
tentious issue [22]. Nevertheless, our results apply to
any scalar meson that can be produced via eTe™ annihi-
lation. It is not of experimental significance, however, if
the pole is deep in the complex plane.)



We have also computed quQ using the symmetry-
preserving treatment of the contact-interaction [20]. Our
result is depicted in Fig. 1. The behaviour is again typi-
cal; namely, quQ is a positive-definite function that ex-

ceeds SICDQQ for all finite myq and approaches its heavy-
quark limit from above. Figure 2 confirms the model-
independent prediction in Eq. (26); viz.,

mo—0o0

f3.085., = 2m5, - (27)
Quantitatively, the chiral-limit value of quQ is
interaction-dependent. Within the framework of
Ref. [20], the result is quQ = 4M°(dM/dm)° =
2.06 GeV, where M% = 0.36 GeV is the model’s chiral-
limit dressed-quark mass. On the other hand, the qual-
itative connection to the dressed-quark mass, a bona-
fide order parameter for DCSB which determines the so-
called vacuum quark condensate, is model-independent.

We have demonstrated unique, model-independent re-
lationships between S; 5 and the in-hadron condensates
that appear in mass formulae for pseudoscalar and scalar
mesons. Whilst such formulae do not exist for other
mesons, the strength of the connections we’ve exhibited
argues for the identification of an in-hadron condensate
for each meson, M, with the product

Xir = S firs (28)

_ 0
85 = —(M|3(aq + QQ)IM) = ——m;,  (29)
(9qu

where m )y is the meson’s mass and fj, its leptonic decay
constant. The scalar case shows that a meaningful scale
is determined even for systems with small f,.

Within the framework of Ref. [20], one can readily eval-
uate results that follow for ground-state vector and axial-
vector mesons; viz. (in GeV),

Sp Io xﬁ/g Say fa X}z{g ) (30)
1.33 0.129 0.281 2.30 0.089 0.263

Comparison with Figs. 1, 2 exposes a similarity between
the: vector and pseudoscalar channels; and axial-vector
and scalar. This persists all the way to the heavy-quark
limit whereat, owing to suppression of hyperfine interac-
tions, pseudoscalar and vector mesons are indistinguish-
able, as are scalar and axial-vector mesons, so that

S
f2 mqQ—00 V,AqQ ¢
= K =
V"AqQ mC ’ VVAqQ
Q

mqQ—oo ¢

KPS0 (31)

The case of heavy-heavy J = 1 states can also be argued
by analogy with the J = 0 states.

Baryons present a qualitatively different situation.
Owing to baryon-number conservation, there are no ana-
logues of the meson decay constants in, e.g., Egs. (6), (7),
and hence no correspondents of the meson mass formu-
lae. Nonetheless, each baryon has a scalar form factor
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FIG. 3. Solid curve, Sn: Eq. (32) for the nucleon; and dashed,
dM/dm (M is the dressed-quark mass). Both computed us-
ing a symmetry-preserving regularisation of a vector X vector
contact interaction [20, 23]: at m = 7MeV, Sy = 1.42.

whose value at Q2 = 0 is a perfect parallel to Sys; viz.,

Sj% = —(Bi2s|3 (@11 + G2q2 + G3q3)| B123),  (32)

123

where Bjas is a baryon constituted from valence-quarks:
q1, G2, q3- For baryons, too, § is a direct measure of
the strength of helicity-coupling interactions within the
hadron. This commonality is a strength of our concept.

In the absence of decay constants, one can still identify
a DCSB order parameter; viz., the baryon’s mass itself.
This is clear once one appreciates that the nucleon’s mass
is approximately 1 GeV because it is composed of three
dressed-quarks, each of which has a mass M ~ 350 MeV
that owes primarily to DCSB [16]. Sp is thus a dimen-
sionless in-baryon chiral susceptibility: it measures the
response to changes in the current-quark mass of a chiral
order parameter which is intrinsic to the baryon.

Using the framework of Ref. [20], the masses of the nu-
cleon and A-resonance, and their evolution with current-
quark mass were computed [23], with the result: for
0 < m?2 < 05GeV? my ~ 1.03 x (3M), as a conse-
quence of cancellation between complex binding effects.
It should therefore follow that Sy & dM/dm on this do-
main; viz., that helicity-coupling within the nucleon is
as strong as that within ground state mesons. This is
verified in Fig.3. The quantitative results are interac-
tion dependent. Qualitatively, however, the comparison
illustrates and highlights the capacity of Sg to serve as a
gauge of DCSB within an internally consistent approach:
in any theory the contrasting of Sp with an analogue
of dM/dm will provide a representative measure of the
strength of DCSB within the baryon under consideration.

The last step is to find a parallel for baryons of X§\4
in Eq. (28). This appears problematic because, owing to
baryon-number conservation, there is no baryonic ana-
logue of fp;. On the other hand, in contrast to Sy, Sp
is dimensionless and Sp — 1 in the heavy-quark limit.
Another inspection of the meson case provides an answer.

A homogeneous Bethe-Salpeter equation does not fix
the normalisation of meson Bethe-Salpeter amplitudes.



An auxiliary condition must be implemented: one re-
quires that an integral involving the amplitude and its
conjugate must evaluate to some predetermined number,
NZ,. The canonical normalisation condition constrains
the bound-state to produce a pole with unit reside in the
quark-antiquark scattering matrix. This may be repre-
sented as requiring N3, = 1 (dimensionless). One can
naturally choose a different convention; e.g, consider the
chiral-limit pion and rescale all elements in Eq. (9) so that
Er(k;0) = B(k?), where the latter function is the scalar
piece of the dressed-quark self-energy in the chiral limit.
When evaluated now, the normalisation integral evalu-
ates to (N2)2 = (f9)2, as a consequence of the axial-
vector Ward-Takahashi identity [24]. Although equality
is not maintained away from the chiral limit, N, de-
fined as described, is an order parameter for DCSB and
vanishes in the heavy-quark limit. Therefore, Np, , can
mathematically be used to replace fp,, in Eq.(28).

The effect of this is readily illustrated within the frame-
work of Ref. [20]. Normalising via Ep,, = 2u4q, where
1/pqq = 1/mg+1/mgq, one finds algebraically that Vg,

NPquPqQ = )ZPqQ = %M‘ZQmQG = NSquSqQ’ (33)

which grows quickly from a chiral-limit value of
(0.243 GeV)? to (0.307 GeV)? in the heavy-quark limit.
(NB. mg = 0.132 GeV, fixed in the wide-ranging study of
Ref. [20].) Tt follows that )wa, defined through the mass-
normalised Bethe-Salpeter amplitude and Np,, com-
puted therefrom, produces in-meson quark condensate
mass-scales that are recognisably characteristic of DCSB.

Similar reasoning can be applied to the Faddeev equa-
tion. In this case: the normalisation integral is con-
nected with the value of the proton’s Dirac form factor
at Q2 = 0; a mass-normalised baryon Faddeev amplitude

produces a normalisation constant N3 with dimensions
of energy-cubed; and we have

=C N2 ¢
XBigs = NBIQS 83123' (34)

To illustrate, we report that within the framework of
Refs. [20, 23], N% = 3.40M?3 so that, using the value
of Sy in Fig. 3, Yy = (0.623 GeV)3.

The first rigorous demonstration that confinement re-
stricts quark condensates to the interior of hadrons was
made in connection with pseudoscalar mesons. The in-
pseudoscalar-meson condensate is a quantity with an
exact expression in QCD. We have proved that it can
equally be represented through the pseudoscalar-meson’s
scalar form factor at zero momentum transfer, Q% = 0.
Subsequently, with the aid of a mass formula for scalar
mesons, revealed herein, we showed that the in-scalar-
meson condensate can be represented in precisely the
same way. By analogy, and with appeal to demonstra-
ble results of heavy-quark symmetry, we argued that the
Q? = 0 values of vector- and pseudovector-meson scalar
form factors also determine the in-hadron condensates in
these cases. We also demonstrated that this expression
for the concept of in-hadron quark condensates is readily
extended to the case of baryons. We therefore contend
that via the Q2 = 0 value of any hadron’s scalar form
factor, one can readily extract the value for a quark con-
densate in that hadron which is a reasonable and realistic
measure of dynamical chiral symmetry breaking.
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