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Abstract

We set up the framework for the calculation of electric dipole moments (EDMs)
of light nuclei using the systematic expansion provided by chiral effective field theory
(EFT). We take into account parity (P ) and time-reversal (T ) violation which, at
the quark-gluon level, originates from the QCD vacuum angle and dimension-six
operators capturing physics beyond the Standard Model. We argue that EDMs
of light nuclei can be expressed in terms of six low-energy constants that appear
in the P - and T -violating nuclear potential and electric current. As examples, we
calculate the EDMs of the deuteron, the triton, and 3He in leading order in the
EFT expansion.



1 Introduction

Permanent electric dipole moments (EDMs) [1, 2] of particles, nuclei, atoms, and molecules
provide stringent bounds on sources of parity (P ) and time-reversal (T ) violation beyond
the phase of the quark-mixing matrix [3] in the Standard Model (SM). Experiments in
preparation [4] aim to improve the current bound on the neutron EDM, |dn| < 2.9 ·10−26 e
cm [5], by up to two orders of magnitude. At the same time, proposals [6] exist for the
measurement of EDMs of charged particles in storage rings, in particular the proton —
for which an indirect bound, |dp| < 7.9 · 10−25 e cm, has been extracted from the 199Hg
EDM [7] — and the deuteron. It may be possible, moreover, to measure in this way the
EDMs of other light nuclei, for example 3He and 3H, as well. A nonzero EDM signal
in this new generation of experiments would be an unambiguous sign of new physics at
energy scales similar to those probed by the LHC, since the EDMs resulting from the
quark-mixing matrix [8] are orders of magnitude below the current experimental limits.

An important outstanding question is whether it will be possible to identify from the
experimental results the microscopic parity- and time-reversal-violating (/P/T ) source. The
SM contains, apart from the quark-mixing phase and its lepton analog, also the /P/T QCD
θ̄ term [9]. This interaction has dimension four and one might expect it to give the main
contribution to hadronic /P/T . However, since the experimental upper limit on the neutron
EDM constrains the vacuum angle θ̄ to be unnaturally small [10, 11], θ̄ <∼ 10−10, non-
SM contributions from higher-dimensional /P/T sources can be relevant, or even dominant.
These higher-dimensional operators originate from an ultraviolet complete theory at a
high energy scale M/T beyond the electroweak scale. The first such effective /P/T operators
one can write down have effective dimension six [12, 13, 14, 15], viz. the quark EDM
(qEDM), the quark and gluon chromo-electric dipole moments (qCEDM and gCEDM,
respectively), and two four-quark (FQ) interactions.

It is difficult to calculate hadronic properties directly from a Lagrangian written in
terms of quark and gluon fields. Still, long-distance effects of the strong interactions can
be described independently of assumptions about the dynamics of QCD if one uses the
low-energy effective field theory (EFT) known as chiral perturbation theory (χPT) [16, 17]
(for reviews see Refs. [18, 19]), which translates microscopic operators into operators that
contain nucleon, pion, and photon fields. After the translation, one is able to calculate
hadronic properties directly from the effective Lagrangian. For the nucleon EDM (and its
associated form factor) stemming from the dimension-four θ̄ term, this method was first
used in Refs. [10, 11], and later extended in the context of SU(2)×SU(2) [20, 21, 22, 23]
and SU(3) × SU(3) [24, 25] χPT. In this way it is possible to establish a link to PT -
conserving (PT ) interactions [21, 22, 23].

This approach can be generalized to include the dimension-six sources [26, 23, 27].
Different /P/T sources at the quark-gluon level produce different hadronic interactions. The
effective chiral Lagrangian includes not only interactions that stem from spontaneous
chiral symmetry breaking and are therefore chiral invariant, but also interactions that
break chiral symmetry in the same way as chiral-symmetry-breaking operators at the
QCD level. Thus, while they all break P and T , the dimension-six operators break chiral
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symmetry differently from each other and from the θ̄ term. Given enough observables
it should be possible to separate the various /P/T sources on the basis of the hadronic
interactions that they generate.

Recently it was argued [28] that a measurement of the deuteron EDM in combination
with the neutron or proton EDM could partially separate the fundamental /P/T sources.
A measurement of the deuteron EDM significantly larger than the nucleon EDM would
point toward new physics in the guise of a quark chromo-EDM. The calculation was
based on a perturbative-pion approach [29, 30] to nuclear EFT, which assumes that pion
exchange can be treated in perturbation theory. A major advantage of this approach is
that analytical results can be obtained. On the other hand, such a framework is applicable
only below the momentum scale (∼ 300 MeV) at which one-pion-exchange (OPE) becomes
significant. This is the case for nuclei where the binding momentum per nucleon is small
compared to the pion mass, but even then the size of uncertainties is set by the inverse
of the relatively low energy scale.

Our goal in this article is to provide a framework for the calculation of the EDMs of
light nuclei using chiral EFT with nonperturbative OPE [31, 32, 33, 30]. By treating OPE
nonperturbatively, the EFT gets extended to higher momenta and thus denser nuclei,
and convergence improves. The fact that nuclear binding momenta are small in the
typical scale of QCD (∼ 1 GeV) is sufficient for a general power counting that is able
to estimate which hadronic interactions are dominant for each fundamental /P/T source.
The /P/T potential has been derived previously [34], and here we obtain the associated /P/T
currents. As explicit examples we consider the EDMs of the deuteron (2H), the triton
(3H), and the helion (3He) 1.

The EDMs of the deuteron [36, 37, 38, 39, 40] and helion [41, 42] have been investi-
gated previously within traditional meson-exchange frameworks. In the most comprehen-
sive studies [39, 42] one started from “realistic” nuclear-force models and a general /P/T
nucleon-nucleon (NN) interaction [39, 43]. The EDMs were expressed in terms of three
/P/T non-derivative pion-nucleon interactions, which are often assumed to be of similar
size and dominate the EDMs, and in addition short-range /P/T interactions due to the ex-
change of heavier mesons were included. The major advantage of a chiral EFT framework
is that it has a direct link to QCD and exploits the chiral properties of the fundamen-
tal /P/T sources. Moreover, the power-counting scheme allows a perturbative expansion
such that the theoretical uncertainties can be estimated and the results can be improved
systematically.

When the chiral-symmetry properties of the dimension-four and dimension-six opera-
tors are considered new insights are in fact obtained [21, 22, 26, 23, 28, 27]. At leading
order, only two of the three /P/T pion-nucleon interactions contribute. Moreover, there are
in general at the same order more contributions, viz. short-range contributions to the
neutron and proton EDMs and two /P/T NN contact interactions. As we will demonstrate
below, the EDMs of light nuclei can be expressed in terms of these six /P/T parameters,
or low-energy constants (LECs). (Other /P/T moments, such as the deuteron magnetic

1Similar calculations are being carried out by a group at FZ Jülich [35].
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quadrupole moment, depend in addition on /P/T pion-nucleon-photon interactions [28].)
For three of the four /P/T sources, only a subset of these six LECs is in fact needed. Each
LEC can in principle be calculated from the underlying /P/T source using an explicit so-
lution of QCD at low energies, for example through lattice simulations. Compared to
nucleons, the EDMs of light nuclei can give crucial complementary information about
the fundamental /P/T source. However, the conventional assumption that the three /P/T
pion-nucleon interactions can cover the whole range of nuclear EDMs is oversimplified.

For the PT potential we use here realistic phenomenological potentials [44, 45, 46].
This “hybrid” approach [47] is justified whenever there is little sensitivity to the details of
short-range physics, since such realistic potentials all include the long-range pion exchange
that appears in chiral EFT at LO. Such an approach has been tested successfully for other
observables [30], such as the PT form factors of the deuteron [48] and /PT NN observables
[49]. The results in Refs. [39, 42] suggest that the same is true for EDMs, and we partially
confirm this below. We use the codes from Refs. [39, 42], but we recast and extend the
results in the framework of chiral EFT with nonperturbative OPE. In particular, we apply
power counting in order to make more model-independent statements. The cases of the
helion and the triton are typical of a generic nucleus. However, in the deuteron, because of
its isoscalar character, the formally LO contribution from the θ̄ term vanishes [38, 39, 28],
a property expected [50] for nuclei with equal number of protons and neutrons, N = Z.
We exploit the systematic character of EFT to extend the deuteron calculation for the θ̄
term to the first non-vanishing order.

Our article is organized as follows. In Section 2, we present the P - and T -conserving and
violating interactions relevant for the calculation of light nuclear EDMs. In Section 3 we
discuss in general the power counting of the various contributions, and present the leading
/P/T potentials and currents, while in Section 4 we specifically address nuclei with N = Z.
Next, we evaluate the EDM of the deuteron in Section 5 and the EDMs of the helion
and the triton in Section 6. In Section 7 we discuss our results and their implications.
Appendices are devoted to the expression of potential and currents in coordinate space.

2 Chiral Perturbation Theory

χPT is the EFT of QCD for processes involving momenta Q ∼ mπ ≪ MQCD, where mπ is
the pion mass and MQCD ∼ 1 GeV is the characteristic scale of QCD. At such momenta the
relevant degrees of freedom are nucleons, photons, and pions. The (approximate) chiral
symmetry of QCD, SUL(2) × SUR(2) ∼ SO(4), plays a very important role, because it
constrains the form of the interactions involving the (pseudo) Goldstone bosons associated
with its spontaneous breaking, the pions. In this section we review these interactions, in
both PT and /P/T sectors of the theory.

The χPT Lagrangian contains all interactions allowed by the symmetries of QCD.
Each interaction is written in terms of pion (π), nucleon (N), and photon (Aµ) fields. The
constraints of (global) chiral and (gauge) electromagnetic symmetries can be incorporated
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through the use of covariant derivatives,

(Dµπ)a =
1

D
(∂µδab + eAµε3ab)πb (1)

for the pion,

DµN =

[
∂µ +

i

F 2
π

τ · (π ×Dµπ) + ieAµ
1 + τ3

2

]
N (2)

for the nucleon, and
Fµν = ∂µAν − ∂νAµ (3)

for the photon. Here Fπ ≃ 185 MeV is the pion decay constant,

D ≡ 1 +
π

2

F 2
π

, (4)

τ are the Pauli matrices in isospin space, and e is the proton electric charge. Since
mN ∼ MQCD, nucleons are approximately non-relativistic in the processes of interest, and
Lorentz invariance is incorporated order by order in the EFT expansion [17]. We denote
the (small) nucleon four-velocity by vµ and its spin by Sµ; in the nucleon rest frame,
vµ = (1,~0) and Sµ = (0, ~σ/2) in terms of the Pauli matrices in spin space, ~σ.

Chiral-invariant interactions are built with pion covariant derivatives, while explicit
chiral symmetry breaking is introduced by the average quark mass m̄ = (mu +md)/2, by
the quark mass difference md−mu = 2m̄ε, by electromagnetic interactions, and /P and/or
/T interactions. Each interaction with the correct symmetry transformation properties
has a strength determined by details of the QCD dynamics. Until they are known, they
are estimated using naive dimensional analysis (NDA) [16, 51, 13]. For example, the pion
mass term originates from explicit chiral-symmetry breaking by the average quark mass,
so m2

π = O(m̄MQCD). The LECs of other chiral-breaking interactions proportional to
powers of m̄ and m̄ε can then be written in terms of m2

π/MQCD. Exchange of hard photons
leads to interactions among hadrons that are proportional to the fine-structure constant
αem = e2/4π. For simplicity, we count ε ∼ 1/3 as O(1) and αem/4π as O(m3

π/M
3
QCD),

since numerically αem/4π ∼ εm3
π/(2πFπ)3. It is convenient to organize the infinity of

effective interactions in the Lagrangian using an integer “chiral index” ∆ and the number
f of fermion fields [16, 18]:

L =
∞∑

∆=0

∑

f

L(∆)
f , (5)

where ∆ = d + f/2 − 2 ≥ 0, with d the number of covariant derivatives and powers of
mπ. The index ∆ tracks the number of powers of M−1

QCD.

2.1 P - and T -conserving chiral Lagrangian

The calculation of the /P/T potential and currents, which we need in order to evaluate
nuclear EDMs, requires also PT interactions, which we summarize here. (A more complete
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list can be found in, for example, Refs. [19, 30, 52, 32, 53].) These interactions result
from the quark (color-gauged) kinetic and mass terms in the QCD Lagrangian.

The terms we need in the PT Lagrangian are

L(0,1,2)
f≤2,PT =

1

2
Dµπ ·Dµ

π − m2
π

2D
π

2 + N̄iv · DN − 1

2mN

N̄
[
D2 − (v · D)2

]
N

− δ̆m2
π − δm2

N

2D2

(
π

2 − π2
3

)
− δm2

π

2D2
π2
3 −

(
δmN + δ̆mN

)
(π × v ·Dπ)3

−2gA
Fπ

Dµπ · N̄τSµN +
β1

Fπ

(
Dµπ3 −

2π3

F 2
πD

π ·Dµπ

)
N̄SµN

−gAδmN

FπmN

[
iN̄ (τ × π)3 S · DN + H.c.

]

− e

16m2
N

εαβµνFµν

{
iN̄ [1 + 2κ0 + (1 + 2κ1) τ3]SαDβN + H.c.

}
. (6)

The pion kinetic and mass terms have ∆ = 0. For notational simplicity, we choose to
absorb in the pion mass mπ a correction ∝ m̄2. At ∆ = 1, the leading electromag-
netic contribution to the pion mass splitting appears, δ̆m2

π = O(αemM
2
QCD/4π), while the

quark-mass difference contribution, δm2
π = O(ε2m4

π/M
2
QCD), is smaller by one power of

εmπ/MQCD. The pion mass splitting, m2
π± − m2

π0 = δ̆m2
π − δm2

π = (35.5 MeV)2 [54], is
dominated by the electromagnetic contribution. The nucleon kinetic terms have ∆ = 0, 1.
Again for simplicity, the average nucleon mass mN absorbs a correction ∝ m̄, the sigma
term. Entering at ∆ = 1, 2, the nucleon mass splitting, mn −mp = δmN + δ̆mN = 1.29
MeV [54] also receives contributions from electromagnetism and from the quark masses.
In this case, the quark-mass contribution δmN is expected to be the largest. By di-
mensional analysis δmN = O(εm2

π/MQCD), and lattice simulations estimate it to be
δmN = 2.26 ± 0.57 ± 0.42 ± 0.10 MeV [55], which is in agreement with an extraction
from charge-symmetry breaking in the pn → dπ0 reaction [56]. The electromagnetic
contribution is δ̆mN = O(αemMQCD/4π), which is O(εm3

π/M
2
QCD) and about the 20% of

δmN . From the Cottingham sum rule [57] one finds δ̆mN = −(0.76 ± 0.30) MeV, which
is consistent with dimensional analysis. In order to achieve the form (6) for LPT , we
have used a field redefinition [53] to eliminate the nucleon mass difference term in favor
of pionic mass and interaction terms. In this way, the nucleon mass to be used in nucleon
propagators is simply mN . The operator with LEC gA is the usual pion-nucleon axial
coupling appearing at ∆ = 0. We also absorb subleading corrections in it, so that the
Goldberger-Treiman relation for the strong pion-nucleon constant, gNNπ = 2gAmN/Fπ,
applies without an explicit discrepancy. If for the pion-nucleon coupling constant we use
gNNπ = 13.07 [58], then gA = 1.29. Its isospin-violating counterpart is the operator with
LEC β1 = O(εm2

π/M
2
QCD) at ∆ = 2. At present there are only bounds on β1 from isospin

violation in NN scattering. The Nijmegen partial-wave analysis of NN scattering data
gives β1 = (0 ± 9) · 10−3 [59], which is comparable to estimates of β1 from π-η mixing.
At ∆ = 2 there is another isospin-violating pion-nucleon interaction generated by nu-
cleon recoil and the nucleon mass difference. Finally, also at ∆ = 2 there is a relativistic
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correction [60] to the electromagnetic coupling of the nucleon involving the isoscalar and
isovector components of the anomalous magnetic moment, respectively κ0 = −0.12 and
κ1 = 3.7.

2.2 P - and T -violating chiral Lagrangian

The lowest-dimension /P/T operator that can be added to the PT QCD Lagrangian is the
dimension-four θ̄ term. With an appropriate choice of the quark fields q = (u, d)T , the θ̄
term can be expressed as a complex mass term [10],

L/P/T,dim=4 = m⋆θ̄ q̄iγ5q , (7)

where m⋆ = mumd/(mu + md) = O(m2
π/MQCD) and θ̄ is the QCD vacuum angle, here

already assumed to be small, θ̄ . 10−10, as indicated by the experimental bound on the
neutron EDM.

The smallness of θ̄ leaves room for other /P/T sources in the strong interactions, which
have their origin in an ultraviolet-complete theory at a high energy scale, such as, for
example, supersymmetric extensions of the Standard Model [15]. Well below the scale
M/T characteristic of T violation, we expect /P/T effects to be captured by the lowest-
dimension interactions among Standard Model fields that respect SUc(3)×SUL(2)×UY (1)
gauge symmetry. Above MQCD, strong interactions are described by the most general
Lagrangian with Lorentz, color, and electromagnetic gauge invariance among the lightest
quarks, gluons, and photons. The effectively dimension-six /P/T terms at this scale can be
written as [12, 13, 14, 15]

L/P/T,dim=6 = −1

2
q̄ (d0 + d3τ3)σ

µνiγ5q Fµν −
1

2
q̄
(
d̃0 + d̃3τ3

)
σµνiγ5λaq Ga

µν

+
dW
6

εµνλσfabcGa
µρG

b ρ
ν Gc

λσ +
1

4
ImΣ1

(
q̄q q̄iγ5q − q̄ τ q · q̄ τ iγ5q

)

+
1

4
ImΣ8

(
q̄λaq q̄λaiγ5q − q̄λa

τ q · q̄λa
τ iγ5q

)
, (8)

in terms of the gluon field strength Ga
µν , the Gell-Mann matrices λa in color space, and

the associated structure constants fabc. In Eq. (8) the first (second) term represents the
isoscalar d0 (d̃0) and isovector d3 (d̃3) components of the qEDM (qCEDM). Although these
interactions have canonical dimension five, they originate just above the Standard Model
scale MW from dimension-six operators [12] involving in addition the carrier of electroweak
symmetry breaking, the Higgs field. They are thus proportional to the vacuum expectation
value of the Higgs field, which can be traded in for the ratio of the quark mass to Yukawa
coupling, mq/fq. Writing the proportionality constant as eδqfq/M

2
/T (4πδ̃qfq/M

2
/T ), we have

d0,3 ∼ O
(
eδ0,3

m̄

M2
/T

)
, d̃0,3 ∼ O

(
4πδ̃0,3

m̄

M2
/T

)
, (9)
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in terms of the average light-quark mass m̄ and the dimensionless factors δ0,3 and δ̃0,3 that
represent typical values of δq and δ̃q. The third term in Eq. (8) [13] is the gCEDM, with
coefficient

dW ∼ O
(

4πw

M2
/T

)
, (10)

in terms of a dimensionless parameter w. The fourth and fifth operators [14, 15] are /P/T
FQ operators, with coefficients

ImΣ1,8 = O
(

(4π)2σ1,8

M2
/T

)
, (11)

in terms of further dimensionless parameters σ1,8. The sizes of δ0,3, δ̃0,3, w, and σ1,8

depend on the exact mechanisms of electroweak and PT breaking and on the running to
low energies where nonperturbative QCD sets in. The minimal assumption is that they
are O(1), O(gs/4π), O((gs/4π)3), and O(1), respectively, with gs the strong coupling
constant. However, they could be significantly smaller, when parameters encoding /P/T
beyond the Standard Model are small, or significantly larger, since fq is unnaturally small;
for discussion and examples, see for instance Refs. [2, 15].

The operators in Eqs. (7) and (8) have different transformation properties under chiral
symmetry, which has profound implications for the form and relative importance of the
/P/T pion-nucleon and NN couplings in the effective Lagrangian. The θ̄ term in Eq. (7)
transforms as the fourth component of an SO(4) vector P = (q̄ τ q, q̄iγ5q), the third
component of which is responsible for quark-mass isospin violation [32]. /P/T from the θ̄
term and isospin violation from the quark mass difference are therefore intrinsically linked;
this link appears in certain relations [10, 11, 22] between the coefficients of /P/T and isospin-
breaking operators in χPT through a coefficient ρ = (1 − ε2)θ̄/2ε. The dimension-six
operators in Eq. (8) have different transformation properties still [27, 26, 23, 28, 34]. The
isoscalar and isovector qEDM and qCEDM transform as the fourth and third components
of two other SO(4) vectors. There is no useful link to PT observables, and the third
component of the qCEDM vector tends to generate hadronic interactions, which for θ̄
require tensor products and are of higher order. For qEDM, purely hadronic interactions
arise from integrating out at least one hard photon, which leads to further breaking of
chiral symmetry in the form of tensor products of the vectors with an antisymmetric chiral
tensor [32]. The contributions of the qEDM to hadronic couplings, like pion-nucleon or
NN couplings, are suppressed by αem/4π. In contrast, the gCEDM and the two /P/T FQ
operators are singlets of the chiral group. Because they are chiral invariant, and contain
no photons, the gCEDM and the two /P/T FQ operators lead to exactly the same effective
interactions, although, of course, with different strengths. For simplicity of notation,
in the following we treat gCEDM and /P/T FQ operators together; we refer to them as
chiral-invariant (χI) sources and use w to denote both w and σ1,8:

{w, σ1, σ8} → w. (12)
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We now present a subset of the complete /P/T chiral Lagrangian originating from the
fundamental sources above. We only give the operators that play a role in the LO calcu-
lation of light-nuclei EDMs, the more general Lagrangian being found in Refs. [22, 27].
In general, a LO calculation of the EDM of a light nucleus requires six /P/T interactions:

L/P/T = −2 N̄
(
d̄0 + d̄1τ3

)
SµN vνFµν −

1

Fπ
N̄ (ḡ0 τ · π + ḡ1π3)N

+C̄1N̄N ∂µ(N̄SµN) + C̄2N̄τN · ∂µ(N̄Sµ
τN) + . . . , (13)

which represent short-range isoscalar (d̄0) and isovector (d̄1) contributions to the nucleon
EDM, isoscalar (ḡ0) and isovector (ḡ1) non-derivative pion-nucleon couplings, and two
short-range /P/T NN interactions (C̄1, C̄2). Here we relegate to the “. . .” terms related to
the above by chiral symmetry. The explicit forms of these terms depend on the /P/T source
but, because they involve more pion fields, they do not appear in the LO EDMs we are
interested in. Note that Eq. (13) is the form of L/P/T after a field redefinition is performed
to eliminate pion tadpoles and guarantee vacuum alignment; the parameters thus absorb
contributions generated by this field redefinition.

Which of these six interactions is relevant depends on the system we are studying and
on the fundamental /P/T source. As will be seen, the spin and isospin of the deuteron cause
the deuteron EDM to be sensitive to only three of the above operators. In more general
cases, the EDMs of light nuclei are sensitive to all six interactions. The EDMs of heavy
nuclei could involve more operators than the set above. Generically one might expect a
dominance by effects from (i) a single nucleon, since multi-nucleon contributions tend to
be suppressed at low energies by phase space; and (ii) pions, thanks to their small mass
and related long range. However, significant deviation from this expectation comes from
the relative sizes of the various LECs, which depends on the /P/T source. NDA leads to
the following estimates for the dimension-four and -six /P/T sources:

• For the θ̄ term, four operators play a role at LO, the other two appearing only
at subleading orders. In order to generate ḡ1, which is relevant for the deuteron
EDM, the θ̄ term requires an insertion of the quark mass difference, which causes
a suppression of ḡ1 relative to ḡ0 by a factor εm2

π/M
2
QCD [22]. (At the same order,

there exists also a two-derivative pion-nucleon coupling, but for our purpose here it
can be absorbed by a small change in ḡ0 [34].) The LECs scale as

ḡ0 = O
(
θ̄

m2
π

MQCD

)
, ḡ1 = O

(
εθ̄

m4
π

M3
QCD

)
, d̄0,1 = O

(
eθ̄

m2
π

M3
QCD

)
. (14)

• For the qCEDM, the same four operators are needed. In this case, there is no a

priori relative suppression of ḡ1 and the LECs scale as

ḡ0 = O
(

(δ̃0 + εδ̃3)
m2

πMQCD

M2
/T

)
, ḡ1 = O

(
δ̃3
m2

πMQCD

M2
/T

)
,

d̄0,1 = O
(

(δ̃0 + δ̃3)
m2

π

MQCDM2
/T

)
. (15)
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(Here the “+” signs are not to be taken literally; they are only meant to signify two
independent contributions to a LEC.)

• For the qEDM, only the short-range EDM contributions are important, and they
scale as

d̄0,1 = O
(
eδ0,3

m2
π

MQCDM2
/T

)
. (16)

• For the χI (gCEDM and FQ) /P/T sources, the non-derivative pion-nucleon interac-
tions, which break chiral symmetry, are suppressed by a factor m2

π/M
2
QCD compared

to short-range nucleon EDM contributions and /P/T NN interactions, which conserve
chiral symmetry. (Again, a two-derivative pion-nucleon interaction exists at the
same order but can be absorbed in ḡ0 [34].) All six operators thus become relevant,
and the LECs scale as

ḡ0 = O
(
w
m2

πMQCD

M2
/T

)
, ḡ1 = O

(
εw

m2
πMQCD

M2
/T

)
,

d̄0,1 = O
(
ew

MQCD

M2
/T

)
, C̄1,2 = O

(
w
MQCD

F 2
πM

2
/T

)
. (17)

2.3 EDM of the nucleon

Using these interactions, the nucleon EDM has been calculated in χPT up to NLO for all
sources of dimension up to six [25, 26, 23].

In the power counting of χPT [16], one considers typical momenta Q ∼ mπ ∼ Fπ ≪
MQCD ∼ mN ∼ 2πFπ and assigns

• a factor Q4/(4π)2 for each loop integral;

• a factor 1/Q for each nucleon propagator;

• a factor 1/Q2 for each pion propagator;

• the NDA estimate for the LECs corresponding to the interactions in the diagram.

This produces for any observable an expansion in the small ratio Q/MQCD.
For the nucleon EDM, in all cases there are short-range contributions from d̄0,1 at LO.

For qEDM and χI sources, the relative suppression of pion-nucleon couplings means that
loops come at higher orders and only d̄0,1 appear up to NNLO [26]. In contrast, for θ̄ and
qCEDM, one-loop diagrams contribute at LO and NLO. Using dimensional regularization
in d dimensions at a renormalization scale µ, and introducing

δd̄1 ≡
egAḡ0

(2πFπ)2

(
2

4 − d
− γE + ln

4πµ2

m2
N

)
(18)
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where γE ≃ 0.577 is the Euler-Mascheroni constant, the isoscalar and isovector EDMs
can be expressed at NLO respectively as [25, 26, 23]

d0 = d̄0 +
egAḡ0

(2πFπ)2
π

[
3mπ

4mN

− δmN

mπ

]
+

egAḡ1
(2πFπ)2

π

4

mπ

mN

(19)

and

d1 = d̄1 + δd̄1 +
egAḡ0

(2πFπ)2

[
ln

m2
N

m2
π

+
5π

4

mπ

mN
− δ̆m2

π

m2
π

]
+

egAḡ1
(2πFπ)2

π

4

mπ

mN
, (20)

where the ḡ1 terms applies to qCEDM only. The dependence on the arbitrary scale µ in
δd̄1 is compensated by d̄1. In fact, the loop contributions cannot be separated from the
short-range pieces in a model-independent way. After absorbing all these terms in d̄0,1,
which we do for the rest of the paper, we can write for all sources

dn = d̄0 − d̄1 (21)

for the neutron and
dp = d̄0 + d̄1 (22)

for the proton.
However, one expects no cancellation between short-range contributions, which are

analytic in m2
π, and the “chiral-log” and other finite terms, which are not. Thus the

non-analytic terms serve as lower-bound estimates for the size of dp,n. We then expect,
for θ̄ [11] and qCEDM [23],

d̄0 & 0.01

[
ḡ0
Fπ

+ 0.3
ḡ1
Fπ

]
e fm , (23)

d̄1 ∼ 0.1

[
ḡ0
Fπ

+ 0.03
ḡ1
Fπ

]
e fm . (24)

As stressed in Ref. [26], measurements of both dn and dp alone can tell us little about
the underlying source of /P/T . More can be learned from measuring the EDMs of light
nuclei, the calculation of which we now turn to.

3 Ingredients: the generic case

The EDM of a nucleus with A ≥ 2 nucleons can be separated into two contributions. The
first contribution comes from an insertion of the /P/T electromagnetic current J0

/P/T . The

second stems from the PT charge density J0
PT upon perturbing the wavefunction of the

nucleus with the /P/T potential V/P/T , such that the wavefunction obtains a /P/T component.
To first order in the /P/T sources, the EDM is thus a sum of two reduced matrix elements

dA =
1√
6

(〈
ΨA

∣∣∣
∣∣∣ ~D/P/T

∣∣∣
∣∣∣ΨA

〉
+ 2

〈
ΨA

∣∣∣
∣∣∣ ~DPT

∣∣∣
∣∣∣ Ψ̃A

〉)
. (25)
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The nuclear ground state |ΨA〉 and its parity admixture |Ψ̃A〉 are the solutions of homo-
geneous and inhomogeneous Schrödinger equations,

(E −HPT )|ΨA〉 = 0 , (26)

(E −HPT )|Ψ̃A〉 = V/P/T |ΨA〉 , (27)

respectively, where HPT is the PT Hamiltonian. The /P/T potential V/P/T is shown in

coordinate space in Appendix A. The EDM operators ~DPT and ~D/P/T are obtained from
the corresponding charge densities J0

PT and J0
/P/T , respectively, as discussed in Appendix

B. The factor of 2 in front of the second matrix element corresponds to the number of
time-ordered diagrams, and the phases of wavefunctions are chosen so that these matrix
elements are purely real.

In this section we identify the ingredients needed for the LO calculation of dA, assuming
no particular cancellations or suppressions due to spin/isospin factors.

3.1 Power counting

Both the potential V/P/T and the current J0
/P/T can be obtained from the Lagrangian of the

previous section. The potential V/P/T for the various /P/T sources has been derived in Ref.
[34]. To the order we are concerned with here, the potential can be taken as two-body.
The /P/T and PT currents can also be divided into one-body and more-body currents.
As we will see, the latter are dominated by two-body effects as well. There are thus
four classes of contributions to a nuclear EDM, schematically drawn in Fig. 1. In order
to determine which diagram(s) give(s) the most important contribution(s) we need to
estimate their sizes by applying power counting.

We need to count powers of the generic momentum Q in the process, in order to get an
expansion in Q/MQCD. Here Q is given by the nuclear binding momentum, which for a
typical nucleus can be taken as Q ∼ mπ ∼ Fπ, as standard in χPT. However, as pointed
out by Weinberg [31], the power counting of χPT needs to be adapted to the existence
for A ≥ 2 of intermediate states consisting purely of propagating nucleons. A generic
diagram can be split into “reducible” parts, that contain such states, and “irreducible”
subdiagrams, which do not. Within an irreducible subloop, the contour integration over
the 0th component of the loop momentum can always be performed in such a way as to
avoid the nucleon pole. In these diagrams the nucleon energy is of order Q, as assumed
in χPT power counting. On the other hand, in diagrams where the intermediate state
consists purely of propagating nucleons, i.e. reducible diagrams, one cannot avoid the
poles of nucleon propagators, thus picking up energies ∼ Q2/mN [31] rather than ∼ Q.
Moreover, such loops also obtain an additional enhancement of 4π. The contribution of
such a reducible diagram can be counted by applying the modified rules [30]:

• a factor Q5/(4πmN) for each loop integral;

• a factor mN/Q
2 for each nucleon propagator;

• a factor 1/Q2 for each pion propagator;

11



Figure 1: The four general classes of diagrams contributing to a nuclear EDM described
in the text. Solid and wavy lines represent nucleons and photons. The three (two) dots
stand for A − 3 (A − 4) nucleon propagators. The large triangle denotes the nuclear
wavefunction; the oval, iterations of the PT potential; the dot with an attached photon,
the PT one-body current; the oval with an attached photon, the PT two-body current;
the black square, the /P/T potential; and the black square with an attached photon, the
/P/T current.

• the NDA estimate for the LECs corresponding to the interactions in the diagram.

As an example, consider an insertion of a LO, PT pion exchange in a diagram. It gives
rise to one additional loop ∼ Q5/(4πmN), two nucleon propagators ∼ m2

N/Q
4, a pion

propagator ∼ 1/Q2, and two insertions of the strong pion-nucleon vertex ∼ (Q/Fπ)2.
Combining these factors, the extra one-pion exchange amounts to Q/MNN , where MNN =
4πF 2

π/mN ∼ Fπ. A similar power counting holds for short-range PT interactions, although
the situation for them is more complicated [33]. For very light nuclei, Q < MNN and pion
exchange can be treated perturbatively [29, 30]. The deuteron EDM has in fact already
been considered in this light [26]. For less dilute nuclei, however, one expects Q ∼ MNN

and pion exchange needs to be summed to all orders [30, 33]. The counting rules above
are a generalization for A ≥ 2 of the rules given in Ref. [30]. Note that they provide
a natural explanation for the Q/MQCD supression associated with an additional nucleon
observed in pion-nucleus scattering [61, 35].

We can now estimate the size of each of the classes of diagrams in Fig. 1. For each
class we take the PT and /P/T LO interactions in Eqs. (6) and (13), respectively. The
iteration of the LO PT potential costs no factors, and is necessary among nucleons in
reducible intermediate states, as indicated in diagrams (c) and (d) of Fig. 1. Such iteration
among nucleons before and after all /P/T and electromagnetic insertions builds up the PT
wavefunction, represented in Fig. 1 as well, which introduces an overall normalization of
the diagrams. This normalization can be read off from the diagram analogous to (a), where
the one-body current is given instead by the electromagnetic charge. In the following we
account for this normalization by omitting the A−1 loops and A+1 nucleon propagators
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that are common to all diagrams. Thus, diagram (a) is simply

Da = O (dp,nQ) . (28)

In contrast, diagram (b) has one additional irreducible loop ∼ Q5/(4πmN), one additional
nucleon propagator ∼ mN/Q

2, and the leading /P/T two-body current. For both qEDM
and χI sources the latter brings a suppression of a factor Q2/M2

QCD, whereas for the other
sources the contribution is comparable to the one-body term. One can continue in this
fashion to find that for diagram (c),

Dc = O
(
e
ḡ0,1
F 2
π

Q

)
+ O

(
e C̄1,2F

2
πQ
)
, (29)

while for diagram (d) there is always a further suppression by a factor Q2/M2
QCD. Anal-

ogously, more-body potentials and currents bring further suppression.
Plugging in the scaling of the LECs for the different sources, Eqs. (14), (15), (16), and

(17), we can draw the following general expectations for the EDMs of light nuclei:

• For the θ̄ term, the nuclear EDM is dominated by diagram (c): the nuclear wave-
function acquires a /P/T admixture after a one-pion exchange involving the isoscalar
ḡ0 vertex; the admixed wavefunction then couples to the proton charge.

• For the qCEDM, the nuclear EDM is dominated by the same effect as the θ̄ term.
However, for the qCEDM the /P/T pion-nucleon vertex can be either ḡ0 or ḡ1.

• For the qEDM, the nuclear EDM is dominated by the sum of the EDMs of the
constituent nucleons, diagram (a).

• For χI sources, the nuclear EDM is more complicated than for the other sources.
Due to the chiral suppression of the pion-nucleon interactions, diagrams (a) and (c)
are equally important, and in the latter the short-range /P/T interactions C̄1,2 need
to be included besides the one-pion exchange from both ḡ0 and ḡ1 couplings.

3.2 P - and T -odd potential

For all sources considered, except qEDM, an insertion of the LO /P/T two-nucleon potential
appears in the EDM at LO. The general /P/T NN potential was derived in Ref. [34] and
we summarize the relevant parts here. In momentum space the potential is given by

V/P/T (~k ) = i
gAḡ0
F 2
π

τ
(i) · τ (j)

(
~σ (i) − ~σ (j)

)
·

~k

~k 2 + m2
π

+i
gAḡ1
2F 2

π

[(
τ
(i)
3 + τ

(j)
3

) (
~σ (i) − ~σ (j)

)
+
(
τ
(i)
3 − τ

(j)
3

) (
~σ(i) + ~σ(j)

)]
·

~k

~k 2 + m2
π

− i

2

[
C̄1 + C̄2 τ

(i) · τ (j)
] (

~σ (i) − ~σ (j)
)
· ~k , (30)
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where ~σ(n)/2 (τ (n)/2) is the spin (isospin) vector of nucleon n, and ~k = ~pi − ~p
′

i is the
momentum transferred from nucleon i. In this expression, at LO ḡ0 originates from θ̄-
term, qCEDM, and χI sources; ḡ1 from qCEDM and χI sources; and C̄i from χI sources
only. The pion-exchange parts are well known (for example, Refs. [50, 38, 39]), while
the contact interactions incorporate all other /P/T effects of short-range, such as single
exchanges of the mesons ω and η (C̄1) and ρ (C̄2) [34].

3.3 Currents

As we argued above, only one-body currents are necessary at LO. For the θ̄ term, qCEDM,
and χI sources we need the PT current coming from the proton charge in Eq. (6),

J0
PT =

e

2

(
1 + τ

(i)
3

)
, (31)

where τ
(i)/2 is the isospin of the nucleon that couples to the one-body current.

For the qEDM and χI sources we need as well the /P/T current originating from the
nucleon EDMs,

J0
/P/T = −i

(
d̄0 + d̄1τ

(i)
3

)
~σ(i) · ~q , (32)

where ~σ(i)/2 is the spin of the nucleon that interacts with the photon and ~q is the outgoing
photon momentum.

4 Ingredients: nuclei with N = Z

Although the power counting discussed above holds for general light nuclei, it is possible
that a diagram, which is expected to be LO, does not contribute to the EDMs of certain
systems. For nuclei of equal neutron and proton number, N = Z, i.e. the third component
of isospin I3 = 0, an insertion of the isoscalar /P/T potential in combination with the LO
one-body PT current, i.e. Eq. (31), does not contribute to the EDM [50]. To see this,
consider the EDM operator resulting from the LO one-body PT current, which takes the
simple expression

~D
(1)
PT =

e

2

A∑

i=1

(
1 + τ

(i)
3

)
~ξi =

e

2

A∑

i=1

τ
(i)
3

~ξi (33)

in intrinsic coordinates ~ξi with
∑A

i=1
~ξi = 0. Since this operator is isovector, i.e. ∆I =

1, and conserves I3, i.e. ∆I3 = 0, it can only yield a non-vanishing moment when
the nuclear state of a (I , I3 = 0) nucleus acquires some parity admixture with isospin
(I

′

= I ± 1 , I
′

3 = 0). Therefore, one needs isovector components in V/P/T to induce such
admixture. The above argument holds in the non-relativistic limit.

This observation is of no concern for sources where there are other contributions at
the same order as those contributions that vanish. The nuclear EDM is then simply
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dominated by the non-vanishing LO terms. For the θ̄ term, however, the LO contribution
consists only of an insertion of the isoscalar /P/T potential, such that, for N = Z nuclei,
we need to go further down in power counting to find the dominant EDM contributions.

4.1 Power counting

Because the formally leading diagram (c) of Fig. 1 vanishes for N = Z in the θ̄-term
case when both the PT one-body current and the /P/T two-body potential are used, let
us first consider corrections in this diagram. It turns out that NLO corrections to both
the /P/T potential [34] and PT one-body current vanish, and the first corrections we need
to account for are at NNLO. By looking at the scaling of the LECs for the θ̄ term in
Eq. (14) and the power counting for the classes of diagrams in Fig. 1, we then conclude
that the first non-vanishing contributions can come from all classes of diagrams: the LO
nucleon EDMs in diagram (a), the LO /P/T two-body currents in diagram (b), the NNLO
/P/T two-body potential or the NNLO PT one-body current in diagram (c), and the LO
PT two-body currents with the LO /P/T two-body potential in diagram (d).

For the other sources only parts of the LO contributions given in the previous section
remain. For qCEDM and χI sources we need the /P/T potential from ḡ1 OPE. For qEDM
and χI sources we also need the isoscalar short-range contribution to the nucleon EDM.

4.2 P - and T -odd potential

For qCEDM and χI sources we can use the same potential as in the generic case, but
the ḡ0 and C̄1,2 terms will not contribute. We do not require a /P/T -potential for qEDM.
For the θ̄ term we need the NNLO /P/T potential calculated in Ref. [34]. At this order
further isoscalar terms appear, which also will not contribute. Thus we need here only
the following terms:

V/P/T (~k, ~K, ~P ) =
i

2F 2
π

[(
gAḡ1 −

ḡ0β1

2

)(
τ
(i)
3 + τ

(j)
3

) (
~σ(i) − ~σ(j)

)

+

(
gAḡ1 +

ḡ0β1

2

)(
τ
(i)
3 − τ

(j)
3

) (
~σ(i) + ~σ(j)

)]
·

~k

~k 2 + m2
π

+i
ḡ0gA
3F 2

π

[
δ̆m2

π − δm2
π −

(δ̆m2
π)2

~k2 + m2
π

− δm2
N

](
3 τ

(i)
3 τ

(j)
3 − τ

(i) · τ (j)
)

×
(
~σ(i) − ~σ(j)

)
·

~k

(~k 2 + m2
π)2

+
ḡ0gA
F 2
π

δmN

mN

(
τ

(i) × τ
(j)
)
3

×
[
(
~σ(i) + ~σ(j)

)
· ~K +

(
~σ(i) − ~σ(j)

)
·
(

~P

2
+

(~P · ~k)~k

~k 2 + m2
π

)]
1

~k 2 + m2
π

,(34)

where ~P = ~pi + ~pj is the center-of-mass (CM) momentum of the nucleon pair and ~K =
(~pi + ~p

′

i − ~pj − ~p
′

j )/4. The first two terms originate in one-pion exchange with ḡ1 instead
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of ḡ0 or with β1 instead of gA. The next term arises from isospin breaking in the pion and
nucleon masses, and it is very small [34]. The last term is due to isospin breaking in the
pion-nucleon vertex. The potential also includes 1/m2

N corrections [34], which we do not
include here for the reasons given below.

4.3 Currents

For the same reasons that require the NNLO /P/T potential we also need the NNLO PT one-
body electric current, to be used with the θ̄-term LO potential. Again we do not bother
with terms that give a vanishing contribution for N = Z nuclei. The only remaining
correction from Eq. (6) is given by

J0
PT = − ie

16m2
N

εlmnσ(i)lqm (pi + p′i)
n
[
1 + 2κ0 + (1 + 2κ1) τ

(i)
3

]
, (35)

which agrees with Ref. [60]. Here ~pi (~p
′

i ) is the momentum of the nucleon that couples
to the photon before (after) interaction.

We also need two-body currents, both PT and /P/T . We use incoming momenta ~pi =
~P/2 + ~p and ~pj = ~P/2 − ~p and outgoing momenta ~p

′

i = ~P
′

/2 + ~p ′ and ~p
′

j = ~P
′

/2 − ~p ′.

The photon momentum ~q = ~P − ~P
′

is outgoing. For convenience we introduce ~k = ~p−~p ′

as before, ~K = (~p + ~p ′)/2, and ~Pt = (~P + ~P
′

)/2. In the evaluation of the currents at
the order we are interested we can use the nucleon on-shell relation p0n = ~p 2

n/2mN , or

alternatively k0 = (~Pt · ~k − ~q · ~K)/2mN .
The relevant diagrams for the LO two-body PT electric current, used again in combi-

nation with the LO /P/T two-body potential, are shown in Fig. 2. All interactions come
from the PT Lagrangian, Eq. (6). In momentum space the current reads

J0
PT,a = +

2ieg2A
F 2
π

(
τ
(i) × τ

(j)
)
3
k0 [~σ(i) · (~k + ~q/2)][~σ(j) · (~k − ~q/2)]

[(~k + ~q/2)2 + m2
π][(~k − ~q/2)2 + m2

π]
,

J0
PT,b = − ieg2A

2F 2
πmN

(
τ
(i) × τ

(j)
)
3

×
[

[~σ(i) · (~Pt + 2 ~K)][~σ(j) · (~k − ~q/2)]

(~k − ~q/2)2 + m2
π

+
[~σ(j) · (~Pt − 2 ~K)][~σ(i) · (~k + ~q/2)]

(~k + ~q/2)2 + m2
π

]
,

J0
PT,c = −2eg2A

F 2
π

δmN

(
τ
(i) · τ (j) − τ

(i)
3 τ

(j)
3

) [~σ(i) · (~k + ~q/2)][~σ(j) · (~k − ~q/2)]

[(~k + ~q/2)2 + m2
π][(~k − ~q/2)2 + m2

π]
. (36)

We also need to include the LO two-nucleon /P/T electric current. The diagrams con-
tributing to this current are shown in Fig. 3. Here PT interactions come from the PT
Lagrangian, Eq. (6), and the /P/T interaction is the ḡ0 vertex in the /P/T Lagrangian, Eq.
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Figure 2: Diagrams contributing to the PT two-nucleon electric current. Solid, dashed,
and wavy lines represent nucleons, pions, and photons. A diamond marks an isospin-
breaking PT interaction and the other vertices isospin-conserving PT interactions: lead-
ing (filled circles) and subleading (circled circles). Only one topology per diagram is
shown.

Figure 3: Diagrams contributing to the /P/T two-nucleon electric current. A square marks
a /P/T interaction; other notation as in Fig. 2. Only one topology per diagram is shown.

(13). The current is given by

J0
/P/T,a = +

2egAḡ0
F 2
π

(
τ
(i) × τ

(j)
)
3
k0 (~σ(i) + ~σ(j)) · ~q/2 + (~σ(i) − ~σ(j)) · ~k

[(~k + ~q/2)2 + m2
π][(~k − ~q/2)2 + m2

π]
,

J0
/P/T,b = − egAḡ0

2F 2
πmN

(
τ
(i) × τ

(j)
)
3

[
~σ(i) · (~Pt + 2 ~K)

(~k − ~q/2)2 + m2
π

− ~σ(j) · (~Pt − 2 ~K)

(~k + ~q/2)2 + m2
π

]
, (37)

J0
/P/T,c = +

2iegAḡ0
F 2
π

δmN

(
τ
(i) · τ (j) − τ

(i)
3 τ

(j)
3

) (~σ(i) + ~σ(j)) · ~q/2 + (~σ(i) − ~σ(j)) · ~k
[(~k + ~q/2)2 + m2

π][(~k − ~q/2)2 + m2
π]

.

5 EDM of the Deuteron

We are now in position to calculate the EDM of the deuteron, which provides the simplest
example of an N = Z nucleus. The ground state of the deuteron is mainly a 3S1 state.
The deuteron obtains a 1P1 component after a ḡ0 pion exchange or an insertion of C̄1,2.
Since the LO PT one-nucleon current is spin independent, it cannot bring the deuteron
wavefunction from 1P1 to 3S1, and therefore these contributions vanish for the deuteron,
as anticipated on more general grounds in the previous section.

The deuteron EDM has been studied before in the meson-exchange picture [36, 37,
38, 39, 40], with various degrees of sophistication in the treatments of the P - and T -
conserving interaction HPT . Using modern high-quality phenomenological potentials
[44, 45], Ref. [39] found that the model dependence of HPT is rather small for a deuteron
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EDM generated by the OPE sector of the /P/T interaction. The detailed study in Ref. [40]
confirmed this point. Since our new EFT scheme shows that the leading-order contribu-
tion from various /P/T sources to the deuteron EDM also comes from the long-range terms
in V/P/T , we take advantage of the existing calculation scheme of Ref. [39] to obtain wave

functions |Ψ2H〉 and |Ψ̃2H〉. The calculation is performed in coordinate space using the /P/T
potentials and currents from Appendices A and B, respectively. Of course, a fully con-
sistent treatment would involve using the PT interaction HPT derived from the complete
chiral Lagrangian, instead of a phenomenological potential. At present, unfortunately,
such a consistent potential does not exist beyond LO [33]. It would include relativistic
corrections as well, which are absent in the phenomenological potentials we use. For this
reason, we neglect relativistic corrections in the /P/T potential and currents as well. We
expect that the results from a fully consistent calculation will not deviate significantly
from the results we obtain here. The numbers below correspond to the Argonne v18 po-
tential [45], but results for the Reid93 and Nijmegen II potentials [44] agree within 5%.
This is less than the error of order mπ/MQCD ∼ 20% intrinsic to χPT in lowest order.

The simplest contribution to the deuteron EDM comes from the constituent EDMs.
The LO J0

/P/T , given in Eq. (32), yields a one-body EDM operator

~D
(1)
/P/T =

A∑

i=1

(
d̄0 + d̄1 τ

(i)
3

)
~σ(i) . (38)

For the deuteron, an isoscalar (I = 0) and spin-triplet (S = 1) state, one simply gets

1√
6

〈
Ψ2H

∣∣∣
∣∣∣ ~D(1)

/P/T

∣∣∣
∣∣∣Ψ2H

〉
= dn + dp . (39)

In order for ~D
(1)
PT , a purely isovector operator as discussed earlier, to yield a non-zero

contribution in the deuteron, it is obvious that the parity admixture |Ψ̃2H〉 has to be a
3P1 state. Among the various terms in the LO /P/T potential, Eq. (30), only the one with

the isospin-spin operator (τ
(1)
3 − τ

(2)
3 )(~σ(1) + ~σ(2)) can contribute. The result is

2√
6

〈
Ψ2H

∣∣∣
∣∣∣ ~D(1)

PT

∣∣∣
∣∣∣ Ψ̃2H(3P1)

〉
= −0.19

ḡ1
Fπ

e fm . (40)

However, when it comes to the θ̄ term, because the LO contribution vanishes as argued in
the previous section, the leading contribution is in fact NNLO. Among the higher-order
interactions identified in Section 4.2, the terms with coupling constants (gAḡ1 + ḡ0β1/2)
and gAḡ0δmN in Eq. (34) can contribute, by isospin and spin selection rules. Except for
the coupling constants, the operator structures of the former are the same as the one in
Eq. (30), so the matrix element can simply be obtained by replacing

ḡ1 → ḡ1 +
β1

2gA
ḡ0 (41)
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in Eq. (40). Combining this with the contribution from the isospin-breaking pion-nucleon
vertex, we find the matrix element

2√
6

〈
Ψ2H

∣∣∣
∣∣∣ ~D(1)

PT

∣∣∣
∣∣∣ Ψ̃2H(3P1)

〉
= −

[
0.19

(
ḡ1
Fπ

+
β1

2gA

ḡ0
Fπ

)
+ 5.8 · 10−4 ḡ0

Fπ

]
e fm (42)

for the θ̄ term.
For the θ̄ term, there are in addition NNLO currents to be taken into account. For the

/P/T currents, as the corresponding EDM operators are sandwiched between two isoscalar
states, they must be isoscalar to contribute. Among the NNLO /P/T currents identified in
Section 4.3, only the third current in Eq. (38), J0

/P/T,c, meets the requirement and leads to

a two-body EDM operator (see Appendix B)

~D
(2)
/P/T = −e

gA ḡ0
F 2
π

δmN

(
τ
(1) · τ (2) − τ

(1)
3 τ

(2)
3

)[
~σ(1) · ~∇1 + ~σ(2) · ~∇2 , (~x1 + ~x2)

e−mπ |~x1−~x2|

8 πmπ

]

(43)

in terms of the positions ~x1 and ~x2 of the two nucleons and the derivatives ~∇1 and ~∇2

with respect to them. This results in the matrix element

1√
6

〈
Ψ2H

∣∣∣
∣∣∣ ~D(2)

/P/T

∣∣∣
∣∣∣Ψ2H

〉
= 1.1 · 10−3 ḡ0

Fπ
e fm (44)

for the deuteron EDM. The contributions of two-body PT currents to the EDM have
again to be coupled with the parity admixture generated by the LO V/P/T , which is purely
isoscalar when θ̄ is the /P/T source. The only PT current with an isoscalar component,
among those identified in Section 4.3, is the third current in Eq. (36), J0

PT,c. It gives a
two-body EDM operator

~D
(2)
PT = −e

g2A
F 2
π

δmN

(
τ
(1) · τ (2) − τ

(1)
3 τ

(2)
3

)[
(~σ(1) · ~∇1)(~σ

(2) · ~∇2) , (~x1 + ~x2)
e−mπ|~x1−~x2|

8 πmπ

]
.

(45)

Since the isoscalar parity admixture |Ψ̃2H〉 can only be a 1P1 state, this current gives a
matrix element

2√
6

〈
Ψ2H

∣∣∣
∣∣∣ ~D(2)

PT

∣∣∣
∣∣∣ Ψ̃2H(1P1)

〉
= −3.3 · 10−4 ḡ0

Fπ
e fm . (46)

In total the deuteron EDM can be written as a function of three /P/T LECs,

d2H = dp + dn +

[
−0.19

ḡ1
Fπ

+
(
0.2 − 0.7 · 102 β1

)
· 10−3 ḡ0

Fπ

]
e fm , (47)

where dp,n should be included for θ̄, qEDM, and χI; ḡ1 for θ̄, qCEDM, and χI; and ḡ0 for
θ̄ only.

This result can be compared, for each of the sources, with the calculation where OPE
is treated perturbatively [28]. For both qCEDM and qEDM the nonperturbative pion
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approach adopted here agrees very well with the perturbative calculation. In the case of
the qCEDM, it was also found that the deuteron EDM is dominated by ḡ1 pion exchange
and given by [28]

d2H(qCEDM)|pert = −egAḡ1mN

6πF 2
πmπ

1 + γ/mπ

(1 + 2γ/mπ)2
= −0.23

ḡ1
Fπ

e fm , (48)

where γ ≃ 45 MeV is the binding momentum of the deuteron. This result agrees exactly
with a zero-range model [38] and is 22% larger than the result from the qCEDM calculation
with nonperturbative OPE [39] reproduced above,

d2H(qCEDM) = −0.19
ḡ1
Fπ

e fm . (49)

Since the estimated error in the perturbative calculation is of order Q/MNN ∼ 30%, the
calculations agree within their uncertainty. By power counting the contribution from d̄0
is expected to be suppressed by m2

π/M
2
QCD compared to Eq. (49). From Eq. (15) we infer

d̄0Fπ/ḡ1 = O(eFπ/M
2
QCD) ∼ 0.03 e fm, implying that, in the case of qCEDM, the nucleon

EDMs contribute at the 30% level to the deuteron EDM. This suppression is less than
formally expected. If we assume the isoscalar nucleon EDM is saturated by its long-range
part, Eq. (23), the contribution is at the 10% level. In any case, the correction by the
isoscalar nucleon EDM is of the order of the intrinsic χPT uncertainty mπ/MQCD, such
that for the qCEDM the deuteron EDM at LO is given by Eq. (49).

Likewise, for qEDM the conclusions of Ref. [28] do not change once we treat OPE
nonperturbatively. The deuteron EDM is in this case simply the sum of the neutron and
proton EDM,

d2H(qEDM) = 2d̄0 . (50)

The comparison is more subtle for θ̄ and χI /P/T sources. For both of these sources,
the deuteron EDM is expected in the perturbative-pion approach to be dominated by
the isoscalar nucleon EDM, since pion exchange is further suppressed in the Q/MNN

expansion. In the nonperturbative power counting /P/T pion exchange is a dominant effect
as well. In order to compare the two effects —nucleon EDMs and pion exchange— in the
nonperturbative calculation we can look at the estimated scaling of the LECs. For χI
sources,

d2H(χI) = 2d̄0 − 0.19
ḡ1
Fπ

e fm . (51)

From Eq. (17) we infer that Fπd̄0/ḡ1 = O(eFπ/εm
2
π) ∼ 5 e fm. Thus, although formally

ḡ1 exchange is LO, because of a combination of ε suppression and the relatively small
factor of 0.19 in Eq. (47), it actually is expected to contribute only at the ∼ 5% level to
the deuteron EDM. For θ̄ there are additional contributions from ḡ0,

d2H(θ̄) = 2d̄0 +

[
−0.19

ḡ1
Fπ

+
(
0.2 − 0.7 · 102 β1

)
· 10−3 ḡ0

Fπ

]
e fm . (52)

The contributions from the /P/T and PT two-body currents, Eqs. (43) and (45) respectively,
are of similar size. The NN data constraint [59] on β1 shows that the contribution from
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the /P/T potential is no larger, and the full ḡ0 term is <∼ 0.9 · 10−3(ḡ0/Fπ) e fm. From Eq.
(14) we expect that ḡ1/ḡ0 = O(εm2

π/M
2
QCD) ∼ 10−2, so the ḡ1/Fπ contribution should be

comparable to these small ḡ0/Fπ contributions. In contrast, we expect a larger weight
from the pion cloud around each nucleon, which for d̄0 enters at NLO and gives Eq.
(23). Thus again, although pion-exchange contributions in the potential and currents are
formally LO, ε suppression and relatively small numerical factors in the deuteron make
them likely no more than ∼ 10% of the nucleon EDM contribution.

The fact that pion-exchange contributions are expected to be smaller in the deuteron
than assumed in χPT power counting confirms that the power counting of Ref. [28],
where pion exchange comes in at NLO, works better for a loosely bound nucleus. The
χPT power counting should become more accurate as we consider heavier, denser nuclei,
the simplest of which we tackle next.

6 EDM of the Helion and the Triton

In this section we investigate the EDMs of 3He and 3H. No particular cancellations are
expected, so the framework of Section 3 applies.

The EDM of 3He was studied in Ref. [42], where two /P/T mechanisms were considered:
nucleon EDMs and a /P/T two-nucleon potential containing the most general non-derivative,
single π-, ρ-, and ω-meson exchanges. The nuclear wavefunction was calculated with
the no-core shell model (NCSM) [62], where a PT nuclear potential is solved within a
model space made from appropriately symmetrized combinations [63] of Nmax harmonic-
oscillator wavefunctions of frequency Ω. In Ref. [42] both Argonne v18 [45] and EFT-
inspired [46] potentials, including the Coulomb interaction, were used. At large enough
Nmax results become independent of Ω.

Here we adapt this calculation to the /P/T ingredients from chiral EFT, and calculate
the EDM of 3H for the first time. As argued in Section 3, power counting for generic
light nuclei tells us that for all /P/T sources of dimension up to six, the EDM is indeed
expected to come mostly from the nucleon EDM and from the two-nucleon /P/T potential,
as assumed in Ref. [42]. The only difference is that the EFT potential (30) contains,
in addition to OPE, also two LECs (C̄1 and C̄2) representing shorter-range interactions.
This potential in coordinate space is given in Appendix A. The OPE terms were included
in Ref. [42], while C̄1 and C̄2 can be thought of as originating from, respectively, ω and
ρ exchanges, also considered there. The relation can be made quite explicit if we choose
to regularize the delta functions with Yukawa functions, following a strategy successfully
employed before to study the effects of the EFT /PT potential [49]:

m2
1C̄1

4πr
e−m1r → C̄1δ

(3)(~r ) , (53)

m2
2C̄2

4πr
e−m2r → C̄2δ

(3)(~r ) , (54)

as m1,2 → ∞. When m1 = mω (m2 = mρ) and C̄1 (C̄2) is an appropriate combination of
ω (ρ) couplings [34], the expressions on the left-hand side coincide with those in Ref. [42].
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Figure 4: Magnitude of the tri-nucleon EDMs in units of F 3
π C̄ie fm, as function of the

regulator mass in GeV: i = 1 (left panel) and i = 2 (right panel). The solid (dashed)
curve is for helion (triton).

Here we recalculate these contributions for values of m1,2 up to 2.5 GeV. For uniformity
with Section 5 we again display numbers obtained with the Argonne v18 potential. In Ref.
[42] it was found that for helion the contributions from nucleon EDMs (d̄0,1) and from
pion exchange (ḡ0,1) change with PT potential by no more than ∼ 25%. We have verified
that the same is true for triton. Unfortunately the situation is different for the short-range
two-body contributions (C̄1,2), which are much more sensitive to the PT potential, as we
discuss shortly.

The nucleon EDM contributions are found to be

1√
6

〈
Ψ3He

∣∣∣
∣∣∣ ~D(1)

/P/T

∣∣∣
∣∣∣Ψ3He

〉
= 0.88 dn − 0.047 dp , (55)

1√
6

〈
Ψ3H

∣∣∣
∣∣∣ ~D(1)

/P/T

∣∣∣
∣∣∣Ψ3H

〉
= −0.050 dn + 0.90 dp . (56)

As expected, the helion (triton) EDM is mostly sensitive to the neutron (proton) EDM
[42].

For the contribution from the /P/T potential, our results for triton are very similar in
magnitude to those for helion, in the case of OPE already obtained in Ref. [42]. The
contribution of C̄1,2 as a function of m1,2 is given in Fig. 4 for Argonne v18. For each
regulator mass, we perform calculations at four values of Ω = 20, 30, 40, 50 MeV, up
to Nmax = 50. We observe convergence and estimate a 10% error from the spread of
results with Ω. (See Fig. 1 of Ref. [42] for a generic convergence pattern.) As it can
be seen from Fig. 4, the results become approximately m1,2 independent at large masses,
implying that C̄1,2 approach constants in this limit. Results are very different for the
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EFT-inspired potential. Within the region of masses studied, we found an approximately
linear dependence on the regulator mass, always larger in magnitude than for Argonne
v18. While for m1 = mω and m2 = mρ the contributions to the tri-nucleon EDMs differ
by a factor ∼ 2 [42], the difference first increases and then decreases as m1,2 increases,
but it is still a factor of ∼ 5 at 2.5 GeV. The linear regulator dependence could indicate a
different running of C̄1,2, or simply a very slow convergence. However, calculations with
this potential are computationally more intensive and we have been limited to Nmax = 40,
which increases the error. In any case, there is clearly a much stronger dependence of
these short-range contributions on the potential, and more solid numbers have to await a
fully consistent calculation. We quote here the Argonne v18 numbers at 2.5 GeV, but we
emphasize that they represent only an order of magnitude estimate. We obtain

2√
6

〈
Ψ3He

∣∣∣
∣∣∣ ~D(1)

PT

∣∣∣
∣∣∣ Ψ̃3He

〉
=

(
−0.15

ḡ0
Fπ

− 0.28
ḡ1
Fπ

− 0.01F 3
π C̄1 + 0.02F 3

π C̄2

)
e fm ,(57)

2√
6

〈
Ψ3H

∣∣∣
∣∣∣ ~D(1)

PT

∣∣∣
∣∣∣ Ψ̃3H

〉
=

(
0.15

ḡ0
Fπ

− 0.28
ḡ1
Fπ

+ 0.01F 3
π C̄1 − 0.02F 3

π C̄2

)
e fm . (58)

In total, then, as anticipated in Sections 2.2 and 3, the EDMs of helion and triton (as
the EDMs of light nuclei in general) are functions of six /P/T LECs:

d3He = 0.88 dn − 0.047 dp −
(

0.15
ḡ0
Fπ

+ 0.28
ḡ1
Fπ

+ 0.01F 3
π C̄1 − 0.02F 3

π C̄2

)
e fm (59)

and

d3H = −0.050 dn + 0.90 dp +

(
0.15

ḡ0
Fπ

− 0.28
ḡ1
Fπ

+ 0.01F 3
π C̄1 − 0.02F 3

π C̄2

)
e fm , (60)

where ḡ0 applies for θ̄, qCEDM, and χI; ḡ1 for qCEDM and χI; dn,p for qEDM and χI;
and C̄1,2 for χI only.

Only in the case of the qEDM do we expect the tri-nucleon EDMs to be dominated by
the nucleon EDMs. Not surprisingly, the helion (triton) EDM should be approximately
equal to the neutron (proton) EDM. The nucleon EDM for the dimension-six sources was
calculated in Ref. [26] and it was found that for qEDM the EDMs were dominated by
the short-range contributions in Eqs. (21) and (22). In this case,

d3He(qEDM) = 0.83 d̄0 − 0.93 d̄1 , (61)

d3H(qEDM) = 0.85 d̄0 + 0.95 d̄1 . (62)

For the θ̄ term, on the other hand, the helion and triton EDMs depend at LO only
on ḡ0. To check this statement we compare the LO contribution with the contribution
from the nucleon EDMs. If we assume the neutron and proton EDMs to be saturated
by their long-range part, that is, the chiral log in Eq. (20), Eq. (24) shows that the
short-range term is comparable to the pion-exchange contribution. To be on the safe side,
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it seems better not to neglect the LO nucleon EDMs for the θ̄ term, even though the
power counting tells us it should be subleading; then

d3He(θ̄) = 0.83 d̄0 − 0.93 d̄1 − 0.15
ḡ0
Fπ

e fm , (63)

d3H(θ̄) = 0.85 d̄0 + 0.95 d̄1 + 0.15
ḡ0
Fπ

e fm . (64)

This argument holds equally well for the qCEDM, except that now also ḡ1 contributes:

d3He(qCEDM) = 0.83 d̄0 − 0.93 d̄1 −
(

0.15
ḡ0
Fπ

+ 0.28
ḡ1
Fπ

)
e fm , (65)

d3H(qCEDM) = 0.85 d̄0 + 0.95 d̄1 +

(
0.15

ḡ0
Fπ

− 0.28
ḡ1
Fπ

)
e fm . (66)

Finally in the case of χI, we expect the tri-nucleon EDM to consist of ḡ0,1 pion exchange,
insertions of the /P/T short-range NN interactions, and the contributions from the nucleon
EDMs. Similarly to the qEDM, the nucleon EDM from χI is dominated by short-range
contributions. All six LECs contribute:

d3He(χI) = 0.83 d̄0 − 0.93 d̄1 −
(

0.15
ḡ0
Fπ

+ 0.28
ḡ1
Fπ

+ 0.01F 3
π C̄1 − 0.02F 3

π C̄2

)
e fm ,

(67)

d3H(χI) = 0.85 d̄0 + 0.95 d̄1 +

(
0.15

ḡ0
Fπ

− 0.28
ḡ1
Fπ

+ 0.01F 3
π C̄1 − 0.02F 3

π C̄2

)
e fm .

(68)

From Eq. (17) we infer Fπd̄0,1/ḡ0 = O(eFπ/m
2
π) ∼ 2 e fm and F 4

π C̄1,2/ḡ0 = O(F 2
π/m

2
π) ∼

2. We see again that the ḡ0,1 coefficients are somewhat smaller than expected; moreover,
the /P/T short-range NN interactions might contribute even less. However, one should keep
in mind the large uncertainty in the C̄1,2 coefficients, and that these dimensional-analysis
estimates could easily be offset by dimensionless factors in the LECs.

7 Discussion and Conclusions

Historically, hadronic EDMs have mostly been discussed in the framework of a one-boson-
exchange model. It is assumed that P - and T -violation is propagated by pions which are
parametrized by three /P/T non-derivative interactions. In our notation,

L = − ḡ0
Fπ

N̄τ · πN − ḡ1
Fπ

N̄π3N − ḡ2
Fπ

N̄τ3π3N (69)

(in the nuclear physics literature, where chiral symmetry and power counting are not
emphasized, the coefficients are normally defined without Fπ). Hadronic EDMs are calcu-
lated as a function of these three parameters. In some cases the effects of heavier bosons
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Table 1: Dependence of the EDMs of the neutron, proton, deuteron, helion, and triton on
the six relevant /P/T low-energy constants. A “-” denotes that the LEC does not contribute
in a model-independent way to the EDM at leading order. Values are for the Argonne
v18 potential; for the potential-model dependence of the results, see text.

LEC d̄0 d̄1 (ḡ0/Fπ) e fm (ḡ1/Fπ) e fm (F 3
π C̄1) e fm (F 3

π C̄2) e fm
dn 1 −1 - - - -
dp 1 1 - - - -
d2H 2 0 0.0002 − 0.07β1 −0.19 - -
d3He 0.83 −0.93 −0.15 −0.28 −0.01 0.02
d3H 0.85 0.95 0.15 −0.28 0.01 −0.02

are included as well. In this work we argue that this model is oversimplified. There is
a priori no reason not to include /P/T photon-nucleon and short-range nucleon-nucleon
interactions at low energies. By studying the chiral properties of the fundamental /P/T
sources of dimension up to six at the QCD scale, it is possible to construct a model-
independent hadronic /P/T Lagrangian with a definite hierarchy between the different /P/T
hadronic interactions. It is found that the one-pion-exchange model with three LECs is
not appropriate for any of these /P/T sources, and in general there are six /P/T hadronic
interactions that determine the EDMs of light nuclei. Two of those are in the OPE model
as well —ḡ0 and ḡ1— and the other four are additional interactions that need to be consid-
ered when determining hadronic EDMs. The ḡ2 interaction is not relevant at LO for any
of the fundamental sources. The other four necessary LECs are the isoscalar and isovector
components of the neutron and proton EDMs and two isoscalar /P/T NN interactions of
short range. The isovector /P/T NN interactions come in at higher order for all sources.

We therefore propose that nuclear EDMs be analyzed on the basis of these six LECs.
In the previous sections we discussed EDMs of light nuclei, providing specific examples in
the form of the deuteron, helion, and triton. In Table 1 the dependence of these various
EDMs on the six LECs is summarized. From the table it is clear that using the OPE
model gives an oversimplified view. At least six observables are required to identify the
six LECs. If other light nuclei become the target of experimental investigation, their
EDMs can be calculated along similar lines at the cost of larger computer resources. We
hope that EDMs of heavier systems can be also expressed in terms of these six LECs.
However, in these cases there could be significant enhancement factors for the /P/T potential
contribution [50], making important otherwise subleading terms in the potential [34], such
as the third non-derivative pion-nucleon coupling ḡ2.

Once (a subset of) the LECs are determined it is possible to learn something about the
more fundamental /P/T sources at the QCD scale. In Table 2 we list for the different /P/T
sources the expected orders of magnitude of the neutron EDM, dn, and ratios between the
other EDMs considered here and dn. Although some care is needed when using this table
—as we have discussed, the numbers found earlier are not always exactly of the expected
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Table 2: Expected orders of magnitude for the neutron EDM (in units of e/MQCD), the
ratio of proton-to-neutron EDMs, the ratio of deuteron-to-neutron EDMs, the ratio of
helion-to-neutron EDMs, and the ratio of triton-to-neutron EDMs, for the θ̄ term and the
three dimension-six sources. Q stands for the low-energy scales Fπ, mπ, and γ.

Source θ̄ qCEDM qEDM χI

MQCD dn/e O
(
θ̄ m2

π

M2
QCD

)
O
(
δ̃m2

π

M2
/T

)
O
(
δm2

π

M2
/T

)
O
(
w

M2
QCD

M2
/T

)

dp/dn O (1) O (1) O (1) O (1)

d2H/dn O (1) O
(

M2
QCD

Q2

)
O(1) O(1)

d3He/dn O
(

M2
QCD

Q2

)
O
(

M2
QCD

Q2

)
O(1) O(1)

d3H/dn O
(

M2
QCD

Q2

)
O
(

M2
QCD

Q2

)
O(1) O(1)

size— it does allow some qualitative statements, even if less than six measurements are
available.

The simplest scenario is the one where /P/T is dominated by the qEDM, in which case
all light nuclear EDMs are essentially given by two LECs only: d̄0 and d̄1. (See Eqs. (21),
(22), (50), (61), and (62).) A measurement of the proton and neutron EDMs would make
deuteron and tri-nucleon EDMs testable predictions,

d2H ≃ dn + dp , (70)

d3He + d3H ≃ 0.84(dn + dp) , (71)

d3He − d3H ≃ 0.94(dn − dp) . (72)

The nucleon Schiff moments and the deuteron magnetic quadrupole moment (MQM)
depend on other LECs [26, 28] and cannot be predicted. For light nuclei the effects of
the /P/T potential from the qEDM are suppressed compared to the nucleon EDMs [34],
although enhancements could make them more relevant for heavier nuclei.

/P/T from θ̄ and qCEDM manifests itself in EDMs of light nuclei that differ significantly
from the EDMs of their constituents. For both sources, the EDMs we calculated depend
at LO on four of the six LECs —ḡ0, ḡ1, d̄0, and d̄1— but in different ways. For the
qCEDM, the distinguishing feature is that the deuteron EDM (49) is expected to be
significantly larger than the isoscalar nucleon EDM, thanks to ḡ1. Thus, a measurement
of nucleon and deuteron EDMs could be sufficient to qualitatively pinpoint, or exclude,
qCEDM as a dominant /P/T source, and to fix the values of d̄0,1 and ḡ1. Then, the isoscalar
combination of helion and triton EDMs, d3He + d3H, which in LO only depends on ḡ1,
becomes a falsifiable prediction of the theory,

d3He + d3H ≃ 3d2H . (73)

If, to be on the safe side, we keep some subleading terms (the nucleon EDMs) as we did
in Eqs. (65) and (66), then we get (including the subleading term 2d̄0 in Eq. (49)) an
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additional −2.16(dn + dp) on the right-hand side of Eq. (73). Furthermore, ḡ0 can then
be extracted from d3He − d3H (see Eqs. (65) and (66)), leading to testable predictions for
other /P/T observables.

In contrast, for the Standard Model θ̄ term we do not expect the deuteron EDM to be
significantly different from twice the isoscalar nucleon EDM. Although the deuteron EDM
(52) formally depends on the isoscalar nucleon EDM and on the pion-nucleon couplings
ḡ0 and ḡ1, the results of Section 5 show that the pion-exchange contribution is likely only
∼ 10% of the nucleon EDM. On the other hand, the EDMs of 3He and 3H, Eqs. (63)
and (64), are dominated by ḡ0, although they receive important contributions from the
neutron and proton EDMs. In particular, we expect the isovector combination d3He−d3H,
which is sensitive to ḡ0, to differ from the isovector nucleon EDM d̄1, while the isoscalar
combination d3He + d3H should be close to 2d̄0:

d3He + d3H ≃ 0.84(dn + dp) , (74)

d3He − d3H 6= 0.94(dn − dp) . (75)

The experimental observation of these relations in nucleon, deuteron, helion, and triton
EDM experiments would qualitatively indicate the θ̄ term as the main source responsible
for /P/T . Quantitatively, the measurement of nucleon, helion, and triton EDM allows
extraction of the coupling ḡ0, which then can be used to provide testable predictions of
other /P/T observables, like the proton Schiff moment [26, 20] or the deuteron MQM [28],
which are not sensitive to the nucleon EDMs.

Finally, in the case of the χI sources the analysis is in principle most complicated, due
to the appearance of all six LECs. Like for θ̄, the deuteron EDM (51), although formally
dependent on ḡ1 at LO, is probably dominated by d̄0. The tri-nucleon EDMs (67) and
(68) formally depend on all six LECs, but they are again possibly dominated by d̄0 and
d̄1. It might thus be difficult to separate the χI sources from qEDM. For less dilute, but
still light, systems we expect different results. For these systems, in the case of qEDM the
EDMs are still dominated by d̄0,1, but for χI sources we expect the contributions from the
/P/T potential to be more significant, implying that measurements on these systems might
separate χI sources from qEDM. Of course, more extensive calculations are necessary to
verify this claim.

In conclusion, we have argued that an experimental program to measure light nuclear
EDMs could offer valuable information on yet undiscovered sources of parity and time-
reversal violation. Our case is based on some crucial, but relatively general assumptions,
such as the validity of the Standard Model with its minimal particle content at the elec-
troweak scale, and the naturalness of interaction strengths. Elsewhere [28] it has already
been pointed out —basically on the basis of dimensional analysis— that sensitivity to the
deuteron EDM at the level hoped for in storage ring experiments [6] would probe scales
where new physics is expected. A similar analysis holds for our tri-nucleon results, Eqs.
(59) and (60). But our results here go beyond dimensional analysis and suggest that, at
least for the lightest nuclei, the contribution of the neutron and proton EDMs are more
important than expected by simple power counting. For all sources, they compete with,
when they do not dominate, the effects of the /P/T potential. For this reason, other /P/T
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observables insensitive to the nucleon EDMs, for example higher /P/T electromagnetic mo-
ments, could provide important complementary information and a cleaner way to extract
pion-nucleon and nucleon-nucleon /P/T couplings. Additionally, it would be interesting if
EDMs of heavier systems could be recast in terms of our EFT approach.
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A Potential in Coordinate Space

In configuration space, the LO potential of Sect. 3.2 is given by [34]

V/P/T (~r ) = − ḡ0gA
F 2
π

τ
(i) · τ (j)

(
~σ (i) − ~σ (j)

)
·
(
~∇r U(r)

)

− ḡ1gA
2F 2

π

[(
τ
(i)
3 + τ

(j)
3

) (
~σ(i) − ~σ(j)

)
+
(
τ
(i)
3 − τ

(j)
3

) (
~σ(i) + ~σ(j)

)]
·
(
~∇rU(r)

)

+
1

2

[
C̄1 + C̄2τ

(i) · τ (j)
] (

~σ (i) − ~σ (j)
)
·
(
~∇r δ

(3)(~r )
)

, (76)

where ~r = ~xi − ~xj is the relative position of the two interacting nucleons and

U(r) =
1

12πr
[2 exp (−mπ±r) + exp (−mπ0r)] , (77)

which reduces to the usual Yukawa function U(r) = exp(−mπr)/4πr when, at LO, we
ignore the pion mass difference.
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Analogously, the NNLO potential of Sect. 4.2 becomes [34]

V/P/T (~r, ~∇r, ~∇X ) = − ḡ0gA
2F 2

π

[(
ḡ1
ḡ0

− β1

2gA

)(
τ
(i)
3 + τ

(j)
3

) (
~σ(i) − ~σ(j)

)

+

(
ḡ1
ḡ0

+
β1

2gA

)(
τ
(i)
3 − τ

(j)
3

) (
~σ(i) + ~σ(j)

)]
·
(
~∇rU(r)

)

+
ḡ0gA
3F 2

π

(
3τ

(i)
3 τ

(j)
3 − τ

(i) · τ (j)
)

×
(
~σ(i) − ~σ(j)

)
·
[
δm2

N

2mπ

(
~∇r rU(r)
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+
(
~∇rW (r)
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−i
ḡ0gA
2F 2

π

δmN

mN

(
τ (i) × τ (j)
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3

{(
~σ(i) + ~σ(j)

)
·
{
~∇r, U(r)

}

+
(
~σ(i) − ~σ(j)

)
·
[
U(r)~∇X − 1

mπ

(
~∇r∇n

r rU(r)
)
∇n

X

]}
, (78)

where ~X = (~xi + ~xj)/2 and

W (r) =
1

4πr
[exp (−mπ±r) − exp (−mπ0r)] , (79)

which is entirely a consequence of isospin breaking.

B Fourier Transform of the Currents

To evaluate the matrix elements in Section 5 we need to transform the currents to config-
uration space. We follow Ref. [64] and transform with respect to the nucleon momenta
but not with respect to the photon momentum. In the most general case

J0(~xi, ~x
′

i , ~xj , ~x
′

j , ~q ) =

∫
d3pi
(2π)3

∫
d3p′i
(2π)3

∫
d3pj
(2π)3

∫
d3p′j
(2π)3

e−i~pi·~xie−i~pj ·~xjei~p
′

i ·~x
′

i ei~p
′

j ·~x
′

j

(2π)3δ(3)(~pi + ~pj − ~p
′

i − ~p
′

j − ~q )J0(~pi, ~p
′

i , ~pj, ~p
′

j , ~q ) . (80)

Introducing the relative configuration-space coordinates ~r = ~xi − ~xj , ~r
′ = ~x′

i − ~x′
j ,

~X =

(~xi + ~xj)/2, and ~X ′ = (~x
′

i + ~x
′

j )/2, we rewrite this as

J0(~r, ~r ′, ~X, ~X ′, ~q ) = e−
i
2
~q·( ~X+ ~X′)

∫
d3Pt

(2π)3

∫
d3K

(2π)3

∫
d3k

(2π)3

e−i ~Pt·( ~X− ~X′)e−i ~K·(~r−~r ′)e−
i
2
~k·(~r+~r ′)J0(~q,~k, ~K, ~Pt) . (81)

The currents we need (the third currents in Eqs. (36) and (38)) depend on ~q and ~k
only, such that the expression can be simplified to

J0(~r, ~X, ~q ) = e−i~q· ~X

∫
d3k

(2π)3
e−i~k·~rJ0(~q,~k ) . (82)
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The Fourier transforms can be done and we find for the required currents

J0
PT,c(~r,

~X, ~q ) = −2eg2A
F 2
π

δmN

(
τ
(i) · τ (j) − τ

(i)
3 τ

(j)
3

)

×e−i~q· ~X

[
~σ(i) ·

(
i~∇r +

~q

2

)
~σ(j) ·

(
i~∇r −

~q

2

)]
W (~q, ~r ) , (83)

J0
/P/T,c(~r, ~X, ~q ) =

2iegAḡ0
F 2
π

δmN

(
τ
(i) · τ (j) − τ

(i)
3 τ

(j)
3

)

×e−i~q· ~X

[(
~σ(i) + ~σ(j)

)
· ~q

2
+
(
~σ(i) − ~σ(j)

)
·
(
i~∇r

)]
W (~q, ~r ) , (84)

in terms of the function

W (~q, ~r ) =
1

8π

∫ 1

0

dα exp

[
i
~q · ~r

2
(1 − 2α)

]
exp[−r(m2

π + ~q 2α(1 − α))1/2]

[m2
π + ~q 2α(1 − α)]1/2

. (85)

Before continuing it is convenient to look at the inverse Fourier transform of the current

J0(~q ) =

∫
d3x e−i~q·~xJ0(~x )

=

∫
d3x J0(~x) − i~q ·

∫
d3x ~xJ0(~x) + O(~q 2)

= Ze− i~q · ~D + O(~q 2) , (86)

where Ze is the total charge and ~D is the EDM operator used in Sections 5 and 6. An
easy way to extract the EDM operator is by using

~D = i lim
q→0

~∇qJ
0(~q ) . (87)

As an example we consider the EDM operator coming from J0
/P/T,c(~r,

~X, ~q ). From Eq.

(87) we read off

~D/P/T,c =
2iegAḡ0

F 2
π

δmN
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τ
(i) · τ (j) − τ

(i)
3 τ

(j)
3

)

×
[
i

2

(
~σ(i) + ~σ(j)

)
+ ~X

(
~σ(i) − ~σ(j)

)
·
(
i~∇r

)] e−mπ r

8πmπ

= −egAḡ0
F 2
π

δmN

(
τ
(i) · τ (j) − τ

(i)
3 τ

(j)
3

)

×
[(

~σ(i) · ~∇(i) + ~σ(j) · ~∇(j)
)

(~xi + ~xj)
e−mπ |~xi−~xj |

8πmπ

]
, (88)

where we used limq→0
~∇qW (~q, ~r) = 0. This is Eq. (43). Following similar steps we obtain

Eq. (45) from J0
PT,c(~r,

~X, ~q ).
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