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We revisit the photo-absorption sum rule for real Compton scattering from the proton and from
nuclear targets. In analogy with the Thomas-Reiche-Kuhn sum rule appropriate at low energies, we
propose a new ”constituent quark model” sum rule that relates the integrated strength of hadronic
resonances to the scattering amplitude on constituent quarks. We study the constituent quark
model sum rule for several nuclear targets. In addition we extract the α = 0 pole contribution for
both proton and nuclei. Using the modern high energy proton data we find that the α = 0 pole
contribution differs significantly from the Thomson term, in contrast with the original findings by
Damashek and Gilman.
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I. INTRODUCTION

Compton scattering on composite objects has served
as a valuable tool for studying internal structure of nu-
clei and nucleon. At very low photon energy, electro-
magnetic waves are scattered without absorption and
solely probe the macroscopic properties of the target as
a whole, e.g., its mass and electric charge, and the scat-
tering amplitude is determined by the classical Thomson
limit. As the photon energy ν is increased above the ab-
sorption threshold, the internal structure of the target
is revealed. The atomic, nuclear and hadronic physics
domains roughly correspond to keV, MeV and GeV pho-
ton energies, respectively, and the three orders of mag-
nitude difference between neighboring domains indicates
that the dynamics of nuclei are well separated from those
of quarks so that each can be clearly identified.

In this work, we compare photon scattering from nu-
clei with photon scattering off the individual nucleons.
At energies beyond the nuclear absorption range, i.e., of
the order of tens of MeV’s, the interaction time between
the photon and the target is much shorter then that be-
tween individual nucleons, and in this regime the scat-
tering amplitude is determined by Thomson scattering
on independent nucleons. By applying the optical the-
orem this relation can be made quantitative, and this
leads to a sum rule relating the low (MeV range) and
medium energy (tens of MeV’s) scattering amplitudes on
a nucleus to the total photo-absorption cross section [1]
in this energy range. Following the success of the con-
stituent quark model of low energy hadron structure one
would expect that this nuclear sum rule might be ex-
tended to cover the energy range between pion produc-
tion threshold (roughly 100 MeV) to above the range of
nucleon resonances (a few GeV). Such an extended ‘con-
stituent quark model’ sum rule would therefore relate the
photo-absorption cross section on a nuclear target to the
difference between the low-energy scattering amplitude
on the nucleus and the scattering amplitude describing
photon interactions with individual constituent quarks.
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FIG. 1: The fixed-pole contribution to the Compton ampli-
tude may arise due to an effective local two-photon coupling
to elementary constituents within the proton.

In this paper we will derive a finite energy sum rule in-
volving constituent quarks. We will investigate its valid-
ity by including nuclear photo-absorption data above the
pion production threshold which is now available for a
wide range of nuclear targets.

As the energy range is further increased, we expect
that the QCD structure of the constituent quarks will
be resolved, eventually revealing scattering on point-like
quarks. Thus at asymptotically high energies point-like
interactions involving photons can contribute an energy-
independent constant to the amplitude, which corre-
sponds to a Regge pole at α = 0 [2–10], as is shown
schematically in Fig. 1. In the presence of other poles in
the right-half of the angular momentum plane, the α = 0
pole [11] produces a sub-leading contribution to the scat-
tering amplitude. Nevertheless since contributions from
leading poles with Reα > 0 can be determined by fit-
ting a Regge-type amplitude to the high energy data,
it might be possible in principle to extract the residual
α = 0 pole. In the past this procedure has been car-
ried out for the proton [5, 12–15] and the deuteron [16].
In this work we re-examine the procedure for extracting
the α = 0 pole by including in our analysis data at very
high energies that were not available when the original
analysis was performed in 1969. We will show that, with
this new data, one can unambiguously extract the α = 0
pole. We also examine possible α = 0 pole contributions
to Compton scattering on heavier nuclei.

Our paper is organized as follows. In the next section
we focus on the energy range up to the pion produc-
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tion threshold and we summarize the derivation of the
nuclear photo-absorption sum rule, also referred to as
the Thomas-Reiche-Kuhn (TRK) sum-rule [1, 17–19]. In
Sec. III we generalize the TRK sum rule to cover ener-
gies beyond the pion threshold where we include hadronic
resonances and we test the validity of a new finite-energy
sum rule based on a constituent quark picture. Finally
we consider energies above the GeV range. We discuss
the implications of scattering on QCD partons and we ex-
tract the α = 0 pole contribution to scattering at asymp-
totic energies for various nuclear targets. Our summary
and conclusions are presented in Sec. IV.

II. NUCLEAR PHOTO-ABSORPTION AT LOW
ENERGIES

The spin-averaged forward Compton scattering ampli-
tude T (ν) satisfies a once-subtracted dispersion relation
where the subtraction constant at ν = 0 is determined
by the classical Thomson limit,

ReT (ν) = −Z
2

A2

α

MN
+
ν2

π

∫ ∞
0

dν′2

ν′2(ν′2 − ν2)
ImT (ν′)

(1)

where the integral in Eq. (1) is understood in terms of its
principal value. To facilitate easier comparison between
different nuclei we have normalized T (ν) by dividing it
by A, the number of nucleons. The nuclear Thomson
term,i.e., the constant on the r.h.s. of Eq. (1) is given
in terms of the fine structure constant α, the net charge
Z of the target, and the mass of the nucleus given by A
times the nucleon mass, MN (in the following we ignore
isospin breaking terms). The optical theorem relates the
imaginary part of the Compton amplitude to the total
photo-absorption cross section per nucleon σ(ν),

ImT (ν) =
ν

4π
σ(ν), (2)

so that the dispersion relation takes the form

ReT (ν) = −Z
2

A2

α

MN
+

ν2

2π2

∫ ∞
0

dν′

ν′2 − ν2
σ(ν′). (3)

To evaluate the dispersive integral, strictly speaking
the photo-absorption cross section should be included
all the way up to infinite energy; however, the scale
separation between the nuclear and hadronic domains
allows us to approximate the integral by using a lim-
ited range of nuclear photo-absorption data. As shown
in Fig. 2, for a typical target nuclear resonances satu-
rate the photo-absorption cross section for energies below
Emax ≈ 30 MeV. The dominant feature of nuclear photo-
absorption in the MeV range is the giant dipole resonance
(GDR) (cf. Ref. [25] for a comprehensive review of GDR
data and theory). As an example, the 207Pb data in the
nuclear range are plotted along with the higher energy
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FIG. 2: (Color online) Photo-absorption cross section data
for a 207Pb target. Data in the nuclear range ν ≤ 27 MeV
(crosses) are from [20]; data in the hadronic and high energy
range 0.2 GeV≤ ν ≤100 GeV are from [21–24]. Nuclear de-
formations are responsible for the giant resonance that satu-
rates the cross section for ν <∼ 100 MeV (region I). Excitations
of individual nucleons are responsible for the hadronic reso-
nances (region II) in the energy range between pion produc-
tion threshold and O(2− 3 GeV). Finally for energies above
a few GeV (region III), the smooth cross-section is the result
of partonic scattering via Regge exchanges.

data in Fig. 2, in which the GDR is seen as a sharp peak
with width ΓGDR ≈ 7 MeV. We evaluate the dispersion
relation at νmax <∼ 100 MeV, which roughly demarcates
the scale of hadronic physics where single-nucleon reso-
nances begin contributing to the cross section,

ReT (νmax) ≈ −Z
2

A2

α

MN
− 1

2π2

∫ Emax

0

dν′σ(ν′). (4)

For an energy that is low compared to the hadronic scale,
the scattering amplitude can be approximated by the
sum of contributions describing photon interactions with
point-like nucleons, i.e., it is given by a sum of Thomson
terms on Z protons,

ReT (νmax) ≈ −Z
A

α

MN
. (5)

Combining Eqs. (4) and (5) leads to the Thomas-
Reiche-Kuhn (TRK) sum rule [1], (with α/MN ≈
3.03 mb MeV),∫ Emax

0

dνσ(ν) = 2π2NZ

A2

α

MN
≈ 60

NZ

A2
mb MeV.

(6)

Furthermore, adopting a Breit-Wigner form for the GDR
cross section

σ(ν) ≈ σGDR(ν) =
M2

GDRΓ2
GDRσGDR

(ν2 −M2
GDR)2 +M2

GDRΓ2
GDR

, (7)
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the integral over the resonance photo-absorption cross
section gives πσGDRΓGDR/2, and the TRK sum rule leads
to the relation

σGDRΓGDR ≈ 12π
NZ

A2
mb MeV. (8)

In Eq. (8), σGDR is the value of the photo-absorption
cross section at the peak of the GDR resonance, and
ΓGDR is the resonance half-width. This sum rule has
been confronted with experimental data on a vast number
of nuclear targets and is found to be satisfied to within
∼ 30%. This level of agreement demonstrates that the
physics of nuclear excitations is correctly described by a
model assuming quasi-free nucleons within the nucleus,
which leads to Eq. (5). However, several model assump-
tions were used to equate the (model-dependent) r.h.s.
of Eq. (1) to the integral over the total photo-absorption
cross section. First, one assumes that the integral in the
l.h.s. of Eq. (6) converges if the integration is extended
to infinite energy, and in any case is dominated by the
nuclear spectrum at ν <∼ Emax. Second, to eliminate the
ν-dependence one assumes that in the expansion

ν2
∫ Emax

0

dν′
σ(ν′)

ν2 − ν′2
=

[
1 +
〈ν2〉
ν2

+ . . .

] ∫ Emax

0

dν′σ(ν′),

(9)
the second term in the bracket, proportional to the mean
squared energy averaged over the nuclear spectrum, sat-
isfies

〈ν2〉 =

∫ Emax
0

dν′ν′2σ(ν′)∫ Emax
0

dν′σ(ν′)
� 1 . (10)

For typical values, MGDR ∼ 15 MeV, Γ ∼ 7 MeV,
Emax = 30 MeV and ν = νmax = 100 MeV one finds that
〈ν2〉/ν2max amounts to a 10-15% difference between the
dispersive integrals in Eq. (3) and Eq. (4). With increas-
ing νmax the correction term between the two integrals
becomes smaller; however, the proximity of the pion pro-
duction threshold and the nucleon excitation spectrum
induces an important systematic error that cannot be ac-
counted for within the framework of the TRK sum rule.
These issues are addressed in the following section.

III. NUCLEAR PHOTO-ABSORPTION IN THE
RANGE OF NUCLEON RESONANCES: A

‘CONSTITUENT QUARK MODEL’ SUM RULE

We now extend the arguments that lead to the TRK
sum rule to energies in the nucleon excitation region,
which we will define as the energy range between the
threshold for pion production on a free nucleon, i.e., ∼
100 MeV and a few GeV. For energies above νmax =
2 − 3 GeV the cross-section is smooth and does not ex-
hibit resonance behavior. Above the resonance range we
expect the cross section to be described by scattering on

individual constituents of the nucleons i.e., constituent
quarks. In analogy to Eq. (5) we thus assume

ReTCQM ≡ ReT (νmax) ≈ − 1

A

∑
q∈A

α

mq
e2q

= −3Z + 2N

A

α

MN
. (11)

Following the derivation of the TRK sum rule we want to
identify ReTCQM with the sum of the nuclear Thomson
term and the photo-absorption cross-section integrated
up to some energy above the nucleon resonance region.
This is complicated by the fact that above the resonance
region, the photo-absorption cross section does not fall
off with energy but instead increases until it is close to
the Froissart bound [26]. This increase with energy oc-
curs because in QCD the photon does not interact with
a fixed number of hadron constituents (e.g., the nucleon,
pion, constituent quarks) but as the beam energy in-
creases gluon showers build up between the photon and
the target. Phenomenologically one describes this energy
region in terms of Pomeron exchange. Furthermore, at
intermediate energies before the universal Pomeron scat-
tering takes over, Reggeon exchanges i.e., parton showers
dominated by exchange of quarks, contribute a significant
background to hadron resonance production. Since it is
only the hadron resonances that can be associated with
constituent quark degrees of freedom, a sum rule involv-
ing constituent quarks must involve cross sections with
both the Reggeon and the Pomeron contributions sub-
tracted. The Regge and Pomeron contributions to the
cross section per nucleon are conventionally parametrized
by

σR+P (ν) = σRT + σPT =
∑
i=R,P

ci

( ν

GeV

)αi(0)−1
, (12)

where for the Regge and Pomeron contributions we use
the intercepts αR(0) = 1/2 and αP (0) = 1.097, respec-
tively [28]. This corresponds to an amplitude given by

TR+P (ν) = TR + TP = −
∑
i=R,P

ci
4π

1 + e−iπαi(0)

sinπαi(0)
ναi(0)

=
ν2

2π2

∫ ∞
0

dν′

ν′2 − ν2
σR+P (ν′)

(13)

Eq. (1) can now be rewritten by adding and subtracting
the asymptotic contributions given by Eqs. (12) and (13)
to obtain

ReT (ν) = −Z
2

A2

α

MN

+
ν2

2π2

∫ ∞
0

dν′
σ(ν′)− σR+P (ν′)

ν′2 − ν2
+ ReTR+P (ν) .

(14)
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In Eq. (14) the integrand on the r.h.s vanishes asymp-
totically and we can take the limit ν →∞ to obtain

lim
ν→∞

ν2

2π2

∫ ∞
0

dν′
σ(ν′)− σR+P (ν′)

ν′2 − ν2
=

= − 1

2π2

∫ E

0

dν′σ(ν′) +
∑
i=R,P

ci GeV

2π2αi(0)

(
E

GeV

)αi(0)
(15)

In Eq. (15) E is the energy above which we can neglect
the difference between the data σ(ν) and the high-energy
asymptotic form σR+P (ν). We used E = 2GeV in our
calculations. To extend the TRK sum rule to energies
above the nucleon resonance region we postulate that
the contribution to the r.h.s of Eq. (14) from the photo-
absorption cross section in the nucleon resonance region,
reduced by the Regge plus Pomeron background can be
represented by Thomson scattering on the constituent
quarks. This leads to a phenomenological finite-energy
sum rule

ReTCQM = −Z
2

A2

α

MN
− 1

2π2

∫ E

0

dν′σ(ν′)

+
cR GeV

2π2αR(0)

(
E

GeV

)αR(0)

(16)

or

−
(

2 +
ZN

A2

)
α

MN
= − 1

2π2

∫ E

0

dν′σ(ν′)

+
cR GeV

2π2αR(0)

(
E

GeV

)αR(0)

(17)

In addition to the phenomenological CQM sum rule,
the dispersion relation in Eq. (14) can also be used to
calculate the value of the sub-leading energy-independent
contribution to the photo-nuclear Compton amplitude,
i.e., the α = 0 pole discussed in Sec. I.

ReTα=0 ≡ lim
ν→∞

[ReT (ν)− ReTR+P (ν)] = −Z
2

A2

α

MN

− 1

2π2

∫ E

0

dν′σ(ν′) +
∑
i=R,P

ci GeV

2π2αi(0)

(
E

GeV

)αi(0)
(18)

From Eq. (18) we see that the α = 0 pole contribution
is given by the difference between the full scattering am-
plitude and the contribution to the scattering amplitude
from Regge plus Pomeron terms.

A. Numerical results

To compute the integral over the photo-absorption
cross section we parametrize the hadronic cross-section

by a sum of up to 6 Breit-Wigner resonances plus a
smooth background,

σ(ν) =

6∑
i=1

M2
i

s

σiM
2
i Γtot,iΓγ,i

(s−M2
i )2 +M2

i Γ2
tot,i

+σBack(ν) . (19)

In Eq. (19), s = M2 + 2Mν is the square of the c.m.
energy. In order of increasing mass, we account for the
following resonances: P33(1232), P11(1440), D13(1520),
S11(1665), F15(1680), and F37(1950). We use energy-
dependent widths,

Γγ,i = Γi

[
1 +X2/K2

i

1 +X2/K2

]Jγ
Γtot,i = Γi

q

qi

[
1 +X2/q2i
1 +X2/q2

]l
, (20)

where K and q are respectively the momenta of the pho-
ton and single pion decay in the c.m. frame, and Ki and
qi refer to their values at the resonance position

√
s = Mi.

Jγ is the spin of the resonance, l is the angular momen-
tum of the decay products, and Γi is the intrinsic width of
the ith resonance. The damping parameter X was set to
X = 0.15 GeV for the P33(1232) and we chose X = 0.35
GeV for all other resonances.

The background σBack(ν) in Eq. (19) is chosen so that
it explicitly matches onto the Regge plus pomeron cross
section σR+P (ν) of Eq. (12),

σBack(ν) =
[
1− e−

2(ν−νπ)
M

]
σR+P (ν). (21)

The threshold prefactor introduced above ensures that
the background cross section vanishes at pion production
threshold, and we use the form proposed in [24]. It can
be seen that with this form, for ν ≥ 2GeV

σ(ν)− σR+P (ν)

σ(ν)
� 2%, (22)

and within the experimental errors is negligibly small.
This justifies the choice of the parameter E = 2GeV in
Eqs. (15,17,18).

Rather than using the Regge intercepts as free pa-
rameters, we take those intercepts from fits to photo-
absorption data on the proton [28]. This is partly mo-
tivated by the limited energy range over which nuclear
data are available. In Fig. 3 we display the results of the
cross section fits using Eq. (19) (solid lines) along with
the Regge + Pomeron background (dashed lines). The
parameters of the background cross sections are listed in
Table I for each nuclear target.

We note that in general due to nuclear effects such as
resonance broadening and Fermi motion, the division of
the cross section into resonance plus background becomes
somewhat ambiguous. Examining Fig. 3 we notice that
for heavier nuclei, as opposed to the proton and to some
degree the deuteron, there is no clear resonance structure
around and above ν = 1 GeV. For heavier nuclei the
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Proton Deuteron 12
6 C 27

13Al 65
29Cu 207

82 Pb

cP (µb) 68.0± 0.2 70.08± 1.26 57.24± 1.13 62.70± 6.0 45.88± 0.57 42.08± 1.96

cR (µb) 99.0± 1.15 80.50± 2.27 76.49± 4.40 53.53± 11.6 76.95± 3.60 91.43± 9.14

TABLE I: Reggeon and Pomeron parameters in µb

effect of broadening and overlapping of resonances can
alternatively be reproduced by enhancing the Reggeon
strength cR, thus the strength of the Regge background
is sensitively correlated with the choice of the resonance
parameters.

Uncertainties in identification of the Pomeron and
Reggeon background for nuclear targets produces error
bars for those parameters that are significantly larger
than those parameters for the proton. In particular, for
27Al the highest energy data available are as low as 10
GeV and the corresponding fit does not allow for a precise
determination of the background parameters, and this is
reflected by the large errors in Table I. Our fits provide
a reduced χ2 per degree of freedom of order one, except
for the Aluminum target, where it was greater than two.

In Table II we list the numerical values of the vari-
ous contributions to the constituent quark sum rule in
Eq. (17), and the α = 0 pole contribution given in
Eq. (18). A comparison of theoretical and experimen-
tal contributions to the finite energy sum rules and the
α = 0 pole contribution are displayed in Fig. 4. The
upper panel shows the comparison of data in the nuclear
energy range with the TRK sum rule for four nuclear tar-
gets (we plot the fraction of the TRK sum rule for each
nucleus); the middle panel shows the comparison of data
in the nuclear and hadronic energy region with the pre-
dictions from our new constituent quark model or CQM
sum rule (this is given by the fourth and fifth rows of Ta-
ble II); finally, the lower panel shows the predictions of
dispersion relations for the value of the α = 0 pole for the
six nuclear targets in comparison with the corresponding
Thomson term values (the final and second-last row in
Table II, respectively).

We observe that the CQM sum rule is better obeyed for
heavier nuclei than for the proton or deuteron. One pos-
sible explanation could be that this sum rule amounts to
counting the effective number of quarks within the target;
this relies on a mean-field approach to the target which
we would expect to become more accurate as the number
of target nucleons increases. For the α = 0 pole contri-
bution, our new result for the proton is significantly dif-
ferent from the Thomson term, which is at variance with
the original result of Damashek and Gilman [5]. This dis-
crepancy is due to our use of the very high energy photo-
absorption data that has become available only recently
[28]. As a result, instead of the high-energy parameteri-
zation used in Ref. [5],

σR+P (ν) ≈

(
96.6 + 70.2

√
1 GeV

ν

)
µb, (23)

we find

σR+P (ν) ≈

(
68.0

[ ν

1 GeV

]0.097
+ 99.0

√
1 GeV

ν

)
µb.(24)

At an energy ν = 1 GeV both formulas give almost iden-
tical results, but at high energies they differ dramatically.
At the same time, the data in the resonance region have
not changed much, so this leads to our new value for the
α = 0 contribution to photo-absorption on the proton.

For heavier nuclei, however, the bottom panel of Fig. 4
and the final row of Table II shows that the α = 0 contri-
bution appears to be consistent with the Thomson term.
This result is due to an interplay of various nuclear effects
in the resonance region that affect the value of the inte-
grated photo-absorption cross section, and also shadow-
ing at medium-to-high energies. Shadowing at energies
below ν = 200 GeV causes the value of cP to decrease
from 68 µb for the proton to approximately 43 µb for
lead, respectively. On the other hand, the Pomeron is a
QCD phenomenon that is due to the interaction of quarks
and gluons and should be the leading mechanism of pho-
toabsorption at extremely high energies. It can be ex-
pected that at asymptotic energies nuclear effects should
be negligible, and the strength of the Pomeron should be
the same for both the proton and heavier nuclei. If in the
future nuclear photoabsorption data above ν = 200 GeV
would become available, they could shed more light on
the asymptotic behavior of the forward nuclear Comp-
ton amplitude, and could remove uncertainties regarding
the strength of the Pomeron, Reggeon and α = 0 pole
contributions.

Finally, in addition to the paper by Damashek and
Gilman Ref. [5] already mentioned above, there have
been other evaluations of the α = 0 pole for forward
Compton scattering. Dominguez, Ferro Fontan and
Suaya [12] and Shibasaki, Minamikawa and Watanabe
[13] used a similar approach to that of Ref. [5] and inde-
pendently arrived at a qualitatively similar result,

ReTα=0
p = (−3± 2)µb GeV, (25)

where the uncertainty is dominated by the parameters of
the high energy fit, reflecting the limited range of high-
energy data available at that time.



6

1 10 100 1000 10000
0

100
200
300
400
500

σ 
(µ

ba
rn

) Proton

1 10
0

100

200
300

400
Deuteron

1 10
0

100

200

300

400

σ 
(µ

ba
rn

) ¹²C

1 10
0

100

200

300

400
²⁷Al

1 10 100
ν (GeV)

0

100

200

300

400

σ 
(µ

ba
rn

) ⁶⁵Cu

1 10
ν (GeV)

0

100

200

300

400
²⁰⁷Pb

FIG. 3: (Color online) High energy photo-absorption cross sections per nucleon for six nuclear targets compared to the fit
results (solid lines) using the Breit-Wigner resonance plus background pametrization of Eq. (19). Data are from [27] for the
proton and the deuteron, and from [22–24] for heavier nuclei. The Regge plus Pomeron curves are shown by dashed lines. The
background fit parameters are given in Table I.

Proton Deuteron 12
6 C 27

13Al 65
29Cu 207

82 Pb
1

2π2A
σhadint 18.60± 0.31 17.46± 0.51 16.80± 0.62 16.54± 1.50 16.16± 0.57 16.57± 1.02

1
2π2A

σnuclint - - 0.197 0.30 0.480 0.69
1

2π2 cR
(E/GeV )1/2

1/2
14.19± 0.16 11.54± 0.39 10.96± 0.63 7.67± 1.66 11.03± 0.52 13.10± 1.31

r.h.s of Eq. (17) −4.21± 0.35 −5.92± 0.65 −6.04± 0.88 −9.17± 2.24 −5.61± 0.77 −4.16± 1.66

−
(
2 + ZN

A2

)
α
M

−6.06 −6.82 −6.82 −6.82 −6.81 −6.78
1

2π2 cP (E/GeV ) 6.72± 0.02 6.92± 0.12 5.65± 0.11 6.19± 0.59 4.53± 0.06 4.16± 0.25

−Z
2

A2
α
M

−3.03 −0.76 −0.76 −0.70 −0.60 −0.48

ReTα=0 −0.72± 0.35 0.25± 0.65 −1.14± 0.89 −3.68± 2.31 −1.71± 0.77 −0.48± 1.68

TABLE II: Contributions to the finite energy sum rule for selected targets in units of GeV·µb. The entries in the second row
are taken from a review on nuclear data in Ref. [25].

In Ref. [16], Dominguez, Gunion and Suaya extended
this analysis by including the deuteron photoabsorption
data. They employed a model for nuclear effects to ex-
tract parameters of the neutron from deuteron and pro-
ton data, and evaluated the FESR for both nucleons.
Their conclusions were that the α = 0 pole is consistent

with the respective Thomson term for both,

ReTα=0
n = (0± 1.5)µb GeV,

ReTα=0
p = (−3± 0.8)µb GeV, (26)

where ReTα=0
p(n) refers to the proton (neutron), respec-

tively. Tait and White in Ref. [15] re-analyzed the FESR
using a more recent data set, and obtained a much more
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FIG. 4: (Color online) Upper panel: the fraction of the TRK sum rule for nuclear targets 12C, 27Al, 65Cu, and 207Pb; middle
panel: experimental values (data points) vs. theoretical expectation (dotted line) for our new constituent quark model (CQM)
sum rule for the proton, deuteron, 12C, 27Al, 65Cu, and 207Pb, in units of µb; lower panel: results for the α = 0 pole for all
targets considered, in µb.

conservative estimate,

ReTα=0
p = (−3+4

−5)µb GeV. (27)

Based on the recent proton data on photoabsorption at
very high energies [28] and the analysis of Tait and White
[15], we conclude that the errors in Eq. (26) were signif-
icantly underestimated.

IV. SUMMARY AND CONCLUSIONS

In summary, we revisited the finite energy sum rules
(FESR) for forward real Compton scattering on the pro-
ton and heavier nuclei. As the photon energy increases
and its wavelength decreases, the Compton amplitude
becomes sensitive to progressively smaller features of a
nuclear target. At the lowest energies, the Compton am-
plitude is determined by scattering on the target as a
whole, whereas in the high energy limit it is expected to
be determined by scattering on elementary target con-
stituents.

Finite energy sum rules provide a qualitative compari-
son between the high energy and the low energy limits of
the scattering amplitude. For nuclei, the Thomas-Reiche-
Kuhn (TRK) sum rule relates the strength of the giant
dipole resonance to the difference between the nuclear

Thomson term and the incoherent sum of Thomson terms
of protons residing in the nucleus. In a similar fashion
we have proposed a new sum rule that describes the inte-
grated strength of the nucleon resonances as a difference
between the nuclear Thomson term and the incoherent
sum of Thomson terms from constituent quarks residing
in the target. In this process it is crucial to separate the
Reggeon and Pomeron high-energy contributions to the
FESR, and we call this new sum rule the ‘constituent
quark model’ or CQM sum rule.

We analyzed the TRK and CQM sum rules for the
proton, deuteron, 12C, 27Al, 65Cu and 207Pb targets. All
nuclear data are consistent with the CQM sum rule, how-
ever, for the proton the comparison is not as favorable.
This may be explained by the fact that in a nucleus, the
errors due to various systematic effects are averaged over
a large number of constituent quarks, and thus may be
statistically less significant than for the proton.

Theoretical arguments suggest that Compton scatter-
ing amplitudes at high energies should contain an energy-
independent constant that corresponds to a Regge pole at
α = 0 [2–10]. Previous attempts to extract this constant
obtained results consistent with this amplitude being ap-
proximately equal to the value at low energies i.e., the
Thomson term.

We were able to demonstrate that high-energy pho-
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toabsorption data on the proton confirms that the α = 0
pole and the Thomson term, ReTp(0) = −3.03µbGeV are
significantly different,

ReTα=0
p = (−0.72± 0.35)µb GeV. (28)

The difference between our result and the value con-
sistent with the Thomson term from previous analyses
[5, 12, 13, 15] is due to the recent high-energy pho-
toabsorption data [28], which changes the Regge plus
Pomeron contribution from Eq. (23) which was used in
Ref. [5], to our background form Eq. (24). With this form
for the background amplitude we extract the new value
for the α = 0 pole that differs significantly from the value
of the Thomson term.

We extended this analysis to a number of nuclear tar-
gets. In the case of the sum rule for the α = 0 pole,
only the proton result is unambiguously distinct from
the Thomson term, whereas for other targets the result
was consistent with the Thomson term within the ex-
perimental errors. Our results are relevant to the ques-
tion of the A-dependence of the Pomeron contribution.
The Pomeron in QCD is isospin-independent, and for
asymptotically high energies one generally expects that
the Pomeron contribution from a free proton should equal
the average nucleon Pomeron contribution in a nucleus.
Current nuclear data only extend up to ∼ 200 GeV and
at these energies shadowing effects are responsible for
suppressing the Pomeron contribution by some 30% rel-
ative to the proton value. It is an open question whether
future nuclear photo-absorption data at higher energies
similar to those currently available for the proton will
tend to bring the Pomeron strength per nucleon up to
the free proton value.
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