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Abstract

The transverse momentum distributions of identified hadrons produced in Pb-Pb collisions at

the Large Hadron Collider (LHC) are studied in the low and intermediate range for pT < 5 GeV/c.

All four spectra (π,K, p,Λ) can be well reproduced in the recombination model based on a common

thermal parton distribution of light and strange quarks and on shower partons emitted in hard

and semihard jets. Two essential parameters are adjusted to fit the data, one being the inverse

slope of the thermal distribution and the other revealing the degree of momentum degradation

in the medium. Various combinations of thermal and shower parton components are calculated,

showing the dominance of minijets. The effect of minijets is to produce harder baryons than mesons

resulting in their ratio to peak at around pT ∼ 3 GeV/c. Substantial portion of the jet energy

is found to be lost to the dense medium before the partons emerge at the surface to undergo

hadronization by recombination.
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I. INTRODUCTION

Recent data from ALICE on Pb-Pb collisions at
√
sNN = 2.76 TeV provide the first

glimpse of the transverse-momentum (pT ) distributions of identified hadrons produced at

the Large Hadron Collider (LHC) [1]. Although the pT ranges are from 0 to 3 GeV/c only

for π and p, and up to 5 GeV/c for K0 and Λ0, which are very low by LHC standards,

there are already features that are unexpected by extrapolation from RHIC [2]. The proton

distribution seems to be pushed harder to higher pT so that the p/π+ ratio, as well as the

p̄/π− ratio, continue to rise up to the highest detected momentum at pT ≈ 3 GeV/c. The

Λ/K ratio does show a well-developed peak at pT = 3 GeV/c, and the magnitude of the

ratio increases with centrality, exceeding 1.5 at 0-5% centrality. Since no model-calculation

has been cited in Refs. [1, 2] to indicate the existence of any satisfactory explanation of the

data, it is important to investigate this problem and develop a model that can accommodate

all aspects of the pT distributions for π,K, p and Λ production up to 5 GeV/c.

The region of low and intermediate transverse momenta, 0 < pT < 5 GeV/c, is difficult

for theoretical treatment that can claim validity throughout the whole range. It is too low

for perturbative QCD and includes pT too high for conventional hydrodynamics. In our

study here we focus only on the hadronization process for which we use the recombina-

tion model that has been shown to be effective in interpreting the data at intermediate pT

[3]. The input involves thermal and shower parton distributions at late time that are phe-

nomenological in the sense of having some parameters not determined from first principles.

However, our approach has the advantage of making transparent the common origin of the

various components that contribute to the spectra of different hadrons produced. Since the

recombination model has been successful in explaining the large baryon/meson ratio found

at RHIC [4–6], it is sensible to extend that approach here in examining its applicability at

LHC. It is generally recognized that at high energy in the TeV regime minijets are copiously

produced from semihard scatterings. The density of shower partons from such minijets [7, 8]

is therefore expected to be much higher than at RHIC. On the other hand, thermal partons

at hadronization should not depend sensitively on the collision energy, since the hadroniza-

tion of a system of higher initial density occurs later when the thermal medium can expand

to a lower local density in order for confinement to take place. Thus the mixture of shower

and thermal partons at late time at LHC should be very different from that at RHIC. Since
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shower partons are harder than thermal partons, we therefore expect the produced hadrons

to be also harder — more so for the baryons than mesons due to their larger number of

constituents in the recombination model. This is qualitatively the short explanation for why

the ALICE data exhibit harder baryon spectra compared to the RHIC data. The essence of

this work is to carry out the investigation quantitatively.

The dense partonic medium created at LHC can lead to severe attenuating effects on

semihard partons that traverse the medium. One can focus on the various mechanisms of

energy loss in QCD, as in [9], but such studies of medium effects do not lend themselves

readily to the analysis of the hadronization process outside the medium, which is our goal.

A template for a phenomenological description of the medium effects has been found in Ref.

[10] that takes geometrical properties of Au-Au collisions at RHIC into consideration. We

shall use the general form of that study for LHC, but not its details. With the assumption

of the dominance of gluon jets for the determination of all shower partons, the effect of jet

quenching is common to all flavors of shower partons that undergo hadron formation outside

the medium. Thus the central issues in this work are on the various ways in which thermal

and shower partons can recombine at pT < 5 GeV/c in Pb-Pb collisions at 2.76 TeV. To

achieve a satisfactory description of the spectra of all identified species is our immediate

goal so that the study of hadron production at higher pT can follow at a later stage on a

firm footing.

II. MESON AND BARYON INCLUSIVE pT DISTRIBUTIONS

Let us first collect here the basic equations in the recombination model developed previ-

ously [8, 10]. For the invariant pT distributions of meson and baryons averaged over η and

φ at midrapidity, we may use the one-dimensional form

p0
dNM

dpT
=

∫
dp1
p1

dp2
p2

Fq1q̄2(p1, p2)R
M
q1,q̄2

(p1, p2, pT ), (1)

p0
dNB

dpT
=

∫ [
3∏

i=1

dpi
pi

]
Fq1q2q3(p1, p2, p3)R

B
q1,q2,q3

(p1, p2, p3, pT ), (2)

where pi is the transverse momentum (with the subscript T omitted) of one of the recom-

bining quarks qi, whose evolution from a parton emitted at the medium surface to a valon

(the constituent quark of the hadron to be formed) is a dressing process that preserves its
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momentum [11]. The recombination functions (RFs), RM,B, that include the effects of dress-

ing and hadronic structure, have been determined previously and will be given below. We

note here that our dNh/dpT should be identified with the experimental dN/2πdηdpT , which

integrates over all φ, while our quantity is defined as averages over φ and η. The parton

distributions can be partitioned into various components represented symbolically by

Fq1q̄2 = T T + T S + SS , (3)

Fq1q2q3 = T T T + T T S + T SS + SSS , (4)

where T and S are the invariant distributions of thermal and shower partons, respectively.

There can be many terms within each of the components shown above.

It should be noted that the nature of time evolution of the system is not specified in

Eqs. (1) - (4). The recombination model describes hadronization at late time. Thus T and

S distributions are model inputs at that time that are appropriate for particular collision

systems. The thermal distribution should not depend sensitively on the collision energy,

since the density of the thermal system must be reduced by expansion to around the same

level at any collision energy in order for hadronization to occur. Thus the thermal parton

distribution that we adopt has the same form as before [8]

T (p1) = p1
dNT

q

dp1
= Cp1e

−p1/T , (5)

where C has the dimension of inverse momentum. The prefactor p1 is necessary to yield the

exponential behavior for the thermal component of the hadronic distribution dNh/pTdpT , as

we shall see after specifying the RF. [See Eq. (31) below.] On the other hand, the properties

of shower distribution do depend strongly on the collision energy, not only because of the

increased rate of creation of hard partons, but also due to the quenching effect of the denser

medium. With ξ used as a parameter that describes an aspect of the momentum degradation

in the medium, Fi(q, ξ) is the hard or semi-hard parton distribution at the surface of the

medium to be discussed in detail below. For now we just show the shower distribution as

S(p2, ξ) =
∫

dq

q

∑

i

Fi(q, ξ)Si(p2/q), (6)

where Si(z) is the shower parton distribution (SPD) in a jet of type i with momentum

fraction z. In Refs. [7, 12] SPD is determined by regarding the fragmentation function (FF),
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Di(x), as being the recombination product of two shower partons

xDπ
i (x) =

∫
dx1

x1

dx2

x2

{
Sq
i (x1), S

q̄
i

(
x2

1− x1

)}
Rπ

qq̄(x1, x2, x), (7)

where the curly brackets denote symmetrization of the leading parton momentum fractions

x1 and x2.

Using Eqs. (3)-(6) in (1), we obtain for pion production

p0
dNTT

π

dpT
= C2

∫
dp1dp2e

−(p1+p2)/TRπ(p1, p2, pT ), (8)

p0
dNTS

π

dpT
=

∫
dξP (ξ, φ, b)

∫
dq

q

∑

i

Fi(q, ξ)T̂ S(q, pT ), (9)

p0
dNSS

π

dpT
=

∫
dξP (ξ, φ, b)

∫
dq

q

∑

i

Fi(q, ξ)ŜS(q, pT ), (10)

where

T̂ S(q, pT ) =

∫
dp1
p1

dp2
p2

T q̄(p1)S
q
i

(
p2
q

)
Rπ

qq̄(p1, p2, pT ), (11)

ŜS(q, pT ) =

∫
dp1
p1

dp2
p2

{
S q̄
i

(
p1
q

)
, Sq

i

(
p2

q − p1

)}
Rπ

qq̄(p1, p2, pT )

=
pT
q
Dπ

i (pT/q). (12)

P (ξ, φ, b) is the probability for the dynamical path length to be ξ for a path at angle

φ initiated at (x0, y0), weighted by the nuclear overlap function, and integrated over all

(x0, y0). Geometrically, ξ depends on where the trajectory is between the center and the

periphery of the overlap, and dynamically it depends on the energy loss along the path, as

will be discussed in more detail in the next section.

For notational brevity we define

F̄i(q, ξ̄) =

∫
dξP (ξ, φ, b)Fi(q, ξ) (13)

where ξ̄ depends on φ and b, and get from Eqs. (9) and (11)

dNTS
π

pTdpT
=

2

p2T

∫
dp1
p1

dp2
p2

T q̄(p1)Sq(p2, ξ̄)R
π
qq̄(p1, p2, pT ), (14)

where

Sq(p2, ξ̄) =

∫
dq

q

∑

i

F̄i(q, ξ̄)S
q
i (p2/q) (15)
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that follows obviously from Eqs. (6) and (13), except to emphasize that the medium effect is

in F̄i(q, ξ̄), not in Sq
i (p2/q). That is, the FF in Eq. (7) is for partons outside the medium and

is therefore not modified by it. The factor of 2 in Eq. (14) arises from the two distinguishable

components of T u(1)S d̄(2) + T d̄(1)Su(2). Such a factor is absent in the TT term because

T u(1)T d̄(2) and T d̄(1)T u(2) are indistinguishable in a thermalized medium of q and q̄. For

K+ production we have for TS two terms of us̄, so we obtain

dNTS
K

pTdpT
=

1

p0pT

∫
dp1
p1

dp2
p2

[
T q(p1)Ss(p2, ξ̄) + T s(p2)Sq(p1, ξ̄)

]
RK(p1, p2, pT ), (16)

where Ss is as defined in Eq. (15), but with Sq
i replaced by Ss

i . Because of the mass difference

between the two constituents of K, RK(p1, p2, pT ) is not symmetric under the interchange

of p1 and p2; moreover, the two terms in the square brackets are different. Since we consider

only hadron production at mid-rapidity here, we may approximate p0 by the transverse mass

mT , where

mT = (m2
h + p2T )

1/2. (17)

For h = K, p and Λ, it can be significantly different from pT when pT is small, and can cause

the low-pT spectra to deviate from the exponential behavior of the pion spectrum.

The recombination of shower partons from the same jet is equivalent to fragmentation,

so we have

dNSS
M

pTdpT
=

1

mTpT

∫
dq

q

∑

i

F̄i(q, ξ̄)
pT
q
DM

i

(
pT
q

)
. (18)

We shall denote it as (SS)1j . It is also possible for shower partons from adjacent minijets

to recombine; we shall refer to such processes as (SS)2j.

For baryon production the parton distribution shown in Eq. (4) has many components

that can be expressed more explicitly, though still symbolically condensed, as

Fq1q2q3 = T T T + T T S + T (SS)1j + (SSS)1j + T (SS)2j + ((SS)1jS)2j + (SSS)3j (19)

in obvious notation except for ((SS)1jS)2j which means that two shower-partons are from

1-jet and the third one from a second jet. We have found that all terms from multi-jets are

small for pT < 5 GeV/c, so in this paper we ignore 2j and 3j and omit the specification 1j,

since only 1-jet is considered. If we use the simplified notation to abbreviate Eqs. (14) and

(16) as

(TS)π = 2TqSq, (TS)K = TqSs + TsSq, (20)
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then in a similar way we shorten the expression for p and Λ as

(TTS)p = TqTq(Su + Sd), (21)

(T (SS))p = Tq(SuSd + SuSu), (22)

(SSS)p = SuSuSd, (23)

(TTS)Λ = Tq(TqSs + 2TsSq), (24)

(T (SS))Λ = 2TqSqSs + TsSuSd, (25)

(SSS)Λ = SuSdSs, (26)

The recombination functions (RFs) have been determined from the study of hadronic

structure [8, 11, 13]. They are given below in terms of yi, which is the momentum fraction

of a valon (which plays the role in the scattering problem as a constituent quark does in the

bound-state problem) relative to the pT of the produced hadron; i.e., yi = pi/pT ,

Rπ(y1, y2) = y1y2δ(y1 + y2 − 1), (27)

RK(y1, y2) = B−1(a + 1, b+ 1)ya+1
1 yb+1

2 δ(y1 + y2 − 1), (28)

RB(y1, y2, y3) = gBstNB(y1y2)
α+1yβ+1

3 δ(y1 + y2 + y3 − 1), (29)

where

NB = [B(α + 1, α+ β + 2)B(α+ 1, β + 1)]−1, (30)

and gBst is a statistical factor. From previous studies it has been determined that a = 1, b = 2

[14], α = 1.75, β = 1.05 for proton [13] and α = 1, β = 2 for Λ [14]. For pion a = b = 0

because its mass is especially low due to its being a Goldstone boson, so tight binding of

the constituent quarks leads to broad distribution in yi.

An immediate consequence of the momentum-conserving δ-functions in the RFs is the

simplification of the hadronic distributions. We illustrate that by writing out explicitly the

pion distributions. Substituting Eq. (27) in (8) and (14), we get

dNTT
π

pTdpT
=

C2

6
e−pT /T , (31)

dNTS
π

pTdpT
=

2C

p3T

∫ pT

0

dp1p1e
−p1/TSq(pT − p1, ξ̄), (32)

where the pion mass in p0 = mT is neglected. The SS component can be written in terms

of FF as in Eq. (18), for which the properties of RF are already used in relating S to D in
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Eq. (7). Similar equations as the two above can be exhibited for other hadrons, as done in

Appendix A. Here we show the thermal component of proton

dNTTT
p

pTdpT
= N ′

pC
3 p

2
T

mT
e−pT /T , (33)

where N ′

p = gpstNBB(α+2, β+2)B(α+2, α+β+4), so that we can emphasize, by comparing

Eqs. (31) and (33), that pion and proton have the same exponential factors; however, the

latter has a prefactor p2T/mT that arises from the kinematics of recombination, causing the

π and p spectra to differ at low pT . Note that the inverse slopes T for both spectra are the

same.

The objective in this section to express the hadronic spectra in terms of the parton

distributions is now accomplished. In the following it is then only necessary for us to focus

on the latter in order to calculate the former.

III. THERMAL AND SHOWER PARTONS

As noted at the end of the preceding section the thermal distributions of p and π have

the same inverse slope T , inherited from the thermal partons, whose invariant distribution

is given in Eq. (5). This is the characteristic property of recombination that deviates from

the hydrodynamical description where Tslope depends on the hadron mass due to flow effect

[15]. There is apparent disparity between the p and π spectra in the data; nevertheless,

because of the prefactor p2T/mT for proton and of the dominant resonance contribution to

pion for pT < 1 GeV/c, it does not mean that it is impossible to have a good description of

both spectra using one value of T , as will be shown below.

We now extend the universality of the thermal parton distribution to include the strange

sector in hadron production at LHC. In the TeV realm of collision energies it is expected

that the light and strange quarks are fully equilibrated before hadronization. If that is so,

then the same thermal distribution given in Eq. (5) should be valid for u, d and s quarks,

the consequence of which can readily be checked in our model calculation. We note that the

issue is not one that concerns hadronic masses, since the system under discussion consists

only of thermal partons in local equilibrium. More specifically, before the recombination

mechanism is applied, we assume that all gluons are converted to u, d and s quarks and

their antiquarks, which form the initial states of specific channels for hadronization [11].
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Thermal gluons do not fragment in the usual sense. Even fragmentation of gluon jets is

treated by conversion to q and q̄ before recombination.

For shower partons let us begin by first summarizing the subject of momentum degrada-

tion treated in Ref. [10]. At RHIC the pT , φ and centrality (c) dependencies of the nuclear

modification factor RAA(pT , φ, c) impose stringent constraints on the dynamical process of

energy loss. The problem is complicated because of both the geometrical and dynamical

aspects of the description of the parton’s traversal through a non-uniform medium. For

a given point (x0, y0) in the transverse plane where a hard parton is created in the initial

system in a collision at impact parameter b, one has to calculate the geometrical path length

ℓ(x0, y0, φ, b) of a path at angle φ and then the medium effect along that path. As the sys-

tem expands, ℓ becomes longer, but the local density becomes lower, so those compensating

effects on the net energy loss result in a dynamical path length ξ that can be related to ℓ

through an undetermined parameter but without a time-dependent transport description.

Upon averaging over all creation points (x0, y0), one arrives at a probability distribution on

ξ, denoted by P (ξ, φ, b), that relates the average parton distribution F̄i(q, φ, b) with momen-

tum q at the medium surface to the distribution, Fi(q, ξ), with a definite ξ by a weighted

average

F̄i(q, φ, b) =

∫
dξP (ξ, φ, b)Fi(q, ξ). (34)

This is a general relationship with details all contained in P (ξ, φ, b). The parton distribution

Fi(q, ξ) is related in turn to the distribution fi(k) at the point of creation by

Fi(q, ξ) =

∫
dkkfi(k)G(k, q, ξ), (35)

where fi(k) is the parton density in the phase space kdk. G(k, q, ξ) is the momentum

degradation function from k to q:

G(k, q, ξ) = qδ(q − ke−ξ). (36)

In [10] the RHIC data [16] on RAA(pT , φ, c) are used to constrain the properties of

P (ξ, φ, b). It is found that P (ξ, φ, b) can be expressed in some scaling form involving the

scaling variable z = ξ/ξ̄, where ξ̄(φ, b) =
∫
dξ ξP (ξ, φ, b). For our purpose here, let us not

repeat the details of that study for Pb-Pb collisions at LHC, especially when we restrict

our attention in this work to only the data at most central collisions. We circumvent the
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complications by deriving a simple parametric form as follows. From Eqs. (13), (34)-(36)

we have for the average parton distribution at the surface

F̄i(q, ξ̄) =

∫
dξP (ξ, φ, b)q2e2ξfi(qe

ξ), (37)

which we parametrize for centrality 0 < c < 0.05 in the form

F̄i(q, κ) = k(q)2fi(k(q)), k(q) = κq. (38)

If the details of P (ξ, φ, b) discussed in [10] are used, it can be shown that F̄i(q, ξ̄) in Eq.

(37) for a relevant value of ξ̄ can be reproduced very closely by Eq. (38) for a corresponding

value of κ. Since in either case an unknown parameter is needed to represent the effect of

momentum degradation, we choose the latter expression that does not rely on the details

of P (ξ, φ, b), and treat κ as the key parameter to fit the data of all hadronic spectra. The

significance of κ is clearly the average momentum fraction, κ−1, that a parton retains upon

traversing the medium.

IV. PARAMETRIZATION

For the thermal parton distribution we use the form in Eq. (5) and put

C = 23.2 (GeV/c)−1 (39)

that is the value determined at RHIC [8]. We shall let T be adjustable to fit the LHC

data at low pT . Since our aim is to reproduce the pT distributions of all identified particles

(π,K, p,Λ), the use of one parameter T for all thermal partons is not only economical, but

would indeed be remarkable, if achieved. Unlike in hydrodynamical studies that consider

mass-dependent flow effect, our approach incorporates the effects of minijets on the hadronic

spectra at low pT , allowing the recombination processes to determine the similar or dissimilar

behaviors of different hadronic species.

The parton distributions, fi(k), at creation have been determined in Ref. [17] for Au-Au

collision at 0.2 TeV and for Pb-Pb collision at 5.5 TeV. The form used is

fi(k) = K
A

(1 + k/B)n
, (40)
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where K = 2.5, A,B and n are tabulated for various quarks and gluon. For
√
sNN = 2.76

TeV we use logarithmic interpolation between the two energies for ℓnA,B and n. More

specifically, for gluons we use

A = 6.2× 104 GeV−2, B = 0.98 GeV, n = 6.22. (41)

Other parameters can similarly be obtained. The quark contributions are found to be

significantly less than the gluon contribution. To make our calculation transparent, we shall

assume the dominance of gluon jets and let the summation over parton species in all hard

parton terms be represented by a factor σ times the contributions from the gluon jets only,

which we shall calculate explicitly using Eqs. (40) and (41) for gluon creation at k > 3

GeV/c. That is, we approximate
∑

i Fi by σFg and shall use σ = 1.2 in the calculation,

since the quark jets amount to roughly 20% of the gluon jet.

Since the parton distribution F̄i(q, κ) is not reliable for q < 3 GeV/c, its contribution at

low q is cut off by a smooth function which we take to be

g(q) =
[
1 + e(3.5−q)/0.5

]−1
. (42)

With this cut-off factor we may then let the q integrals in all equations, such as in Eqs. (6)

and (15), to start at q = 0. Shower parton with momentum pj has a momentum fraction

x = pj/q that peaks at small x; consequently, even for q > 3 GeV/c, the density of shower

partons at pj < 1 GeV/c can become very high at LHC. At low pT we know that thermal

partons are important. How to separate the shower partons from the thermal partons at low

pj is not very well defined. The energy lost by semihard partons as they traverse the medium

can enhance the thermal motion of the soft partons in the vicinities of their trajectories,

thereby contributing to a component of the thermal partons that are intimately related to

the soft component of the shower partons. The effective T that we shall determine includes

enhanced thermal partons due to the energy loss of the semihard partons. Because of that

effect the distributions of shower partons that are to be determined from the FF according to

Eq. (7) must be modified at low x so that S(p1) will not exceed T (p1). That modification is

discussed in detail in Appendix B. The phenomenological basis that supports our approach

to the problem is the success in treating the pion and proton spectra at RHIC from a

common partonic distribution characterized by a universal T [8, 18, 19]. Here we apply the

same idea to the problem at LHC.
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To summarize, we have two basic parameters to adjust to fit a large collection of data

from LHC. Those parameters are T and κ that characterize the thermal medium and its

quenching effects on minijets. Due to the copious production of minijets at LHC, we expect

that the relative magnitudes of the parton distributions T and S will be different from those

at RHIC. They contribute to hadronic distributions in the intermediate range 1 < pT < 5

GeV/c that is hard to quantify in other approaches. Thus our phenomenological treatment

that employs two free parameters is a worthwhile endeavor, provided that all four hadronic

spectra can be reproduced.

0 1 2 3 4 5
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π+ ALICE

p
T
 (GeV/c)

dN
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T
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T
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G
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/c
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2 ]

FIG. 1: (Color online) Transverse momentum distribution of pion produced in Pb-Pb collision at

√
sNN = 2.76 TeV. Data are from Ref. [1] for centrality 0-5%. The black curve is the sum of the

components calculated for TT (blue), TS (red), SS (purple) recombination. The dashed line is a

fit to the data, whose difference from the solid is attributed to resonance decay.

V. RESULTS

We calculate the four hadronic spectra using equations given in Appendix A. In all

those equations parton distributions involving the parameter ξ̄ are to be replaced by the

distributions in terms of κ, as we have discussed in going from Eq. (37) to (38). We have

varied T and κ to achieve the best fits of the data reported by ALICE for central (0-5%)

Pb-Pb collisions at 2.76 TeV [1]. The results are shown in Figs. 1-4. The values of those
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FIG. 2: (Color online) Transverse momentum distribution of K produced in Pb-Pb collision at

√
sNN = 2.76 TeV. Data are from Ref. [1] for centrality 0-5%. The data points in the region

pT < 2 GeV/c are for K+, while those for pT > 2 are obtained from the ratio Λ0/K0
s and the Λ0

spectrum in [1, 22]. The black curve is the sum of the components calculated for TT (blue), TS

(red), SS (purple) recombination.
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FIG. 3: (Color online) Transverse momentum distribution of proton produced in Pb-Pb collision

at
√
sNN = 2.76 TeV. Data are from Ref. [1] for centrality 0-5%. The black curve is the sum of

the components calculated for TTT (blue), TTS (red), TSS (purple), SSS (green) recombination.
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FIG. 4: (Color online) Transverse momentum distribution of Λ produced in Pb-Pb collision at

√
sNN = 2.76 TeV. Data are from Ref. [1] for centrality 0-5%. The lines are color-coded as in Fig.

3.

parameters are

T = 0.38 GeV, κ = 2.6. (43)

The color code for the various lines representing the different components are as follows: TT

and TTT in blue, TS and TTS in red, SS and TSS in purple, SSS in green, and the total in

black. The agreement between the black lines and the data points for K, p and Λ in Figs.

2-4 are evidently very good throughout the whole region where data exist.

In the case of pion the calculated total falls below the data for pT < 1.5 GeV/c. The

dashed (black) line is drawn to fit that region and represents the extra contribution from the

decay of resonances. Such a component cannot at present be calculated in this formalism,

because the RFs have been derived from the hadronic structures of the lowest bound states.

Resonances involve orbital excitations for which the RFs have not been investigated. The

dominance of resonance production at low pT is a known fact even for meson-proton collisions

at
√
s = 53 GeV [20] where ρ and ω contributions to the π spectra exceed 60% [21]. At LHC

not only do vector and tensor mesons decay into pions, but various baryon resonances can

also contribute to additional pions. Since resonance contribution is also present at RHIC,

but not considered in Ref. [8], we put aside the region at pT < 1 GeV/c so as to give emphasis

to the difference between what we can calculate at LHC and RHIC for pT > 1 GeV/c.
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What is notable in these spectra is the important role that the shower parton S plays

throughout the pT range shown. In all of them TS and TTS components are of the same

magnitudes as TT and TTT , or higher. In fact, for pT > 0.5 GeV/c, TS is larger than

TT , and TTS is larger than TTT for all hadrons produced. It means that at LHC minijets

are pervasive and their effects dominate the spectra throughout the low and intermediate

pT regions. For pT < 5 GeV/c, SS, TSS and SSS components are all negligible. Thus

the traditional fragmentation of jets can be ignored. In the recombination approach to

hadronization TS and TTS components represent the medium effect on semihard partons,

which lose energy to the medium and then regain some of the momenta back by coalescing

with enhanced thermal partons to form hadrons. That they are important for pT > 3 GeV/c

is expected, as has been found in the study of RHIC physics [8], but to see them as being

so important for pT > 1 GeV/c is a new revelation at LHC.
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FIG. 5: (Color online) Shower and thermal parton distributions at LHC and RHIC.

To help to understand more clearly how hadron production at LHC differs from that at

RHIC, we show in Fig. 5 the shower and thermal parton distributions at LHC and RHIC.

S and T are as defined in Eqs. (B6) for gluon jet and in (5), and shown by red and blue

lines, respectively. Appendix B contains the details about S at LHC, which is more than an

order of magnitude higher than S for RHIC. On the other hand, T is the same at low p1 for

both energies, but the exponential decrease at intermediate p1 is steeper at RHIC (T = 0.32

GeV) than at LHC (T = 0.38 GeV). As a consequence, T at RHIC is much larger than S
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FIG. 6: (Color online) Transverse momentum distributions of π at LHC and RHIC.

at p1 < 2 GeV/c and they cross over at around p1 = 3 GeV/c, whereas S and T at LHC

are approximately the same for p1 < 2 GeV/c. These differences have significant effects on

the pion spectra. In Fig. 6 we compare the pT distributions of pions arising from TS and

TT recombination at the two energies. Evidently, TT dominates over TS at pT < 3 GeV/c

at RHIC, but TS at LHC is larger at all pT . It is then clear how minijets are so important

at LHC that the pion spectrum become much harder than at RHIC, and it is not because

of enhanced flow.

As shown in Appendix A, there are many terms in our calculation. To get a good fit

of all four spectra with the adjustment of essentially only two parameters, T and κ, is a

significant achievement that provides a transparent picture of the relative importance of the

various thermal and shower partons at pT < 5 GeV/c. The quality of our fits can be seen

from Figs. 7 (a) and (b) where the particle ratios p/π and Λ/K are shown. For the former

the excellent agreement with data is partially due to the capability of our formalism to

reproduce the p and π spectra accurately and separately for pT > 1.5 GeV/c, and partially

because we have included the resonance contribution to the pions at pT < 1.5 GeV/c that

we did not calculate. Since the reliable portion of our calculation is in the intermediate pT

region above 1.5 GeV/c, the peaking of the p/π ratio at pT ≈ 3 GeV/c and the gentle falloff

above that are our prediction. The Λ/K ratio in Fig. 7(b) does not show perfect agreement,
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but it is in linear scale that amplifies the deviations of the calculated spectra from the data,

which are seen in Figs. 2 and 4 to be well reproduced in log scale. From that more tolerant

point of view the general agreement of the calculated ratio with data may be regarded as

remarkably good. The qualitative notion gained from the data that baryons are produced

with more transverse momentum [2] is now given a quantitative interpretation that shower

partons from minijets harden the pT spectra because of the larger phase space opened up

at higher pT when three quarks recombine, one of which being the harder shower parton (as

can be seen in Fig. 10 in Appendix B).
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FIG. 7: Particle ratios of (a) p/π and (b) Λ/K. The data are from Ref. [1, 22] for centrality 0−5%.

ALICE also has data on the pT distribution of all charged particles [23]. If we regard Λ0

as representative of Σ+, then adding our result of π,K, p and Λ should come close to all

charges. In Fig. 8 we show the sum of those four by the black line, which almost saturates

the data, leaving very little room for baryons that are not included. The plot ends at pT ∼ 5

GeV/c where our calculation ends, but the data go on to pT ∼ 15 GeV/c. The mismatch

will be large for pT > 5 GeV/c due to aspects of jet physics that we have not taken into

account in the present study, but will be examined in the future.

The value of T at 0.38 GeV is slightly larger than 0.32 GeV that was determined for

thermal partons at RHIC [8]. That is eminently reasonable for the hotter plasma created at

LHC. Since the thermal partons that participate in hadronization are at late time, T is not

the temperature of the system at initial equilibration time, which would be much higher.

After expansion and cooling the value at LHC is, nevertheless, still higher than at RHIC

because there are many more minijets produced, which lose energy to the medium and raise
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FIG. 8: (Color online) Charged particle pT distribution in black line that is the sum of the four

components π (red), p (purple), K (blue), and Λ (green). The data are from Ref. [23] for centrality

0-5%.

the ambient T .

The value of κ at 2.6 implies that on average roughly 1−κ−1 = 60% of the initial parton

energy is lost to the medium. Thus the momenta of the hard and semihard partons created

at LHC suffer severe degradation as they traverse the dense medium. The precise value of

κ may change at higher pT since the degree of momentum degradation can depend on the

initial parton momentum.

VI. CONCLUSION

We have studied the properties of hadron production in the difficult intermediate pT

region that is too low for reliable calculation in pQCD, and too high for hydrodynamical

description. Although we have been successful in reproducing the data, our main point is,

however, not so much on the accuracy of the fits of the data, but on learning about the

physics at LHC. Since our treatment of the problem is focused only on hadronization at

the final stage of the evolution of the partonic system, we cannot address issues related to

the dynamical development in time. Nevertheless, the investigation provides quantitative

information about minijets that are crucial in the understanding of the nature of hadronic

18



spectra. A distinctive feature about our approach is that the production of mesons and

baryons with widely different masses can be described on the basis of a common system

of partons without any specific reference to flow. In the intermediate pT region between

2 and 5 GeV/c, the non-flow part of the hydrodynamical description can presumably be

related to the thermal-shower component of recombination. Hadron masses do not enter

explicitly in our calculation, although they are implicitly involved in the determination of

the recombination functions. The relative magnitudes of the TT, TS and SS components for

mesons (and of TTT, TTS, TSS, and SSS components for baryons) provide a clear picture

of the smooth transition throughout that pT region, and unify the very different hadronic

sectors. That picture offers an illuminating complement to the conventional hydrodynamical

description without contradicting it.

While the shower partons from minijets play the important role in hadronization in the

intermediate pT region, harder jets will, of course, become more important at higher pT . We

do not expect our description to change significantly when we extend our consideration to

that region, except for the need to study also multi-jet recombination. Before doing that,

we still have to examine the centrality dependence in the intermediate region. That subject

is interesting not only because of the data on the second harmonic, v2(pT ), that is usually

interpreted as elliptic flow, but especially because the dominance of minijets implies the

importance of non-flow. The φ dependence of momentum degradation at RHIC has been

considered in our approach previously [10], and can be adapted for collisions at LHC. That

will provide another test of the validity of our finding here about the minijets.
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Appendix A: Hadronic Distributions for π,K, p and Λ

We summarize in this Appendix the formulas for all the hadronic distributions. They

follow from the general equations described in Sec. II and the specific recombination func-

tions for the four hadrons. We shall leave out the multi-jet (2j and 3j) contributions because

they are small and negligible for pT < 5 GeV/c, but we exhibit explicitly the various T
and S combinations. As explained in Sec. IV we approximate the sum over all hard parton

species by the dominant gluon jet contribution multiplied by a constant factor σ (set to be

σ = 1.2) that roughly accounts for the combined contribution of all other quark-jet terms.

That significantly simplifies the calculation without compromising the general features of

the results.

1. Pion

dNTT
π

pTdpT
=

C2

6
e−pT /T , (A1)

dNTS
π

pTdpT
=

2C

p3T

∫ pT

0

dp1p1e
−p1/TSq(pT − p1, ξ̄), (A2)

dNSS
π

pTdpT
=

1

pT

∫
dq

q2
σF̄g(q, ξ̄)D

′π
g (pT , q), (A3)

where

Sq(p2, ξ̄) =

∫
dq

q
σF̄g(q, ξ̄)S

′q
g(p2, q) (A4)

The variable q is the momentum of gluon jet at the medium surface, while the index q refers

to light quarks to be distinguished from s quark whose role in the RF of kaon is different.

The SPD S ′q
g and FF D′π

g are modified at low momentum in ways discussed in Appendix B.
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2. Kaon

dNTT
K

pTdpT
= NKB(a + 2, b+ 2)

C2pT
mK

T

e−pT /T , (A5)

dNTS
K

pTdpT
=

NKC

mK
T p

a+b+2
T

∫ pT

0

dp1p
a
1(pT − p1)

b

×[p1e
−p1/TSs(pT − p1, ξ̄) + (pT − p1)e

−(pT−p1)/TSq(p1, ξ̄)], (A6)

dNSS
K

pTdpT
=

1

mK
T

∫
dq

q2
σF̄g(q, ξ̄)D

′K
g (pT , q), (A7)

where Ss(p2, ξ̄) is as defined in Eq. (A4), except for S ′s
g(p2, q) replacing S ′q

g(p2, q). The RF

for kaon is found in Ref. [14] to be for a = 1 and b = 2.

3. Proton

dNTTT
p

pTdpT
= gpstNpB(α+ 2, β + 2)B(α+ 2, α + β + 4)

C3p2T
mp

T

e−pT /T , (A8)

dNTTS
p

pTdpT
=

gpstNp2C
2

mp
Tp

2α+β+3
T

∫ pT

0

dp1

∫ pT−p1

0

dp2(p1p2)
α+1(pT − p1 − p2)

β

×e−(p1+p2)/TSq(pT − p1 − p2, ξ̄), (A9)

dNTSS
p

pTdpT
=

gpstNp2C

mp
Tp

2α+β+3
T

∫ pT

0

dp1

∫ pT−p1

0

dp2(p1p2)
α(pT − p1 − p2)

β

×p1e
−p1/TSqq(p2, pT − p1 − p2, ξ̄), (A10)

dNSSS
p

pTdpT
=

1

mp
T

∫
dq

q2
σF̄g(q, ξ̄)D

′p
g(pT , q), (A11)

where

Sqq(p2, p3, ξ̄) =

∫
dq

q
σF̄g(q, ξ̄)S

′q
g(p2, q)S

′q
g(p3, q − p2). (A12)

The factor gpst is 1/12 when feeddown from ∆ is excluded [4]. The RF parameters for proton

are α = 1.75 and β = 1.05 [13].
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4. Λ

dNTTT
Λ

pTdpT
= gΛstNΛB(α + 2, β + 2)B(α + 2, α+ β + 4)

C3p2T
mΛ

T

e−pT /T , (A13)

dNTTS
Λ

pTdpT
=

gΛstNΛC
2

mΛ
T p

2α+β+3
T

∫ pT

0

dp1

∫ pT−p1

0

dp2(p1p2)
α+1(pT − p1 − p2)

β

×e−(p1+p2)/T [2Sq(pT − p1 − p2, ξ̄) + Ss(pT − p1 − p2, ξ̄)], (A14)

dNTSS
Λ

pTdpT
=

gΛstNΛC

mΛ
T p

2α+β+3
T

∫ pT

0

dp1

∫ pT−p1

0

dp2(p1p2)
α(pT − p1 − p2)

β

×p1e
−p1/T [2Sqq(p2, pT − p1 − p2, ξ̄) + Sqs(p2, pT − p1 − p2, ξ̄)], (A15)

dNSSS
Λ

pTdpT
=

1

mΛ
T

∫
dq

q2
σF̄g(q, ξ̄)D

′Λ
g (pT , q), (A16)

where gΛst = 1/8 (1/2 for Λ0 or Σ0, and 2/8 from spin consideration). The RF parameters for

Λ are α = 1, β = 2 [14]. Sqs(p2, p3, ξ̄) is as defined in Eq. (A12), but with S ′s
g(p3) replacing

S ′q
g(p3).

Appendix B: Shower Parton Distribution

We derive in this Appendix the shower parton distribution we use for the study of hadron

production at LHC. The basic idea is already described in Refs. [7, 12]; only the parametriza-

tion is now different. Fragmentation function (FF) at high Q2 in deep inelastic scattering

gives the hadron distribution in a quark or gluon jet. It does not specify the way in which

hadrons are formed. In the recombination model FF is described as a two-step process, first

the development of shower partons in a jet, then the coalescence of the shower partons to

form a hadron. For pion production it is as expressed in Eq. (7), which should be augmented

by the dependence of Dπ
i (x, µ

2) and Sj
i (x, µ

2) on the energy scale µ. Since the evolution

of Dπ
i (x, µ

2) in µ2 can be tracked experimentally and theoretically [24], the µ2 dependence

of Sj
i (x, µ

2) can be determined accordingly by use of Eq. (7). However, to include that de-

pendence in the application of Sj
i (x) in Eq. (12) for heavy-ion collisions is too complicated

and more meticulous than necessary in view of the many other unavoidable approximations.

Thus a fixed µ2 is used in practice. For RHIC we have used µ = 10 GeV [7, 12]. Now for

LHC we continue to use the same µ, since the hadronization scale at late time is the same.

However, we improve the determination of the SPD and include scale-breaking effects due
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to a cut-off at low p1.
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FIG. 9: Fit of KKP fragmentation function Dπ
g (x, µ

2) [24] (squares) by Eq. (B1) using the recom-

bination formulas Eqs. (7) and (27), as shown by the solid line.

The gluon FF Dπ
g (x, µ

2) for µ = 10 GeV is shown by the square points in Fig. B-1,

following the parametrization given in Ref. [24]. To reproduce that x dependence, we use

the SPD from gluon to light quark q

Sq
g(x) = axb(1− x)c(1 + dxe) (B1)

where a = 0.739, b = −0.28, c = 4.387, d = 4.502 and e = 10.469. The solid line in Fig. 9

shows the result of our calculation based on Eqs. (7) and (B1). The fit is evidently very

good.

In the application of Sq
g(x) to hadronization processes in heavy-ion collisions, we have

discussed in Sec. IV how the shower partons at very low momenta pi are merged into the

region dominated by thermal partons. The semihard partons lose energy to the medium

whose thermal partons are enhanced in such a way as to make the distinction between

thermal and shower partons meaningless. The peaking of the SPD at very low pi is therefore

unrealistic. Since the inverse slope of the thermal parton distribution is to be determined

phenomenologically that includes the effect of energy loss of the semihard partons, we require
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that the SPD should not exceed the exponential behavior of the thermal partons. The scale

invariant thermal distribution T (p1) given in Eq. (5) is shown in Fig. 10 by the red line; it

dips at small p1 because of the prefactor Cp1. The integrated shower distribution Sq
g (pi),

defined as in Eq. (15) but for gluon jet (i = g) only and with ξ̄ replaced by κ in F̄g(q, κ)

given in Eq. (38), is shown as a function of p1 by the dashed line Fig. 10. We see that Sq
g (p1)

exhibits a power-law behavior for p1 > 1 GeV/c that is expected, and is larger than the

exponential behavior of T (p1). However, the peaking at low p1 for p1 < 0.5 GeV/c is due to

the unreliability of the method of determining Sq
g(x) at low x. Since for physical reasons we

want the thermal partons to dominate at low p1, we introduce a cut-off factor on the SPD.

A cut-off with a particular scale implies breaking of scale-invariance described by x. Such

a breaking is reasonable in low-q processes. If we write x = pT/q in Dπ
g (x), but now in the

non-scaling form Dπ
g (pT , q), we introduce the low-pT cut-off as follows

D′π
g (pT , q) = Dπ

g (pT , q)γ1(pT ), γ1(pT ) = 1− e−p2
T . (B2)

The shower parton distribution must therefore also be modified in accordance to

pT
q
D′π

g (pT , q) =
1

pT

∫ pT

0

dp1S
′q
g(p1, q)S

′q
g(pT − p1, q − p1), (B3)

where Eq. (27) is used in (7) with x1 = p1/q. The modified S ′q
g(p1, q) is now

S ′q
g(p1, q) = Sq

g(p1/q)γ2(p1), (B4)

where the corresponding cut-off in p1 is

γ2(p1) = 1− e−(p1/0.3)2 . (B5)

It can be demonstrated that the two damping factors γ1(pT ) and γ2(p1) are coordinated to

satisfy Eq. (B3) for all pT in the range of 1 < pT < 15 GeV/c.

The consequence of this cut-off on the integrated shower distribution

S ′q
g(p1, κ) =

∫
dq

q
F̄g(q, κ)S

′q
g(p1, q) (B6)

is shown by the solid (black) line in Fig. 10. Note that it is now just lower than the red line

of the thermal distribution T (p1) for p1 < 0.5 GeV/c,which is the criterion of this cut-off.

In actual computation of the hadronic spectra this modified distribution S ′ is used in all

shower distributions generically expressed as S in Sec. II and Appendix A.
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FIG. 10: (Color online) Thermal distribution T (p1) is depicted by the blue line for T = 0.38 GeV.

Shower parton distributions are shown by Sq
g (p1) (dashed line) and S ′q

g(p1) (solid red line); the

latter includes the low-p1 cut-off.
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