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Abstract

Production of the K∗(892)0 and K
∗
(892)0 resonances was studied via their K+π− and K−π+

decay modes in central Pb+Pb, Si+Si, C+C, and inelastic p+p collisions at 158A GeV (
√
sNN

= 17.3 GeV) with the NA49 detector at the CERN SPS. Transverse momentum and rapidity

distributions were measured and total yields were estimated. The yield of K∗ exceeds that of

K
∗

by about a factor of two in nucleus-nucleus reactions. The total yield ratios 〈K∗〉/〈K+〉 and

〈K∗〉/〈K−〉 are strongly suppressed in central Pb+Pb compared to p+p, C+C and Si+Si collisions

in agreement with the expected attenuation of these short-lived resonance states in the hadronic

phase of the expanding fireball. The UrQMD model, although incorporating such a scenario, does

not provide a quantitative description of the experimental results. The statistical hadron gas

model assuming the same freeze-out parameters for stable hadrons and resonances overestimates

the 〈K∗〉/〈K〉 ratios in central Pb+Pb collisions by about a factor of 2.5.

PACS numbers: 13.85.Ni,25.75.Dw
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I. INTRODUCTION

High-energy collisions of heavy nuclei produce a transient state of extreme energy and

matter density in which quarks and gluons are probably briefly deconfined [1–3]. Production

of entropy and of s, s quarks is believed to occur at the early stage of the collision and this

process is expected to be sensitive to the phase of the created matter [4, 5]. The high-density

state evolves into a hadron-resonance gas which finally decouples into the observed hadrons.

The K∗(892) and K
∗

(892) resonance states contain a s and a s valence quark, respectively,

and are therefore sensitive to the level of strangeness production. However, resonance states

have lifetimes similar to that of the fireball and may interact in the dense medium in which

they are produced. Their mass and width could be affected [6] and scattering processes

might destroy or regenerate them. Furthermore, daughters of those K∗ that decay inside

the fireball may rescatter resulting in a changed invariant-mass spectrum. Thus the yields

contained in the K∗ mass peak were conjectured to be sensitive to the duration and properties

of the hadronic fireball stage [7].

Studies of K∗(892) production at mid-rapidity in Au+Au, Cu+Cu, and p+p collisions

at RHIC energies were performed by the STAR collaboration [8, 9]. This paper reports

measurements of K∗(892)0 and K
∗

(892)0 resonance production via their K+π− and K−π+

decay modes at the CERN SPS in central Pb+Pb, Si+Si, C+C, and inelastic p+p collisions

at 158A GeV (
√
sNN = 17.3 GeV). Preliminary results were presented in [10]. Section II

briefly describes the NA49 detector. Section III discusses the analysis procedure. Distri-

butions of transverse momentum pT and center-of-mass rapidity y as well as total yields

are presented in Section IV. These results are compared to predictions of the ultrarelativis-

tic quantum molecular dynamics (UrQMD) model [11] and a statistical hadron gas model

(HGM) [12] in Section V. The paper ends with the summary Section VI.

II. DETECTOR

The NA49 experimental apparatus [13] consists of four large-volume time projection

chambers (TPC). Two of these (VTPC) are placed in the fields of two super-conducting

dipole magnets. The other two (MTPC) are positioned downstream of the magnets and

are optimized for high-precision measurements of the ionization energy loss dE/dx with a
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resolution of about 4%. The particle identification provided by the dE/dx measurement is

complemented in the mid-rapidity domain by a measurement of the time-of-flight (TOF)

with a resolution of about 60 ps in two TOF detector arrays positioned downstream of

the MTPCs. The magnetic fields were set to about 1.5 T (upstream magnet) and 1.1 T

(downstream magnet). With the lower momentum cut employed for dE/dx identification

the detector acceptance covers the forward rapidity region for K∗(892).

The precise transverse position of each beam particle at the target was measured by three

pairs of small proportional wire chambers (BPD) upstream of the target with a precision of

better than 200 µm. Lead ions of 158A GeV impinged on a thin Pb-foil target of 337 mg/cm2

(approximately 1.5 % interaction probability for Pb ions) which was positioned 80 cm up-

stream from the first VTPC. For the study of C+C and Si+Si collisions a 3 mm thick C

(2.4% interaction length) and 5 mm thick Si target (4.4%) were used, respectively. The

incident C and Si nuclei were produced by fragmentation of a Pb beam of 158A GeV beam

energy [13] and were selected by magnetic rigidity (Z/A = 0.5) and by specific energy loss in

the BPDs. The ”C-beam” as defined by the online trigger and offline selection was a mixture

of ions with Z = 6 and 7 (intensity ratio 69:31); the ”Si-Beam” of ions with Z = 13, 14 and

15 (intensity ratio 35:41:24). The trigger selected the centrality of the collisions based on

a measurement of the energy deposited by projectile spectator nucleons in a downstream

calorimeter.

For the study of p+p collisions the beam line was set to select secondary protons of

158 GeV/c momentum which were produced in a Be target by the 400 GeV/c SPS proton

beam. The secondary protons were identified by Cherenkov counters in the H2 beamline

resulting in a contamination by pions and kaons of less then 10−3. Liquid hydrogen targets of

14 cm (year 1996) and 20 cm (later years, 2.8 % interaction length) and 3 cm diameter were

used. A scintillation counter S4 of 2 cm diameter was positioned about 5 m downstream on

the deflected beam line between the two VTPCs. It was used in anticoincidence with the

beam in order to select p+p interactions. For a detailed description of detector aspects for

p+p collisions see [14].
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III. DATA ANALYSIS

The analysis of Pb+Pb reactions is based on a high-statistics data run which recorded

about 3 · 106 collisions. The trigger selected the 23.5% most central Pb+Pb collisions. The

corresponding mean number of wounded nucleons Nw [15] was calculated using the VENUS

simulation code [16] following the Glauber model approach, and found to be 〈Nw〉 = 262

with a systematic uncertainty of ±5. More details on the procedure can be found in Ref.[17].

The C+C and Si+Si collision data are more limited in statistics. For both systems about

45 · 103 events were recorded for the (15.3 ± 2.4)% and (12.2 ± 1.8)% most central C+C

and Si+Si collisions, respectively. The corresponding mean numbers of wounded nucleons

obtained from VENUS simulations are 14 ± 2 and 37 ± 3 [18].

Results on p+p reactions are based on 1.125 · 106 (4.18 · 105) events collected with a

20 (14) cm long liquid hydrogen target. The trigger cross section was 28.3±0.1 mb which

represents about 86 % of the inelastic cross section and excludes most of the elastic collisions

(about 1 mb remaining contamination) [14].

Charged particle tracks were reconstructed from the charge deposited along the particle

trajectories in the TPCs using a global tracking scheme which combines track segments that

belong to the same physical particle but were detected in different TPCs. A vertex fit was

then performed using the reconstructed tracks. Particle identification is based on measure-

ments of the 50 % truncated mean of the specific energy loss dE/dx in the TPCs which

provide up to 234 charge samples on a track. The uncertainty of the dE/dx measurement

for a specific track depends on its visible length and the number of associated charge clus-

ters. The average value of dE/dx is a universal function of the velocity of a charged particle

(Bethe-Bloch curve) and thus depends on its mass for a given momentum.

A. Pb+Pb collisions

For Pb+Pb collisions the event vertex was determined using the tracks reconstructed in

the TPCs. The resulting vertex distribution had widths σ(x) = 0.21 cm and σ(y) = 0.15 cm

in the coordinates transverse to the beam, and σ(z) = 1.3 cm in the longitudinal direction.

Events were accepted, if the vertex z coordinate was within 1 cm of the nominal target

position. With this requirement the background from non-target interactions was negligible.
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Further cuts were applied at the track level. The distance of the back-extrapolated track from

the fitted vertex position had to be below 5 cm in the (horizontal) bending plane and below

3 cm in the vertical direction. Moreover, the number of measured points on the track had to

exceed 25 and constitute more than 50 % of the geometrically possible maximum in order

to eliminate split tracks. Finally, the track momentum fit was repeated including the vertex

position resulting in a typical momentum resolution of σ(p)/p2 ≈ (0.3− 7) · 10−4 (GeV/c)−1

depending on track length.

Figure 1 shows a density plot of dE/dx as a function of momentum p for accepted

positively (a) and negatively (b) charged particles showing bands for various particle

species. K and π meson candidates were selected by requiring a momentum in the range

3< p <100 GeV/c and a measured dE/dx value in a band of 2.5 and 3 standard deviations,

respectively, around the expected mean values. Expected losses due to the cuts are small

(< 2 %) and no correction was applied. Systematic biases of the K∗ yields from uncertainties

in the fit of the Bethe-Bloch function are estimated to be below < 5 %.
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FIG. 1: (Color online) Specific energy loss dE/dx in units of minimum ionising particles (MIP)

measured in the NA49 TPCs versus momentum p for positively (a) and negatively (b) charged

particles in central Pb+Pb collisions. Curves in (a) and (b) show the acceptance limits for K+

and π−, respectively.

Raw yields of the K∗(892)0 and K
∗

(892)0 resonance states were extracted from the

invariant-mass distributions calculated for K+π− and K−π+ pair candidates, respectively.

First, invariant-mass

minv(Kπ) =
√

(EK + Eπ)2 − (−→p K + −→p π)2 (1)
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distributions were computed for all selected K+π− and K−π+ candidate pairs in the events.

Next, similarly obtained distributions from pairs taken from different events of the same mul-

tiplicity class and normalised to the number of real pairs were subtracted in order to reduce

the dominant contribution from combinatorial background. The resulting invariant-mass

distributions are plotted in Fig. 2 for transverse momenta pT < 2.0 GeV/c and the rapidity

range 0.6 < y < 0.9. The peaks due to the K∗(892)0 and K
∗

(892)0 resonance states are

clearly seen above a strongly mass-dependent residual background. The mixing procedure

preserves the inclusive single-particle phase space distributions, but destroys all correlations

between particles. It therefore cannot fully describe the combinatorial background in real

events which is presumably partly shaped by effects such as energy and momentum conser-

vation as well as reflections from other resonance states. The raw number of K∗(892)0 and
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FIG. 2: (Color online) Invariant mass distribution of K+π− (a) and K−π+ (b) for pT < 2.0 GeV/c

in the rapidity region 0.6 < y < 0.9 after subtraction of mixed-pair background in central Pb+Pb

collisions. The fitted polynomial background is shown by the dashed curves, the sum of fitted

polynomial background and signal Breit-Wigner function by the solid curves.

K
∗

(892)0 were derived from fits to the mass distributions after the mixed-event background

had been subtracted. The fit function was chosen as a sum of a linear or a second order

polynomial background and a Breit-Wigner distribution:

dN

dminv
= C · Γ

π
(

(minv −m0)
2 +

(

Γ

2

)2
) , (2)

where m0 and Γ are mass and width of the K∗, and C is a normalisation factor. Examples

of such fits in the rapidity range 0.6 < y < 0.9 are shown in Fig. 2. The fits are seen to
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provide a good description of the mass distributions in the fit range 780 < minv < 1100 MeV

and result in m0 = 886 ± 2 MeV and Γ = 49 ± 6 MeV for K∗(892)0 and m0 = 891 ± 2 MeV

and Γ = 52 ± 7 MeV for K
∗

(892)0. The mass values are somewhat smaller than the world

average of 895.94 ± 0.22 MeV [19], and were found not to depend significantly on rapidity

or pT as demonstrated by Fig. 3 (a,b) (example for the K∗(892)0 which provides the better

statistical accuracy). Scaling of the magnetic field value by the upper limit of its systematic

uncertainty of ± 1 % changes the fitted mass value by about ± 5 MeV. Thus the observed

mass shift is at the limit of significance. The STAR experiment at RHIC also found a

similarly reduced mass (see Fig. 3 (b)) but only for pT below about 1 GeV/c [9]. The fitted

width agrees well with the world average of 48.7±0.8 MeV [19] (the invariant mass resolution

is about 6 MeV [20]). No significant variation with rapidity or pT (see Fig. 3 c,d) was found

in agreement with results from STAR [9].

Correction factors for acceptance and reconstruction efficiency were derived from Monte

Carlo simulations. K∗(892)0 and K
∗

(892)0 were generated with realistic distributions in

transverse momentum and rapidity and then passed through the NA49 simulation chain

based on GEANT 3.21 [21] and a specific TPC signal simulation software. These signals were

then added at the TPC signal level to the raw data of real events (embedding). Finally, the

hybrid events were reconstructed and analysed like real events. A matching step associated

the reconstructed tracks with the originally generated tracks. Resulting invariant-mass

spectra are plotted in Fig. 4 and demonstrate that neither the mass peak position nor

its width are affected by the measuring resolution.

Correction factors for reconstruction inefficiencies, limited geometrical acceptance and in-

flight decays were obtained by comparing the K∗(892)0 and K
∗

(892)0 yields extracted from

the reconstructed hybrid events to the generated yield. Resulting efficiencies for K∗(892)0 →
K+π− are shown as a function of rapidity and transverse momentum in Fig. 5 and range from

0.4 to 0.8. Values for K
∗

(892)0 → K−π+ are the same within statistical errors. Efficiencies

with embedding (full symbols) are lower than those obtained by simulating only K∗ (open

symbols) but suggest only a modest effect of the high track density in the TPCs.

Differential K∗(892)0 yields were obtained by fitting the invariant-mass spectra after

subtraction of combinatorial background in bins of transverse momentum and rapidity. In

order to ensure the stability of the fits the K∗(892)0 mass and width were fixed to the world

averages. The number of K∗(892)0 in each bin was calculated as the integral of the Breit-

8



y
0 0.5 1 1.5 2

 [
M

eV
]

0
m

880

885

890

895

900
(a)

 [GeV/c]
T

p
0 0.5 1 1.5 2

 [
M

eV
]

0
m

880

885

890

895

900
(b)

y
0 0.5 1 1.5 2

 [
M

eV
]

Γ

0

20

40

60

80

100 (c)

 [GeV/c]
T

p
0 0.5 1 1.5 2

 [
M

eV
]

Γ

0

20

40

60

80

100 (d)

FIG. 3: (Color online) Fitted mass values m0 (a,b) and width Γ (c,d) of the K∗(892)0 peak in

the K+π− mass distribution versus rapidity y (a,c) and transverse momentum pT (b,d) in central

Pb+Pb collisions. Dots show the fitted values with statistical error bars, and bands indicate the

systematic uncertainties. The dotted horizontal lines indicate the world average values for m0 and

Γ [19]. For comparison results are shown from the STAR collaboration at RHIC [9] for Au+Au

collisions at
√
sNN= 62 GeV (triangles) and

√
sNN= 200 GeV (squares).

Wigner function. Correction factors were then applied for the reconstruction efficiency and

the decay branching ratio (66.7 %).

Systematic errors were estimated by varying the identification criteria for kaons and the

details of the fit procedure applied to the mass distributions. Increasing or decreasing the

width of the dE/dx selection by half a standard deviation of the dE/dx measurements led to

changes in the yields of around ± 7%. Extending or narrowing the mass range of the fit by

50 MeV or changing from a linear to a 2nd order polynomial background affected the results

by about ± 10%. Other sources of uncertainty, like using a mass value different from the

world average or changing the inverse slope parameter T in the efficiency calculation, were
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FIG. 4: (Color online) Invariant mass spectra of simulated and embedded K∗(892)0 (a) and

K
∗
(892)0 (b) calculated from reconstructed matched tracks.
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FIG. 5: (Color online) Combined reconstruction efficiency and acceptance of K∗(892)0 → K+π−

as a function of rapidity (transverse momentum range 0 < pT < 2.0 GeV/c) (a) and transverse

momentum (rapidity range 0.43 < y < 1.78) (b) in central Pb+Pb collisions. Full and open symbols

show results with and without embedding into real events (see text). The decay branching ratio is

not included in the plotted efficiencies.

much smaller. The total systematic error was estimated as half the range covered by the

results obtained when varying the dE/dx cuts and the fitting procedure as just described.

More details of the analysis procedure for Pb+Pb collisions can be found in [22].
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FIG. 6: (Color online) Examples of invariant-mass distributions for K+π− (a) and K−π+ (b) after

subtraction of mixed-event background in inelastic p+p collisions. The curves show the fits with

the sum of Breit-Wigner functions to describe the signals of the K∗(892)0 and K∗
2 (1430)0 and the

contributions from their reflections (see text).

B. p+p collisions

For p+p collisions the interaction vertex was determined from the back-extrapolated

tracks and the trajectory of the individual beam particle in the target which was measured

by the BPDs. In order to obtain a clean sample of p+p collisions, only events with a

successfully fitted vertex differing in position by less than ±9 cm (±5.5 cm for short target)

in z-(beam-)direction from the target center and having a radial distance of less than 1 cm

from the beam axis were accepted, thus minimizing contributions from interactions in the

mylar windows of the target vessel. From data taken with the liquid hydrogen removed

from the target vessel (”empty-target runs”) the remaining fraction of background events

was estimated to be below 1 % and therefore no correction was applied.

Correction procedures were devised to obtain the yield per inelastic p+p collision. The

efficiency and accuracy of vertex reconstruction using tracks back-extrapolated from the

TPCs vary with the charged-particle multiplicity of the event. The efficiency was derived

from the probability that a successful vertex fit is obtained and that the fitted location fell

inside the cuts. The corrections amount to 30% for events with 3 tracks, but rapidly drop

to 6% for events with 7 tracks. Furthermore, about 7% of the triggered events have no

accepted tracks in the detector. Half of these can be attributed to the 1 mb contribution of

elastic scattering events to the 28.3 mb trigger cross section, the other half are most likely
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due to singly diffractive events. In order to obtain the yield per triggered inelastic event,

the number of events with tracks in the TPCs was scaled up by 3.5% for the per event

normalisation.

A further correction was applied for the 14.4 ± 1 % of inelastic events which do not

give rise to a trigger [14]. Their contribution to the inclusive production cross section was

found to generally depend on pT , Feynman x and the type of the produced particle under

consideration [23]. However, for charged kaons only a weak rapidity and no significant pT

dependence was observed. For K∗ resonance production we assume a similar behavior and

thus estimate that on average the observed K∗ yield should be scaled up by 5 ± 1 %. On

the other hand, the number of events used for normalisation has to be increased by 14.4 %

in order to obtain the yield per inelastic event. To account for the trigger loss we therefore

scale down the measured K∗(892)0 and K
∗

(892)0 yields per event as defined in the previous

paragraph by 10 ± 1 %.

For p+p reactions invariant-mass spectra could be extracted with much lower combina-

torial background than for A+A collisions. Selected kaons and pions were required to have

more than 30 points per track, a momentum in the interval 4 < p < 50 GeV/c, a transverse

momentum of pT ≤ 1.5 GeV/c, and a measured dE/dx value within ±1.5 σdE/dx around

the expected dE/dx position. Pairs were entered into the invariant-mass distributions with

the appropriate event-multiplicity dependent correction factors. The background in the

invariant-mass spectrum was determined by mixing kaons and pions from different events.

This distribution was normalized to the same number of entries as the real event spectrum

and subtracted, resulting in a small undershoot around the K∗(892)0 signal (see Fig. 6).

This undershoot structure is well described by simulations of invariant-mass distributions

resulting from K∗(892)0 decays and the contributions of the K∗(892)0 decay products to

the mixed event background [24] (see curves in Fig. 6). No additional subtraction of re-

maining background is necessary here. In the simulation an expected contribution from the

K∗

2 (1430)0 (24 % of the K∗(892)0 yield [25]) was accounted for. Its inclusion does improve

the description of the invariant-mass distribution, but does not influence the K∗(892)0 yield.

The fitted mass of the K∗(892)0 was 892 ± 5 MeV, consistent with the world average [19]

The width was also found to agree with the world average.

Yields of the K∗(892)0 and K
∗

(892)0 were extracted by fitting the normalisation factor

of the simulated invariant-mass distributions in bins of rapidity and transverse momentum.
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The simulation used the world average values for masses and widths and took into account

the effect of geometrical acceptance and kaon decay in flight. Losses owing to reconstruction

inefficiency are negligible in p+p collisions. Global corrections were applied for dE/dx par-

ticle identification cuts and the decay branching fraction. Systematic errors were evaluated

by changing track cuts of the selected kaons and pions and amount to 8% for the integrated

yield. A conservative systematic error of 4% is assigned for the uncertainties of the vertex

reconstruction efficiency and the trigger loss corrections. The final systematic error is taken

as the quadratic sum of all these contributions and amounts to 9%. More details on the

analysis procedure for p+p collisions can be found in [26].
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FIG. 7: (Color online) Invariant mass distribution of K+π− (a,b) and K−π+ (c,d) in the rapidity

region 0.2 < y < 1.8 and pT < 1.5 GeV/c after subtraction of mixed-pair background. Results are

plotted for C+C collisions in (a,c) and for Si+Si collisions in (b,d). The fitted residual background

is shown by the dashed lines, the sum of fitted background and signal Breit-Wigner function by

the solid curves.
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C. C+C and Si+Si collisions

The analysis of C+C and Si+Si collisions follows a strategy similar to that employed for

Pb+Pb and p+p collisions, however being limited by low statistics. The available number of

events was not sufficient to extract rapidity and transverse mass distributions, but allowed

only to estimate a total yield. K∗(892)0 and K
∗

(892)0 invariant-mass spectra (see Fig. 7)

were extracted in a wide range of rapidity 0.2 < y < 1.8 and transverse momentum pT <

1.5 GeV/c. Kaons and pions were selected in the momentum range of 4 < p < 50 GeV/c and

pT < 1 GeV/c. The minimum number of points required per track was 50. Pions and kaons

were identified by dE/dx within a band of typically ±1.5 standard deviations around the

Bethe-Bloch value. Both cuts were varied in order to estimate the systematic uncertainties.

A similar strategy for invariant-mass spectra, background calculation, and signal extrac-

tion was used as for p+p collisions. However, subtraction of the mass distributions from

mixed events did not completely remove the combinatorial background as can be seen from

Fig. 7. The remaining background was parameterized as a straight line in the K∗(892) mass

region (dashed lines in Fig. 7). The signal was then obtained by fitting the sum of this

linear background and the K∗(892) line shape (using the world average values for mass and

width [19]) including its reflections as was done for p+p reactions. The results of the fits

are shown as the solid curves in Fig. 7.

The extracted raw yields were corrected for acceptance, the dE/dx identification cuts

and the decay branching fraction. The mean acceptance of K∗(892)0 and K
∗

(892)0 in the

selected wide phase space was calculated by Monte Carlo simulations assuming a width of

the rapidity distribution similar to that of charged kaons and inverse pT -slopes similar to

that of the φ-meson [18] as its mass is close to that of the K∗(892). A typical value of

the mean acceptance requiring more than 100 points for both, the pion and kaon track, is

14%. Varying the assumptions on background shape and the kinematic distributions of the

K∗(892) changes the mean acceptance by 10% only. Extracted yields have statistical errors

of 15-20%. Varying background assumptions and selection criteria of kaons and pions, yields

change by 15% at most. We thus assign a combined systematic and statistical error of 30%.

More details on the analysis can be found in [26].
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IV. RESULTS

A. Pb+Pb collisions

Yields of K∗(892)0 and K
∗

(892)0 per event were extracted for the region of rapidity

0.3 < y < 1.8 and transverse momentum 0 < pT < 2.0 GeV/c. Efficiency-corrected results

are plotted as a function of rapidity y in Fig. 8 and listed in Table I. They include a

small extrapolation in pT beyond 2.0 GeV/c based on the exponential parameterisation of

the invariant pT distribution using the temperature parameter T fitted in the measured

pT range (see below). The rapidity distributions decrease with increasing y and suggest a

maximum at mid-rapidity in view of the forward-backward symmetry of the reaction.

TABLE I: Yields of K∗(892)0 and K
∗
(892)0 per event in central Pb+Pb collisions as a function

of rapidity y and integrated over transverse momentum. Both statistical (first) and systematic

(second) errors are listed.

y dn
dy (K∗(892)0) dn

dy (K
∗
(892)0)

0.3 - 0.6 2.52 ± 0.22 ± 0.73 1.52 ± 0.19 ± 0.45

0.6 - 0.9 2.71 ± 0.18 ± 0.47 1.93 ± 0.13 ± 0.37

0.9 - 1.2 2.31 ± 0.16 ± 0.40 1.21 ± 0.11 ± 0.31

1.2 - 1.5 2.08 ± 0.15 ± 0.49 0.81 ± 0.10 ± 0.24

1.5 - 1.8 1.88 ± 0.13 ± 0.65 0.45 ± 0.08 ± 0.26

total yield (Gauss fit) 10.3 ± 0.4 ± 2.5 5.2 ± 0.3 ± 1.7

The shapes of the rapidity distributions are not tightly constrained due to the large errors

and the restricted range covered by the measurements. We therefore derived estimates of

total yields by fitting various shape funtions obtained from other reactions (Φ [27] , K+ and

K− [2]) and the UrQMD model. The resulting variation of the results is about 5 %, well

below the systematic errors from other sources discussed above. As the final result we quote

the average in Table I.

For obtaining distributions in transverse momentum yields were extracted in four pT bins

for the rapidity range 0.43 < y < 1.78. The results for dn
dpT dy

are plotted in panels (a,c) of
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FIG. 8: (Color online) Rapidity distribution of K∗(892)0 (a) and K
∗
(892)0 (b) integrated over pT

in central Pb+Pb collisions. Full symbols represent the measurements, open symbols were obtained

by reflection around mid-rapidity. The bars show statistical errors, the bands indicate systematic

errors. Solid curves show fits of Gaussian functions for estimating total yields, dashed-dotted curves

depict predictions of the UrQMD model [29].

Fig. 9 and listed in Table II. From these measurements the yield as function of transverse

mass mT =
√

p2T + m2
0 (where m0 is the K∗ mass) was calculated. The obtained values of

1

mT

dn
dmT dy

are shown in panels (b,d) of Fig. 9 and are listed in Table III. An exponential

function:

1

mT

dn

dmTdy
= A · e−

mT

T , (3)

was fitted to these measurements, where T is the inverse slope parameter and A a normalisa-

tion constant. The resulting values of T = 339 ± 9 MeV for K∗(892)0 and T = 329 ± 12 MeV

for K
∗

(892)0 are much larger than for kaons, but closer to that for the higher mass φ meson

[27]. Moreover, 1

mT

dn
dmT dy

seems to exhibit a convex shape in the logarithmic representation

of Fig. 9. This behaviour may be due to the participation of the K∗ in the strong radial

flow [28]. Indeed, a blast-wave calculation, also shown in Fig. 9 (b,d) by dotted curves,

provides a good description of the K∗ spectra using parameters fitted to pion, kaon, proton

and anti-proton spectra (T = 93 MeV, ρ0 = 0.91 [28]). Alternatively, the convex shape

could be due to the attenuation of the K∗ in the fireball which is expected to be strongest

for low values of pT .
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FIG. 9: (Color online) Differential yields in central Pb+Pb collisions as function of transverse

momentum pT (a,c) and transverse mass mT (b,d) for K∗(892)0 (a,b) and K
∗
(892)0 (c,d) in the

rapidity interval 0.43 < y < 1.78. The bars show statistical errors, the bands indicate systematic

errors. Solid curves show results of exponential fits (Eq. (3), see text). Dotted curves result from

blast-wave calculations using the parameters fitted in ref. [28]. The dashed-dotted curves depict

predictions of the UrQMD model [29].

B. p+p collisions

For p+p reactions results are presented as yields per inelastic reaction. Transverse mo-

mentum spectra (see Fig. 10 and Table V) were extracted in a rapidity range of 0.2 < y < 0.7.

The range was chosen as close to mid-rapidity as the acceptance for the K∗(892) allows. The

mT -spectra (see Fig. 11 and Table VI) show a thermal shape which can be well described

by an exponential function (Eq. (3)) with an inverse slope parameter T = 166 ± 15 MeV

for K∗(892)0 and 150 ± 14 MeV for K
∗

(892)0, respectively. These values are consistent

with those found for other mesons in p+p collisions [26] indicating the absence of radial

flow in these reactions. The pT -integrated rapidity spectrum (see Fig. 12 and Table IV)

was extracted for pT < 1.5 GeV/c, except for the last rapidity bin 1.8 < y < 2.0 which
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TABLE II: Yields dn
dpT dy of K∗(892)0 and K

∗
(892)0 per event in central Pb+Pb collisions as a

function of transverse momentum pT in the rapidity interval 0.43 < y < 1.78. Both statistical

(first) and systematic (second) errors are shown for the differential yields. The inverse slope

parameters T of exponential fits according to Eq. (3) are listed with their statistical errors.

pT [GeV/c] dn
dpT dy (K∗(892)0) [(GeV/c)−1] dn

dpT dy (K
∗
(892)0) [(GeV/c)−1]

0.0 - 0.5 1.49 ± 0.12 ± 0.66 0.64 ± 0.10 ± 0.34

0.5 - 1.0 3.04 ± 0.13 ± 0.38 1.34 ± 0.09 ± 0.17

1.0 - 1.5 1.59 ± 0.07 ± 0.31 0.76 ± 0.04 ± 0.17

1.5 - 2.0 0.55 ± 0.04 ± 0.09 0.22 ± 0.02 ± 0.05

T [GeV] 0.339 ± 0.009 0.329 ± 0.012

TABLE III: Yields 1
mT

dn
dmT dy of K∗(892)0 and K

∗
(892)0 per event in central Pb+Pb collisions as

a function of transverse mass mT −m0 in the rapidity interval 0.43 < y < 1.78. Both statistical

(first) and systematic (second) errors are listed.

mT −m0 [GeV/c2] 1
mT

dn
dmT dy (K∗(892)0) [(GeV/c2)−2] 1

mT

dn
dmT dy (K

∗
(892)0) [(GeV/c2)−2]

0.034 5.95 ± 0.48 ± 2.48 2.54 ± 0.39 ± 1.37

0.272 4.05 ± 0.16 ± 0.50 1.79 ± 0.12 ± 0.22

0.642 1.27 ± 0.06 ± 0.24 0.61 ± 0.04 ± 0.13

1.070 0.32 ± 0.02 ± 0.05 0.13 ± 0.01 ± 0.03

had a reduced range of pT < 1.2 GeV/c because of the upper momentum limit imposed

by the dE/dx identification procedure. The range 0 < pT < 1.5 GeV/c contains 99.1% of

all K∗(892) (for T = 160 MeV). The total yields (listed in Table VII) were extracted by

fitting a Gaussian distribution centered at y = 0 to the rapidity distribution. The resulting

widths of the rapidity distributions and the mid-rapidity yields are listed in Table IV. The

extracted width of the rapidity distribution is consistent with the one for charged kaons

[23]. The extracted yields (extrapolated fraction 9 % and 4 %, respectively) fit well into the

trend of results from p+p collisions at higher and lower energies (see [26] for a more detailed
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FIG. 10: (Color online) Transverse momentum distribution of K∗(892)0 (a) and K
∗
(892)0 (b) for

the rapidity interval 0.2 < y < 0.7 in inelastic p+p collisions at 158 GeV/c incident momentum.

Only statistical errors are shown; the overall systematic error of normalisation is 9 %. Curves show

results of fits with the exponential function Eq. (3).
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FIG. 11: (Color online) Transverse mass distribution of K∗(892)0 (a) and K
∗
(892)0 (b) for the

rapidity interval 0.2 < y < 0.7 in inelastic p+p collisions at 158 GeV/c incident momentum. Only

statistical errors are shown; the overall systematic error of normalisation is 9 %. Curves show

results of fits with the exponential function Eq. (3).

comparison).

C. C+C and Si+Si collisions

Due to the limited number of recorded events only total yields per event could be esti-

mated (see Sect. III.C). The results with their statistical and sytematic uncertainties are
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FIG. 12: (Color online) Rapidity distributions for K∗(892)0 (a) and K
∗
(892)0 (b) integrated over

pT < 1.5 GeV/c in inelastic p+p collisions at 158 GeV/c incident momentum. Only statistical

errors are shown; the overall systematic error of normalisation is 9 %. Curves show fits with a

Gaussian function centered at mid-rapidity y = 0 (χ2 per degree of freedom 1.1 and 1.4, respec-

tively).

listed in Table VII.

V. DISCUSSION OF RESULTS

Both K∗(892)0 (K
∗

(892)0) and K+ (K−) contain an anti-strange (strange) valence

quark in addition to a light (anti) quark and should therefore be similarly sensitive to the

strangeness content of the produced matter. The ratio of total yields 〈K∗(892)0〉/〈K∗

(892)0〉
is about 2 in C+C, Si+Si and Pb+Pb collisions (see Table VII) and is similar to the ratio

〈K+〉/〈K−〉 ≈ 2.0 [2, 18] as expected. The yields per wounded nucleon are compared graph-

ically in Fig. 13 (a). This quantity seems to increase from p+p to C+C and Si+Si collisions

and then to decrease to central Pb+Pb collisions. This behaviour may result from an inter-

play between strangeness enhancement in nucleus-nucleus collisions and the interaction of

the K∗(892) and its decay products in the produced fireball.

Because kaons and K∗(892) both contain the same valence quarks, the system size de-

pendence of the ratios 〈K∗〉/〈K+〉 and 〈K∗〉/〈K−〉 is expected to be sensitive mostly to the

interactions in the surrounding medium while the effect of strangeness enhancement should

approximately cancel. As can be seen from Fig. 13 (b), the ratios decrease by about a factor

2 from C+C and Si+Si reactions to central Pb+Pb collisions and about a factor of 3 when
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TABLE IV: Yields of K∗(892)0 and K
∗
(892)0 per event with statistical errors in inelastic p+p

collisions as a function of rapidity y and integrated over pT < 1.5 GeV/c. The systematic error of

normalisation (not shown) is 9 %. Also listed are the widths σy, the central rapidity yields dn
dy |y=0

and the total yields obtained from Gaussian fits with statistical and systematic errors.

y dn
dy (K∗(892)0) dn

dy (K
∗
(892)0)

0.0 - 0.2 0.0241 ± 0.0025 0.0188 ± 0.0022

0.2 - 0.4 0.0272 ± 0.0018 0.0179 ± 0.0016

0.4 - 0.6 0.0232 ± 0.0013 0.0176 ± 0.0011

0.6 - 0.8 0.0192 ± 0.0010 0.0159 ± 0.0008

0.8 - 1.0 0.0180 ± 0.0008 0.0146 ± 0.0007

1.0 - 1.2 0.0173 ± 0.0007 0.0115 ± 0.0006

1.2 - 1.4 0.0136 ± 0.0007 0.0094 ± 0.0005

1.4 - 1.6 0.0113 ± 0.0007 0.0079 ± 0.0005

1.6 - 1.8 0.0095 ± 0.0007 0.0048 ± 0.0004

1.8 - 2.0 0.0062 ± 0.0007 0.0026 ± 0.0004

σy 1.17 ± 0.03 ± 0.07 1.01 ± 0.02 ± 0.06

dn
dy |y=0 0.0257 ± 0.0031 ± 0.0023 0.0183 ± 0.0027 ± 0.0016

total yield 0.0741 ± 0.0015 ± 0.0067 0.0523 ± 0.0010 ± 0.0047

taking p+p reactions as the reference. Thus K∗(892)0 yields seem to be strongly affected by

interactions in the produced fireball with destruction dominating regeneration. Published

measurements from the STAR collaboration at RHIC energies [9] show a weaker suppression

of the 〈K∗〉/〈K+〉 ratio for central Cu+Cu and Au+Au collisions compared to inelastic p+p

reactions of only about 30 %.

Microscopic models of hadron production in nucleus-nucleus collisions have been used to

study the modification of resonance yields during the space-time evolution of the fireball. In

the UrQMD model [11] particle production proceeds via string excitation and decay at high

energies, and evolves further by interactions and coalescence in the produced matter. During

the model simulations track is kept of the full history for each particle thus allowing to study

the phenomena of destruction and regeneration of resonance states [29, 30] which was first
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TABLE V: Yields dn
dpT dy of K∗(892)0 and K

∗
(892)0 per event in inelastic p+p collisions for the

rapidity interval 0.2 < y < 0.7 as a function of transverse momentum pT with statistical errors.

The systematic error of normalisation (not shown) is 9 %. The inverse slope parameters T of

exponential fits according to Eq. (3) are also listed with statistical and systematic errors.

pT [GeV/c] dn
dpT dy (K∗(892)0) dn

dpT dy (K
∗
(892)0)

0.0 - 0.2 0.0133 ± 0.0013 0.0120 ± 0.0012

0.2 - 0.4 0.0274 ± 0.0017 0.0227 ± 0.0014

0.4 - 0.6 0.0291 ± 0.0016 0.0237 ± 0.0014

0.6 - 0.8 0.0171 ± 0.0012 0.0136 ± 0.0010

0.8 - 1.0 0.0115 ± 0.0009 0.00741 ± 0.00073

1.0 - 1.2 0.0062 ± 0.0007 0.00466 ± 0.00050

1.2 - 1.4 0.0034 ± 0.0005 0.00180 ± 0.00034

1.4 - 1.6 0.0016 ± 0.0008 0.00070 ± 0.00035

T [GeV] 0.166 ± 0.011 ± 0.010 0.150 ± 0.010 ± 0.010

considered in [7]. For comparison with our measurements we extracted the predicted yields

in the K+π− and K−π+ decay channels, respectively, and scaled them by 3/2 to take into

account the decay branching ratio as was done for the data. The measured rapidity spectra

of K∗(892)0 and K
∗

(892)0 in central Pb+Pb collisions at 158A GeV are compared to results

from UrQMD model calculations in Fig. 8 (dashed-dotted curves). While one observes good

agreement for the shape of the rapidity distributions, yields are overpredicted by roughly a

factor of two. Moreover, the predicted transverse mass distributions are steeper than those

of the data (see dashed-dotted curves in Fig. 9 (b,d)).

Inspection of the particle histories in the simulated UrQMD events indicates that of

the originally produced K∗(892)0 (K
∗

(892)0) about 2 % (2 %) in p+p, 12 % (13 %) in

central C+C, 23 % (27 %) in central Si+Si and 44 % (62 %) in central Pb+Pb collisions

are lost owing to in-medium interactions and decay (rescattering of the decay products).

The contributions of the various mechanisms are illustrated by the curves shown in Fig. 14.

The first reduction is due to reinteractions of the K∗ in the fireball medium and the second

reduction is the effect of the decay branching ratio into K+π− and K−π+, respectively. The
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TABLE VI: Yields 1
mT

dn
dmT dy of K∗(892)0 and K

∗
(892)0 per event in inelastic p+p collisions for

the rapidity interval 0.2 < y < 0.7 as a function of mT − m0. Only statistical errors are shown.

The systematic error of normalisation (not shown) is 9 %.

〈mT 〉 −m0 [GeV/c2] 1
mT

dn
dmT dy (K∗(892)0) 1

mT

dn
dmT dy (K

∗
(892)0)

0.011 0.1331 ± 0.0132 0.1200 ± 0.0117

0.053 0.0914 ± 0.0054 0.0757 ± 0.0048

0.132 0.0583 ± 0.0032 0.0477 ± 0.0027

0.241 0.0244 ± 0.0018 0.0194 ± 0.0015

0.373 0.0129 ± 0.0010 0.0082 ± 0.0008

0.520 0.0056 ± 0.0006 0.0042 ± 0.0005

0.680 0.0026 ± 0.0004 0.00138 ± 0.00026

0.847 0.0010 ± 0.0006 0.00047 ± 0.00023

last reduction is caused by the scattering of the K∗ decay daughters in the medium. The

model calculations thus suggest a sizable duration of the hadronic phase of the fireball to

allow for such reinteractions.

Predictions of the UrQMD model for total yields are listed in Table VII. The agreement

with the measurements for p+p, C+C and Si+Si reactions suggests that UrQMD reproduces

the absorption effects in these smaller systems. In contrast, predicted total K∗(892)0 and

K
∗

(892)0 yields for central Pb+Pb collisions exceed the experimental results by roughly

a factor of two. This might imply that the lifetime of the hadronic phase is larger than

suggested by the model calculation.

The statistical hadron gas model (HGM) was found to provide a good fit to total yields

of stable hadrons produced in elementary e++e−, p+p and nucleus+nucleus collisions using

as adjustable parameters the hadronisation temperature Tchem, the baryo-chemical potential

µB and a strangeness saturation parameter γs [12, 31]. The predictions for K∗(892) yields

(which were not included in the fit of the model parameters) in p+p and nucleus+nucleus

collisions are compared to the measurements in Fig. 15 (a). One finds that the HGM

predictions are consistent with the measurements for p+p and light nuclei collisions, but

exceed by more than a factor of 2 the observed yields in central Pb+Pb reactions.
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TABLE VII: Total yields of K∗(892)0 and K
∗
(892)0 in inelastic p+p and in central C+C, Si+Si

and Pb+Pb collisions at 158A GeV beam energy. Statistical and systematic errors were added in

quadrature. In addition, model predictions are listed from HGM (fit A of [12]) and UrQMD 1.3 [29]

(predictions are for the K+π− and K−π+ decay channels, respectively, and were scaled by 3/2 to

account for the branching ratio).

reaction p+p C+C Si+Si Pb+Pb

centrality min. bias 15.3% 12.2% 23.5%

〈NW 〉 2 14 ± 2 37 ± 3 262 ± 6
〈

K∗ (892)0
〉

this analysis 0.0741 ± 0.0069 0.8 ± 0.24 2.2 ± 0.66 10.3 ± 2.5

HGM 0.074 0.964 2.76 25.1

UrQMD 0.076 0.74 2.25 22.2
〈

K
∗

(892)0
〉

this analysis 0.0523 ± 0.0048 0.43 ± 0.14 1.3 ± 0.4 5.2 ± 1.7

HGM 0.041 0.455 1.33 12.5

UrQMD 0.043 0.41 1.19 9.5

Yields of several resonance states were investigated by the NA49 collaboration, namely of

K∗(892)0, Λ(1520) [32] and the φ meson [27]. The ratios between the measured yields and

the predictions of the HGM model are plotted in Fig. 15 (b) versus the respective lifetimes

(3.91, 12.7 and 46.5 fm/c). The suppression with respect to the HGM predictions seems to

get stronger with decreasing lifetime of the resonance. This suggests that a large part of the

reduction of the K∗(892)0 yield may be caused by rescattering of its decay daughters during

the hadronic stage of the fireball and implies that this stage lasts for a time (estimated about

6 fm/c in Ref. [28]) at least comparable to the lifetime of the resonance.

Alternatively, one may reconsider the assumption of simultaneous chemical freeze-out of

the hadrons from the fireball at a unique temperature. In the statistical hadron gas model

the yield ratio of two hadrons with identical strangeness, isospin and baryon number allows

to estimate the freeze-out temperature Tfo (in the Boltzmann approximation, and neglecting

feed-down from resonances) as:

Tfo = (m2 −m1)/ ln

(

(

2J1 + 1

2J2 + 1

)(

m1

m2

)
3

2

(

N2

N1

)

)

(4)

24



〉wN〈
1 10 210 310

R
at

io

0

0.02

0.04

0.06

0.08

0.1

(a)

〉wN〈/〉0(892)
*

K〈
〉wN〈/〉0(892)

*

K〈

〉wN〈
1 10 210 310

R
at

io

0

0.1

0.2

0.3

0.4

0.5

(b)

〉+K〈/〉0(892)
*

K〈
〉-K〈/〉0(892)

*

K〈

FIG. 13: (Color online) (a) Yields per wounded nucleon K∗(892)0/〈NW 〉 (dots) and

K
∗
(892)0/〈NW 〉 (squares) versus size of the collision system. (b) Ratios 〈K∗(892)0〉/〈K+〉 (dots)

and 〈K∗
(892)0〉/〈K−〉 (squares) versus size of the collision system (p+p, C+C, Si+Si and Pb+Pb

collisions). Total kaon yields were taken from refs. [2, 18, 23] and appropriately scaled by 〈NW 〉.

For evaluating error bars the quadratic sums of statistical and systematic errors were used.

where m1, m2 are the masses, J1, J2 the spins and N1, N2 the produced multiplicities. Insert-

ing the numbers for the pairs Λ(1520), Λ and K∗(892)0, K± one obtains apparent freeze-out

temperatures of 90 MeV for Λ(1520) and 100 MeV for K∗(892)0 respectively. The chemical

freeze-out temperature fitted to the yields of stable hadrons is Tchem = 155 MeV [12]. This

would lead to the conclusion that short-lived resonances freeze out at the end of the fireball

evolution when the temperature has fallen below that for stable hadrons.

VI. SUMMARY

Production of the K∗(892)0 and K
∗

(892)0 resonances was studied via their K+π−

and K−π+ decay modes in central Pb+Pb, Si+Si, C+C and inelastic p+p collisions at

158A GeV (
√
sNN = 17.3 GeV) with the NA49 detector at the CERN SPS. Transverse

momentum and rapidity distributions were obtained and total yields were estimated. The

following conclusions were reached:

• The yield of K∗(892)0 exceeds that of K
∗

(892)0 by about a factor of two. This ob-

servation can be understood from the similar ratio of the K+ and K− yields and the

valence quark composition of these mesons.

25



y
-2 0 2

dydn

0

5

10

15

20

Pb+Pb
(a)

(892)*K

UrQMD v.1.3pl
b < 7.25 fm

y
-4 -2 0 2 4

dydn

0

5

10 Pb+Pb
(b)

(892)
*

K

UrQMD v.1.3pl
b < 7.25 fm

GeV/c 
T

p
0 0.5 1 1.5 2

-2
G

eV
/c

 
dy

T
dp

dn
 

Tp1

-210

-110

1

10

210

Pb+Pb

(c)

(892)*K

UrQMD v.1.3pl
b < 7.25 fm

GeV/c 
T

p
0 0.5 1 1.5 2

-2
G

eV
/c

 
dy

T
dp

dn
 

Tp1

-210

-110

1

10

210

Pb+Pb

(d)

(892)
*

K

UrQMD v.1.3pl
b < 7.25 fm

FIG. 14: (Color online) Predictions of the UrQMD model version 1.3p1 [29] for the 23.5% most

central Pb+Pb collisions at 158A GeV: distributions of rapidity (a,b) and transverse momentum

pT (c,d) in the rapidity interval 0.43 < y < 1.78 of K∗(892)0 (a,c) and K
∗
(892)0 (b,d). The curves

show the successive reduction of yields owing to various interaction mechanisms of the K∗(892)0

and K
∗
(892)0 and their decay daughters in the fireball (see text). Note that the final results show

the yield predictions for the K+π− and K−π+ decay channels respectively. The curves in Fig. 8

and Fig. 9 were obtained by scaling these by 3/2.

• The yield of K∗(892)0 and K
∗

(892)0 per wounded nucleon appears to increase from

p+p to C+C and Si+Si collisions and then tends to decrease to central Pb+Pb reac-

tions. This behaviour seems to reflect an interplay between strangeness enhancement

in nucleus-nucleus collisions and attenuation of K∗(892)0 and K
∗

(892)0 in the pro-

duced fireball.

• The ratios 〈K∗(892)0〉/〈K+〉 and 〈K∗

(892)0〉/〈K−〉 decrease strongly with increasing

size of the colliding nuclei. These ratios are expected to be mostly sensitive to in-

teractions of the K∗(892)0 and its decay daughters with the produced dense matter.
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FIG. 15: (Color online) (a) Ratio of measured total yields of K∗(892)0 (dots) and K
∗
(892)0

(squares) to statistical hadron gas model (HGM) predictions [12] versus the size of the collision

system (p+p, C+C, Si+Si and Pb+Pb collisions). (b) Ratio of measured yield in central Pb+Pb

collisions to the statistical hadron-gas model prediction for K∗(892)0 (dot), K
∗
(892)0 (square), φ

meson [27] and preliminary measurement of Λ(1520) [32] versus the lifetime τ of the resonance

state. For evaluating error bars the quadratic sums of statistical and systematic errors were used.

The decrease of the ratios suggests a substantial duration of the hadronic stage of the

fireball.

• The UrQMD model, although including rescattering of K∗(892)0 and K
∗

(892)0 and

their decay daughters in the hadronic phase, is not able to provide a quantitative

description of K∗(892)0 production in nucleus-nucleus collisions at SPS energies.

• Yields of K∗(892)0 mesons in central Pb+Pb collisions are about a factor of 2.5 below

the predictions of the statistical hadron gas model using parameters fitted to the yields

of stable hadrons.

In summary, the predicted suppression of K∗(892)0 yields [7] was observed in central

Pb+Pb collisions at the SPS. It was found to be stronger at SPS than at RHIC energies.

More comprehensive studies of the energy and system-size dependence of the suppression of

hadron resonance production will help to better understand the hadronisation process and

the evolution of the high-density matter droplet created in nucleus-nucleus collisions.
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