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E0 transitions are a sensitive indicator of structure in nuclei, reflecting shape transitional regions,
deformation and intruder states. Attention has generally focused on E0 transitions to the ground
state or low lying yrast levels. In this paper we look at all E0 transitions connecting 0+ states in a
rather general collective model. We deduce a new selection rule and map out calculated strengths
throughout the spectrum. The distributions of E0 strengths for several different collective structures
are discussed.
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I. INTRODUCTION

Though less studied than electric quadrupole transi-
tions, E0 transitions are a sensitive signature of struc-
ture. There have been a number of theoretical treatments
of these transitions. Although a consensus on their in-
terpretation has sometimes been lacking [1–4], it is clear
that they are particularly sensitive to changes in nuclear
shape, growing rapidly in strength in spherical-deformed
shape/phase transition regions. They have been pre-
dicted, in the context of the Interacting Boson Approxi-
mation (IBA) model [5], to remain large throughout the
deformed region [4]. A recent study using a geometric
model [6] has investigated their behavior as a function
of the stiffness of the quadrupole potential. In addition,
their correlation with nuclear radii has been investigated
in [7]. In some models, such as the IBA model, there
are definite selection rules and analytic predictions for
the strengths of E0 transitions from excited 0+ state to
the ground state in the cases of the dynamical symme-
tries. In recent years there have been attempts [8] to
test these predictions in deformed nuclei but such tests
are experimentally difficult, primarily because, in a per-
fect rotor, the energies of successive E0 transitions to the
yrast states, that is, transitions of the form J → J (yrast)
have identical energies.

Our aim here is to use the IBA model to map out
the full spectrum of 0+ → 0+ E0 transitions for several
different structural situations. We start with the dynam-
ical symmetries O(6) and SU(3) [all E0 transitions are
identically zero in U(5)] and then look at cases in the
interior of the symmetry triangle of the IBA, including a
calculation along the arc of regularity [9]. We will do the
calculations for different numbers of valence nucleons to
check for consistency of the results. In the case of a well-
deformed rotor of SU(3) type, we will show the existence
of a new selection rule that simultaneously describes all
the allowed 0+ → 0+ E0 transitions and we will study
the breakdown of that selection rule for deformed nuclei
deviating from a pure SU(3) structure.

Although E0 transitions present experimental chal-
lenges, these results should be useful for studying the

correlations with structure that they show. These corre-
lations are related to issues of order and chaos, for vividly
highlighting the breakdown of the dynamical symmetries,
for showing the interrelationships of excited 0+ states
(the E0 operator in the IBA is directly related to the s-
and d-boson structure of the states), and for again point-
ing to the uniqueness of the arc of regularity.

II. SELECTION RULES FOR E0 TRANSITIONS

In the IBA model there are three dynamical symme-
tries characterized by analytic expressions for eigenvalues
and transition rates and a number of selections rules for
these limiting cases. Even though very few nuclei ac-
tually exhibit the strict constraints of these symmetries,
these analytic relations are useful as benchmarks (analo-
gously to the role of magic numbers in the shell model)
to which realistic calculations that break the symmetries
can be compared.
To this end, Table I gives the selection rules for E0

transitions to the ground state that have been deduced
[5] for U(5) − analogous to a spherical vibrator, SU(3)
− a specific form of the axial deformed rotor, and O(6)
− corresponding to a γ-soft axially symmetric rotor.
These are highly restrictive, allowing a single E0 0+ →

0+ transition in the SU(3) and O(6) cases and none in
U(5). However, they say nothing about E0 transitions
between higher lying 0+ states, which is the main interest
of this study. Figure 1 illustrates the three dynamical
symmetries of the IBA in terms of the symmetry triangle
and the allowed E0 transitions to the ground state for
the SU(3) and the O(6) symmetries. The lowest excited
0+ states in each corner of the triangle for U(5), SU(3)
and O(6) are labeled with their quantum numbers, nd for
U(5), (λ, µ) for SU(3) and (σ, τ) for O(6) where N in the
SU(3) and O(6) cases is the total number of bosons. The
red and green dots in Fig. 1 correspond to calculations
of the E0 transitions inside the symmetry triangle of the
IBA on the arc of regularity and near the middle of the
triangle, respectively. For each corner the ratio between
the energies of the first excited 4+ and 2+ states, R4/2 is
given.
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TABLE I: Selection rules for ground state E0 transitions in the three dynamical symmetries of the IBA.

Dynamical Symmetry Geometric Essential quantum E0 selection rule Ground state
Analogue numbers quantum numbers

U(5) Spherical vibrator nd All forbidden nd = 0
SU(3) Axial rotor (λ,µ) (∆λ,∆µ) = (4,2) (2N,0)
O(6) Gamma soft rotor (σ, τ ) (∆σ,∆τ ) = (2,0) (N,0)

FIG. 1: (Color online) Symmetry triangle of the IBA
model giving the three limiting symmetries and the

Alhassid-Whelan arc of regularity. For each symmetry,
the allowed transitions between the first excited 0+

state and the ground state are shown. The level
schemes are labeled by their quantum numbers. The
two dots inside the triangle represent calculations for
E0 transitions between all excited states for a point on
the arc of regularity (red dot) and near the middle of

the triangle (green dot).

The question we want to address is to look at all 0+ →
0+ transitions in these limits and between them as well.
To do this, we use the standard IBA Hamiltonian

H = εnd + κQ ·Q (1)

with Q = s†d̃+ d†s+ χ[d†d̃](2).
The three symmetry limits are obtained with particu-

lar choices of the coefficients of the terms in the Hamil-
tonian and of χ. For U(5), κ = 0 and χ therefore is

irrelevant. For SU(3), ε = 0 and χ = −
√
7/2. For O(6),

ε = 0 and χ= 0.
Calculations deviating from the symmetries are ob-

tained for intermediate values of the parameters of the
Hamiltonian. The Hamiltonian basically represents a
competition between a spherical-driving nd term and a
deformation-driving Q · Q term. Hence, the structure is
given simply by two parameters, ε/κ, which determines

the spherical-deformed nature of the solutions, and χ,
which controls the gamma softness. Since ε/κ can vary
from zero to infinity it is convenient to rewrite the Hamil-
tonian of Eq. (1) as follows:

H(ζ, χ) = a[(1− ζ)nd −
ζ

4N
Q ·Q] (2)

where a is a scaling factor. The parametrization of the
two Hamiltonian Eq. (1) and (2) are related by the equa-
tion:

ε

κ
= 4N

1− ζ

ζ
. (3)

Thus ζ= 0 corresponds to U(5) while ζ = 1 gives SU(3)

for χ = −
√
7/2 and O(6) for χ = 0. ζ corresponds to

a radius vector in the symmetry triangle from the U(5)
vertex towards the O(6)− SU(3) leg, while χ corresponds
to the angle of this vector of the U(5) to SU(3) leg.
The E0 operator given by [5]:

T
(E0)
0 = α[s†s](0) + β[d†d̃]

(0)
0 (4)

can be rewritten in terms of the total boson number N =
ns + nd as

T
(E0)
0 = αN + β

′

[d†d̃]
(0)
0 (5)

with β
′

= β − α
√
5. The constant term αN does not

give rise to electromagnetic transitions. Thus one needs
to evaluate the matrix elements of the last operator in
Eq. (5).

III. RESULTS FOR THE THREE DYNAMICAL

SYMMETRIES

Since nd is a good quantum number for U(5) there
are no allowed E0 transitions in that limit. For all other
calculations, it is easy to evaluate this transition strength
numerically since the standard IBA code expands the
wave functions in nd. The results will depend on the total
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boson number, N . We will show the results for SU(3)
and O(6) in two forms: in terms of a symmetric matrix
of ρ2(E0) values where the columns and rows are labeled
by their quantum numbers, and pictorially in terms of
a level scheme diagram of the ground and excited 0+

states and the allowed transitions between them. Figure
2 shows the results for O(6) nuclei for N = 6 bosons.
Figure 3 shows similar results for SU(3) symmetry for N
= 16 bosons.
Turning to Fig. 2, we see that some levels [such as

the first excited 0+ state, with (σ, τ) = (N, 3)] have no
allowed E0 decays. Those states with the same τ but
different σ have only a single allowed transition. That
is, the selection rule for ground state transitions actually
persists for all 0+ → 0+ E0 transitions and, for a state
with a given (σ, τ), there is at most only one lower lying
level satisfying it.
For SU(3), this is not the case as Fig. 3 shows. Here

all 0+ levels have at least one allowed decay and some
have several (but not many − see below). Even just
the decay of the third excited 0+ state shows that the
simple selection rule for SU(3) in Table I is not adequate
to describe the E0 transitions from the higher states.
Using the matrices in Fig. 3, we have found a heretofore
unrecognized selection rule that describes all allowed
0+ → 0+ E0 transitions in SU(3). This rule can be
expressed in two ways. In the usual notation of (λ, µ)
quantum numbers 0+ → 0+ E0 transitions are allowed
if any of the following three conditions is satisfied:

(∆λ,∆µ) = (2, 4), (2, 2), (4, 2). (6)

These rules are sufficient albeit awkward. However,
with a different notation, using Young Tableaux (for an
excellent elementary discussion of Young Tableaux, see
[10]), it is easy to express these three results by a single
simple rule.
Figure 4 (upper part) shows the Young Tableaux rep-

resentation for SU(3) symmetry described in terms of two
rows of boxes. The difference in the number of boxes be-
tween the second and first rows gives λ, while µ is given
by the number of boxes in the second row. Manipulating
the boxes between the two rows according to the rules
in Eq. (6) gives the SU(3) representations that are con-
nected by allowed E0 transitions. The Young Tableaux
designations for SU(3) in Fig. 4 (top) are equivalent to
a scheme with three rows, as shown in the bottom of
the figure. Here, the number of boxes in the successive
rows are given by n1, n2, n3. The rows are ordered such
that their length always decreases as the row number
increases, n1 > n2 > n3. Here, λ is again given by the
difference in the number of boxes between the second and
first rows, while µ is the difference in the number of boxes
between the second and third rows. In effect, one obtains
the upper description of SU(3) in Fig. 4 by truncating the
boxes on the left in which all rows are occupied. In the
lower part of Fig. 4, the ground state can be represented
by a single row of 2N boxes and has (λ, µ) = (2N, 0).

TABLE II: Selection rules for E0 transitions of the
SU(3) symmetry, for N = 12 bosons, in terms of Young
diagrams with three rows. The n1, n2, n3 represent the
numbers of boxes in the first, middle and third rows of
Young diagram and (λ, µ)i,f are the initial and final

quantum numbers.

(λ, µ)i ≡ (n1, n2, n3) (λ, µ)f ≡ (n1, n2, n3) (∆λ,∆µ)

(16, 4) ≡ (20, 4, 0) (14, 2) ≡ (18, 4, 2) (2,2)
(16, 4) ≡ (20, 4, 0) (12, 6) ≡ (18, 6, 0) (4,2)
(16, 4) ≡ (20, 4, 0) (18, 0) ≡ (20, 2, 2) (2,4)
(16, 4) ≡ (20, 4, 0) (24, 0) ≡ (24, 0, 0) forbidden

The next representation is formed by moving two boxes
into the second row giving (λ, µ) = (2N − 4, 2). Two
additional boxes can be moved from the upper row to
either the second or third rows, resulting in, respectively,
(λ, µ) = (2N − 8, 4) or (2N − 6, 0), and so on.

In this notation, all allowed E0 transitions in SU(3)
can be described by the following rule: any transition
connecting two 0+ states is allowed if the Young Tableaux
for either state can be converted into that for the other
state by taking two boxes from a higher row to any lower
row. This can be from n1 to n2, or n1 to n3, or n2 to n3.
That is, two states are connected if:

∆ni = nj ± 2 for i 6= j (7)

with the third row unchanged.

We illustrate the selection rules with one example.
Consider the allowed transition in SU(3) for 12 bosons
from the state (16, 4) to (14, 2). This is (∆λ,∆µ) = (2,
2). In terms of the Young Tableaux with three rows this
is a movement of two boxes from n1 to n3. For the same
number of bosons in SU(3) if we consider the transition
from the state (16, 4) to (12, 6), this is (∆λ,∆µ) = (4,
2). In terms of the Young Tableaux with three rows this
is a movement of two boxes from n1 to n2. In the case of
the transition (18, 0) to (16, 4), this is (∆λ,∆µ) = (2, 4).
In terms of the Young Tableaux with three rows this is a
movement of two boxes from n2 to n3. If we consider the
transition from state (16, 4) to (24, 0), this is (∆λ,∆µ)
= (8, 4) which is forbidden according to the rules in Eq.
(6) and by the Young Tableaux representation with three
rows. These results are summarized in Table II.

With this result in hand, and the ones for U(5) and
O(6), we can now study how the E0 strengths and their
distributions vary for nuclei with structures correspond-
ing to interior positions in the triangle.
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IV. RESULTS FOR NUCLEI DEVIATING

FROM THE DYNAMICAL SYMMETRIES

The simple E0 decay patterns seen in Figures 2 and 3
reflect the character of the symmetries and the existence
of good numbers at the vertices of the triangle. Away
from those vertices, mixing of the states of the symme-
tries occurs such that the quantum numbers rapidly lose
validity and, generally, a larger number of E0 transitions
have finite values. We illustrate this with two calcula-
tions, one for the special case of nuclei along the arc of
regularity and one for a typical deformed nucleus.
Figure 5 shows the level scheme and E0 transitions for

two calculations with parameters corresponding to the
positions marked by the colored dots in Fig. 1, along
with the results for SU(3) for comparison. The case in
the middle of Fig. 5 corresponds to a deformed nucleus
lying along the arc of regularity (red dot). The arc is
a unique region, discovered by Alhassid and Whelan [9]
about twenty years ago where, amidst nuclei whose prop-
erties appear to be highly chaotic, there is a narrow valley
of regularity starting at SU(3) and heading towards the
spherical-deformed phase transitional line and then be-
yond towards U(5). In this valley, despite the distance
from SU(3), the spectra regain ordered behavior. For
years it was thought that this region was of only aca-
demic interest since it was devoid of actual nuclei. How-
ever, about a decade ago, new fits of the IBA [4] identified
a set of eight well-deformed nuclei that lie very close to
the arc. A common characteristic was noted, namely the
near degeneracy of the first excited 0+ state and the 2+

level of its band or of the gamma band. Degeneracies
suggest symmetries and good quantum numbers and it
was very recently demonstrated [12] that the arc of regu-
larity in fact corresponds to the first example of a quasi-
dynamic symmetry (QDS) within the triangle where all
three symmetries are in play. (As pointed out by [13], ear-
lier examples of QDS’s were positioned along the legs of
the triangle bridging only the two symmetries bounding
the leg.) Thus it is interesting to look at E0 transitions
for a calculation corresponding to a point on the arc.
As can be seen, the E0 strength is now considerably

more spread out, with a number of new transitions ap-

pearing, especially for the higher lying levels. It is inter-
esting to compare this to a nucleus located close to the
middle of the triangle but lying off the arc. The green
dot in Fig. 1 corresponds to such a situation for which
R4/2 ∼ 3.1.
It is easy to see by inspection in Fig. 5 that the E0

strength continues to spread. Further it is not only a
question of more finite E0 strengths but also many of
these transitions are quite weak.
An interesting way to look at these distributions is in

terms of the histogram in Fig. 6 which shows the number
of transitions in various strength bins for the three cal-
culations. For this figure each calculation has been nor-
malized so that the E0 transition from the first excited
0+ state to the ground state has a strength of unity. The
SU(3) distribution is rather flat with very few weak tran-
sitions, that is, all allowed transitions have reasonably
strong strengths. The distribution for the two calcula-
tions deviating from SU(3) clearly show many more weak
transitions and a sapping of strength from the stronger
transitions.

V. CONCLUSIONS AND OUTLOOK

In this study, we calculated E0 transitions between all
0+ states using the IBA model to probe their relation
to collectivity. For SU(3), we discovered a new selection
rule that simultaneously describes all E0 transitions. Al-
though the spectrum of allowed E0 transitions is com-
plex we discussed a very simple selection rule in terms
of Young Tableaux with three rows. Finally, we studied
the fractionation of E0 strength between excited states
for calculations deviating from the dynamical symme-
tries and noted the somewhat different patterns for nu-
clei along the arc of regularity and near the middle of the
triangle.

ACKNOWLEDGMENTS

We are grateful to F. Iachello, D. Bonatsos and Y.
Alhassid for useful discussions. Work supported by the
US DOE under Grant number DE-GF02-91ER40609.

[1] J. L. Wood, E. F. Zganjar, C. De Coster, and K. Heyde,
Nucl. Phys. A651, 323 (1999).

[2] M. Sambataro and G. Molnar, Nucl. Phys. A376, 201
(1982).

[3] K. Heyde and R. A. Meyer, Phys. Rev. C 37, 2170 (1988).
[4] J. Jolie, R. F. Casten, P. Cejnar, S. Heinze, E. A. Mc-

Cutchan, and N.V. Zamfir, Phys. Rev. Lett. 93, 132501
(2004).

[5] F. Iachello and A. Arima, The Interacting Boson Model

(Cambridge University Press, Cambridge, 1987).
[6] J. Bonnet, A. Krugmann, J. Beller, N. Pietralla, and R.

V. Jolos, Phys. Rev. C 79, 034307 (2009).

[7] S. Zerguine, P. van Isacker, A. Bouldjedri, and S. Heinze,
Phys. Rev. Lett. 101, 022502 (2008).

[8] K. Wimmer et al., Proc. 13th Intern. Symposium on
Capture Gamma-Ray Spectroscopy and Related Topics,
Cologne, Germany, AIP Conf. Proc. 1090 (2009).

[9] Y. Alhassid and N. Whelan, Phys. Rev. Lett. 67, 816
(1991).

[10] K. T. Hecht, Collective Models, Proc. of the NUFFIC
Intern. Summer Course in Science at Nijenrode Castle,
Netherlans (North-Holland Publishing Company, Ams-
terdam, 1964).

[11] R. F. Casten and D. D. Warner, Rev. Mod. Phys. 60,



5

389 (1988).
[12] Dennis Bonatsos, E. A. McCutchan, and R. F. Casten,

Phys. Rev. Lett. 104, 022502 (2010).

[13] D. J. Rowe, M. J. Carvalho, and J. Repka, Rev. Mod.
Phys., in press (2011).



6

E
x
c
it
a

ti
o

n
 E

n
e
rg

y
 (

M
E

V
)

(σ,τ)   
0

2

(6,0)

(6,3)

(4,0)

0+

0+0+

0+

0+

0+

0+

(4,3)

(2,0)
(6,6)

(0,0)

O(6) – 6 bosons

FIG. 2: Calculated E0 transition strengths (arbitrary
units) for the O(6) limit for N = 6 bosons. Top panel -
The E0 matrix elements ρ2(E0, Ji → Jf ) predicted by
the IBA are shown. The corresponding O(6) quantum
numbers (σ, τ) are also given in the figure. The energies
are normalized to the first excited 0+ state. Bottom
panel - All E0 transitions between all 0+ levels are

shown. In this and the next two figures the thickness of
the arrows give a indication of the ρ2(E0) strengths.
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FIG. 3: Calculated E0 transition strengths (arbitrary units) for the SU(3) limit for N = 16 bosons. Top panel -
The E0 matrix elements ρ2(E0, Ji → Jf ) predicted by the IBA are shown. The corresponding SU(3) quantum

numbers (λ, µ) are also given in the figure. The energies are normalized to the first excited 0+ state. Bottom panel -
All E0 transitions between all 0+ levels are shown.
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FIG. 4: Example of the determination of the (λ, µ)
quantum numbers of the SU(3) symmetry using the

method of Young Tableaux [10, 11].
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FIG. 5: Results for three calculations are shown for the case of N = 12 bosons. Left - Typical spectrum of the 0+

levels of the SU(3) limit labeled by their quantum numbers (λ, µ) and the allowed E0 transitions between all 0+

states. Middle - Similar figure for E0 transition strengths between all 0+ levels corresponding to a point on the arc
of regularity. Right - The E0 transition strengths between all 0+ levels corresponding to a point near the middle of

the triangle.
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FIG. 6: (Color online) Distribution of the E0
transition strengths for 12 bosons for SU(3), for a point
on the arc of regularity (red) and near the middle of the

triangle (green). All values of the E0 transitions
between all 0+ states are normalized to unity for the

0+2 → 0+1 E0 transition strength.


