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The collective bosonic Hamiltonian is derived from the microscopic nucleonic Hamiltonian by the
generalized density matrix method. Independent parameters in the collective Hamiltonian are fixed
completely, solutions are given in detail. The random phase approximation corresponds to the har-
monic potential of the current approach. The full solution (very close to the exact diagonalization)
is obtained over the whole region of parameters including and beyond the instability point of the
random phase approximation. The method is tested in the simple model.
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I. INTRODUCTION

The effective bosonic Hamiltonian has long been used
to describe collective excitations in nuclear physics, most
frequently in the form of the geometric Bohr Hamiltonian
[1, 2] and in the Interacting Boson Model [3]. Broad sets
of nuclear data are described with a few parameters that
change smoothly across the nuclear chart. Such mod-
els provide a qualitative picture of low-lying collective
motion, especially important in heavy nuclei where the
full shell-model calculations are hardly feasible. To put
the phenomenological theory on solid grounds, serious
efforts were devoted to calculating these parameters mi-
croscopically from the underlying nucleonic Hamiltonian.
But the complete microscopic theory is still missing after
several decades. The original formulation [4] in terms of
direct boson expansion of fermionic operators had prac-
tical problems related to convergence, see detailed review
[5].

In this work it is shown that the microscopic theory
based on the generalized density matrix (GDM) fixes the
collective bosonic Hamiltonian completely. This method
was proposed long ago [6–8] and was applied to nuclear
rotation [7, 9, 10] and large-amplitude collective motion
[11–13]. Recently the general construction of the GDM
method was reexamined [14], but only one constraint was
found in each even order of the anharmonic collective
Hamiltonian, which seemed insufficient to fix the latter
completely. In this work we show that the GDM method
is actually self-sufficient: with the renormalization of col-
lective operators, the redundant degrees of freedom in
the collective Hamiltonian are removed, and the theory
is left with truly independent parameters whose number
is equal to the number of the constraints imposed by the
GDM method. In this way, the whole procedure of cal-
culating the collective Hamiltonian becomes clear.

∗Electronic address: jial@nscl.msu.edu

Section II introduces the renormalization of collective
variables and identifies the independent parameters in
the collective Hamiltonian. Then we show in detail how
to fix them by the GDM method in Sec. III. In Sec. IV
the GDM procedure is tested in the Lipkin model with
perfect agreement. Section V discusses future working
directions.

II. EQUIVALENT REPRESENTATION OF

BOSONIC HAMILTONIAN

In what follows, for simplicity of notations we omit all
details related to the angular momentum vector coupling.
This part is necessary in realistic calculations but does
not contain principal difficulties. The collective bosonic
Hamiltonian is first constructed as an expansion over all
time-reversal invariant combinations of the collective co-
ordinate α and collective momentum π,

H = ω2α
2

2
+

π2

2
+ Λ(30)α

3

3!
+ Λ(12) {α, π2}

4
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4

4!
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8
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4

4!
+ Λ(50)α

5

5!
+ . . . . (1)

Here and below, the curly brackets denote anticommuta-
tor, {A,B} = AB + BA. Microscopic estimates of quite
general type [15] show that Λ(mn) ∼ Ω−(m+n−2)/2, where
Ω is the collectivity factor, the effective number of sim-
ple quasiparticle excitations contributing to the collective
mode. The solvable Lipkin model and quadrupole plus
pairing model confirm these estimates [14]. In the case
of strong collectivity, Ω ≫ 1. In Eq. (1) all terms with
the right symmetry are kept thus the expansion is com-
plete. However, it is over-complete. Different expansions
are equivalent if they are related by canonical transfor-
mations of collective variables α and π. The number of
independent parameters of H should be the number of
possible combinations as in Eq. (1) minus the number of
allowed transformations.
Let us count the number of transformations (α, π) →



2

(ᾱ, π̄),

α =
∑

m≥0,n≥0

x(mn) 1

2

{ᾱm, π̄n}
m! n!

,

π =
∑

m≥0,n≥0

y(mn) 1

2

{ᾱm, π̄n}
m! n!

,

(2)

which preserve the commutator algebra,

[α, π] = [ᾱ, π̄] = i. (3)

The transformation parameters x(mn), y(mn) being of the
order Ω−(m+n−1)/2 will not change the dependence of
Λ(mn) in Eq. (1) on Ω. The constant terms, x(00) and
y(00), corresponding to a trivial translation of origin are
not needed as this choice is already made by selecting
Λ(10) = Λ(01) = 0 in the collective Hamiltonian (1); in
the case of a multipole collective mode such terms would
violate rotational symmetry. In the linear terms we can
set x(10) = y(01) = 1, which would correspond to a rescal-
ing of α or π [Λ(02) = 1 in Eq. (1)]. The parameters
x(mn) and y(mn) vanish for odd and even n, respectively,
because of the wrong time-reversal symmetry.
Using Eqs. (2) and (3) we have

[α, π] =
i

2

∑

rsmn

x(mn)y(r−m,s−n)

· [m(s− n)− n(r −m)]

m! n! (r −m)! (s− n)!
{ᾱr−1, π̄s−1}, (4)

where in the coefficient of {ᾱr−1, π̄s−1} we keep only the
leading terms in 1/Ω, that is, terms ∼ Ω−(r+s−2)/2. The
summation runs over r ≥ m and s ≥ n, and as seen from
the numerator, r ≥ 1 and s ≥ 1. In addition, s is odd,
otherwise x(mn)y(r−m,s−n) vanishes. The starting term,
r = s = 1, gives correctly i. The terms with r + s ≥ 3
and an odd s should vanish,

0 =
∑

mn

x(mn)y(r−m,s−n) m(s− n)− n(r −m)

m! n! (r −m)! (s− n)!
. (5)

These relations constrain x(mn) and y(mn) in the trans-
formations (2).
Let us identify the independent parameters in the col-

lective Hamiltonian (1), removing the redundant degrees
of freedom related to the transformations (2). In the
quadratic order, the transformations (2) do not change

the harmonic terms ω2

2 α2 + 1
2π

2; thus, there is one in-

dependent parameter ω2. In the cubic order, the trans-
formations (2) with nonzero x(20), x(02), and y(11) influ-
ence the Hamiltonian parameters Λ(30) and Λ(12) through
the harmonic terms; there is one constraint (5) with
(rs) = (21). Thus, the renormalization of the collective
variables removes the skew terms: Λ(30) and Λ(12) can be
set to zero and there remains no independent parameter
in this order. In the quartic order, the transformations
(2) with nonzero x(30), x(12), y(21), and y(03) influence

Λ(40), Λ(22), and Λ(04); and there are two constraints (5)
with (rs) = (31) and (13). Thus, there is one indepen-
dent parameter; we can, for example, choose it to be
Λ(40), and set Λ(22) and Λ(04) to zero.
This process continues to anharmonic terms of higher

orders. There is one independent parameter in each
even order (we can choose it to be Λ(n0) excluding all
momentum-dependent high-order terms), and there are
no independent parameters in odd orders. In summary,
the independent parameters in the collective Hamiltonian
(1) can be identified in the following form:

H =
1

2
π2 + V (α2) ,

V (α2) = ω2α
2

2
+ Λ(40)α

4

4!
+ Λ(60)α

6

6!
+ Λ(80)α

8

8!
+ . . . .

(6)

In Ref. [14] we have shown that the GDM method gives
one constraint in each even order of anharmonicity, thus
fixes all the independent parameters in Eq. (6). In
this sense the collective Hamiltonian is completely de-
termined. In the next section we rewrite the GDM equa-
tions and solutions derived in Ref. [14] in a compact form
valid up to an arbitrary order.

III. GENERALIZED DENSITY MATRIX

FORMALISM

Starting from the antisymmetrized fermionic Hamilto-
nian,

H =
∑

12

ǫ12a
†
1a2 +

1

4

∑

1234

V1234a
†
1a

†
2a3a4, (7)

we calculate the equations of motion for the one-body

density matrix operators, R12 ≡ a†2a1,

[R12, H ] = [ǫ, R]12 −
1

2

∑

345

V5432a
†
5a

†
4a3a1

+
1

2

∑

345

V1345a
†
2a

†
3a4a5. (8)

Here and below the numerical indices 1, 2, . . . combine all
single-particle quantum numbers. On the right hand side
[ǫ, R]12 =

∑

3(ǫ13R32 −R13ǫ32).
It is assumed that there exists a subspace of the full

spectrum of the original Hamiltonian (7), corresponding
to the experimental “band” of collective states intercon-
nected by large transition rates. We map the exact equa-
tions of motion (8) onto this collective subspace. Inside
the collective subspace the dynamics of the GDM oper-
ators R12 is assumed to be generated by the expansion
over collective operators α and π,

R12 ⊜

∑

m≥0,n≥0

r
(mn)
12

1

2

{αm, πn}
m!n!

, (9)
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where “⊜” means projecting onto the collective sub-
space. The first term ρ ≡ r(00) is just the usual single-
particle density matrix. The terms with operators α and
π generate the interaction within the band. The origi-
nal fermionic Hamiltonian is mapped onto the collective
subspace as

H ⊜

m+2l≥2
∑

m≥0,l≥0

Λ(m,2l) 1

2

{αm, π2l}
m!(2l)!

, (10)

where Λ(20) = ω2, Λ(02) = 1. Here we changed the nu-
merical normalization in Eqs. (9) and (10) from 1/(2mn),
as used in Ref. [14], to 1/2/(m!n!), in order to include
the case of zero m or n. The relevant results for the
two-body operators (the so-called “saturation principle”
in Ref. [14]) can be summarized as

a†4a
†
3a2a1 ⊜ a†4a1 · a†3a2 − a†4a2 · a†3a1, (11)

that is, it factorizes into antisymmetrized products of
one-body GDM operators. The term in Eq. (11) without
collective variables, ρ1234 = ρ14ρ23 − ρ24ρ13, is routinely
used to derive the time-dependent Hartree-Fock equa-
tion. We have also calculated the equations of motion

for the two-body operators a†4a
†
3a2a1, and found that Eq.

(11) is a consistent solution.

With Eqs. (9) - (11), the equation of motion (8) is
mapped onto the collective subspace,

[R12, H ] ⊜ [ǫ+W{R}, R]12, (12)

where

W{R}12 ≡
∑

34

V1432R34 (13)

is the generalized self-consistent field. The substitution
of Eq. (9) into Eq. (13) gives the mapping of the lat-

ter, W{R} ⊜
∑

mn w
(mn) 1

2
{αm,πn}

m!n! , where w(mn) ≡
W{r(mn)}. On the left hand side of Eq. (12), the in-
termediate states (between R12 and H) are restricted to
those of the collective subspace, assuming large transi-
tion amplitudes. Substituting Eqs. (9) and (10) into
Eq. (12), comparing coefficients with the same operator
structure, we come to the final set of GDM equations
with different r ≥ 0, s ≥ 0,

p+2l≥2
∑

0≤p(≤r+1),0≤2l(≤s+1)

2l(r + 1− p)− (s+ 1− 2l)p

(r + 1− p)! (s+ 1− 2l)! p! (2l)!
· i Λ(p,2l)r(r+1−p,s+1−2l)

=
1

r! s!
[ǫ, r(rs)] +

∑

0≤p(≤r),0≤q(≤s)

1

(r − p)! (s− q)! p! q!
[w(r−p,s−q), r(pq)]. (14)

Equation (14) with (rs) = (00) gives the Hartree-Fock (HF) equation,

0 = [ǫ +W{ρ}, ρ]. (15)

It is natural to use the HF single-particle basis that diagonalizes f{ρ} ≡ ǫ +W{ρ} and ρ simultaneously, providing
the orbital energies e1 and occupation numbers n1,

f12 = δ12e1, ρ12 = δ12n1. (16)

Later we use e12 ≡ e1 − e2 and n12 ≡ n1 − n2.
For K = r + s ≥ 1 in Eq. (14), we solve a linear set of coupled equations for r(rs)|r+s=K . The formal solution can

be written as

r(mn)|m+n=K = −
∑

r+s=K

p+2l≥3
∑

0≤p(≤r+1),0≤2l(≤s+1)

2l(r + 1− p)− (s+ 1− 2l)p

(r + 1)(s+ 1)
Cp

r+1C
2l
s+1

· i Λ(p,2l) · η(mn)
(rs) : r(r+1−p,s+1−2l) +

∑

r+s=K

p+q≤r+s−1
∑

0≤p(≤r),0≤q(≤s)

Cp
rC

q
s · η(mn)

(rs) : [w(r−p,s−q), r(pq)],

(17)

where Cq
p = p!/[q!(p − q)!], and we have introduced the “weight” matrix η

(mn)
(rs) so that (η

(mn)
(rs) : r)12 = η

(mn)
(rs)12r12.
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The matrix η is given by

η
(mn)
(rs) = (D−1

K )
(rs)
(mn), (18)

where DK is a tridiagonal matrix of dimension K + 1,

(DK)
(mn)
(mn) = −e,

(DK)
(m+1,n−1)
(mn) = i · n,

(DK)
(m−1,n+1)
(mn) = −i · ω2m.

(19)

We give as an example the first two η matrices. For
K = 1,

η
(mn)
(rs) =

1

e2 − ω2
·





(mn) \ (rs) (01) (10)
(01) −e −i
(10) iω2 −e



 , (20)

and for K = 2,

η
(mn)
(rs) =

1

−e(e2 − 4ω2)

·









(mn) \ (rs) (02) (11) (20)
(02) e2 − 2ω2 2ie −2
(11) −iω2e e2 ie
(20) −2ω4 −2iω2e e2 − 2ω2









. (21)

From Eq. (21) we read, for example, η
(20)
(02)12 =

{−2ω4}/{−e12[(e12)
2 − 4ω2]}. All η matrices with an

even K have the factor 1/e [see for example Eq. (21)],

thus the e1 = e2 matrix elements of r
(mn)
12 cannot be

directly calculated from the solutions (17). However, if
we set n1 = n2 in Eq. (17) and simplify, the 1/e12 di-
vergence is canceled; the resulting expression is used to

calculate r
(mn)
12 . The e1 = e2 matrix elements of r

(mn)
12

are expressed in terms of lower-order quantities.
In each order K, substituting r(mn) from Eq. (17)

into w
(mn)
12 =

∑

34 V1432r
(mn)
34 results in a linear set of

coupled equations for the latter, from which the e1 6= e2
matrix elements of w

(mn)
12 are solved in terms of lower-

order quantities, which in turn gives the e1 6= e2 matrix

elements of r
(mn)
12 by Eq. (17). However, if K = 2L +

1 is odd, the determinant for w(mn) is zero. This can
be proved as following. Summing Eq. (14) with proper
weights we get

i x = [W{y}, ρ] + [f, y] + . . . ,

−i ω2y = [W{x}, ρ] + [f, x] + . . . ,
(22)

where

x =
∑

0≤t≤L

νt
(2t+ 1)! (2L− 2t)!

r(2t+1,2L−2t),

y =
∑

0≤t≤L

µt

(2t)! (2L+ 1− 2t)!
r(2t,2L+1−2t),

in which µt and νt are solved from (0 ≤ t ≤ L, µL+1 =
ν−1 = 0)

−2L− 2t

2t+ 1
ω2µt+1 + µt =

1

2t+ 1
νt,

ω2νt −
2t

2L− 2t+ 1
νt−1 =

1

2L+ 1− 2t
ω2µt.

The “. . .” in Eq. (22) are lower-order quantities. It is
seen that the explicitly shown parts of Eq. (22) have
the same structure as the random phase approxima-
tion (RPA) equations: ir(10) = [w(01), ρ] + [f, r(01)] and
−iω2r(01) = [w(10), ρ] + [f, r(10)]. This finishes the proof.
The zero determinant means that the set of equations
for w(mn) is linearly dependent, and there is a constraint
in each order of odd K, entering as a solvability condi-
tion. These constraints are the main results of the GDM
formalism, from which the parameters Λ(pq) of the col-
lective Hamiltonian are calculated. Then w(mn) is solved
from this zero-determinant set, with only a factor unde-
termined. This factor is fixed by the constraint indicated
below Eq. (23).
If the GDM formalism is self-consistent, the substitu-

tion of the solutions (17) into Eq. (7) should reproduce
the assumed Hamiltonian (10),

Λ(mn) = Tr [ǫr(mn)]

+
1

2

∑

0≤p(≤m),0≤q(≤n)

Cp
mCq

n Tr[r(pq)w(m−p,n−q)]. (23)

In an order of odd K = m+ n, all the parameters Λ(mn)

are checked correctly. In an order of even K = m + n,
all but one Λ(mn) are checked correctly; this one leftover
degree-of-freedom/constraint is used to fix the remaining
“undetermined factor” mentioned at the end of the last
paragraph.
In practical applications, Eq. (6) may not be the most

convenient choice for the independent parameters of the
collective Hamiltonian, which means solving the equa-
tions of motion in the GDM method to infinitely high or-
ders. Alternatively, we can pick up a certain number (la-
beled N) of terms in Eq. (1), putting other terms to zero;
in other words, we assume that the original fermionic
Hamiltonian (7) can be sufficiently accurately mapped
onto a collective Hamiltonian with these N terms. Then
in the GDMmethod we need to solve the equations of mo-
tion up to the (2N)th order, in order to getN constraints.
The quality of the assumption of mapping can be checked
self-consistently within the GDM method: if the assump-
tion is good, constraints from the orders higher than 2N
should be satisfied automatically. For the realistic nucle-
onic Hamiltonian, mapping onto a bosonic Hamiltonian is
guaranteed by the success of old phenomenological stud-
ies. The mapped quadrupole phonon αµ is not neces-
sarily the RPA phonon that is “proportional” to the real
quadrupole moment Qµ; rather αµ is such a renormalized
operator (2) that the mapping onto a given form (the se-
lected N terms) of the bosonic Hamiltonian is the “best”.
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The possibly infinite series of the bosonic Hamiltonian ex-
panded in the RPA phonon is “pushed”/resummed into
the selected finite-N terms by the renormalization (2).
The expansion of Qµ in terms of αµ and πµ is obtained
by substituting the solution (9) into Qµ = Tr[qµR].

IV. LIPKIN MODEL

The above GDM formalism is tested in the Lipkin
model (σ = ±1; l = 1, 2, ...,Ω):

H =
∑

σ,l

σ

2
a†σ,laσ,l +

κ

2

∑

σ,l,l′

a†σ,la
†
σ,l′a−σ,l′a−σ,l. (24)

The exact solution is well known [5], using

J+ = J†
− =

∑

l

a†+1,la−1,l, Jz =
1

2

∑

σ,l

σa†σ,laσ,l, (25)

J+ = A†
√

2J −A†A, Jz = −J +A†A, 2J = Ω, (26)

A =
1√
2
(iuα+ vπ), A† =

1√
2
(−iuα+ vπ), (27)

u ≈
√
1 + 2κJ, v = − 1

u
, (28)

the Hamiltonian (24) is written in the form (10) with
only three nonzero terms,

ω2 = 1− (κΩ)2,

Λ(40) = 6κ(1 + κΩ)2,

Λ(04) =
−6κ

(1 + κΩ)2
.

(29)

Equations (29) are accurate in the leading order of 1/Ω.
In the mapping, the Hamiltonian (24) is first written in
terms of the quasi-spin operators Jz and J± by Eq. (25),
then of the boson operators A† and A by the Holstein-
Primakoff transformation (26). The canonical transfor-
mation (27) introduces the collective coordinate α and
momentum π, whose scales are fixed by Eq. (28), so that
Λ(02) = 1.
Now we apply the GDM formalism to the Hamiltonian

(24). By going up to the sixth order in equations of
motion, we get three constraints to fix ω2, Λ(40), and
Λ(04), and they agree with the exact results (29). Hence
the GDM method solves the Lipkin model completely in
the leading order of 1/Ω.
In Fig. 1, a numerical example is performed for Ω =

30. As one can see, the first few excited states of the
anharmonic Hamiltonian agree very well with the exact
results, while the RPA fails very soon as κ increases to the
critical point. For realistic medium and heavy even-even
nuclei, only in the vicinity of magic numbers the low-
lying collective excitations can be sufficiently described
by the QRPA; in very many cases, including the soft-
spherical, gamma-unstable, and rotational dynamics, the
collective modes lie beyond the critical point of RPA, so

that the higher-order anharmonicities in the collective
Hamiltonian are indispensable.
In Fig. 1, as conventionally done, the bosonic Hamil-

tonian (29) is diagonalized in the infinite phonon space
{|0 ≤ n < +∞〉} (|n〉 is the state with n phonons,
A†A|n〉 = n|n〉), dropping the “divergent” Λ(04) < 0
term. However, as discussed in Ref. [14], the Hamil-
tonian (29) should be diagonalized in the finite phys-
ical space, which is known in the Lipkin model to be
{|0 ≤ n ≤ Ω〉}. Acting A† more than Ω times on the
ground state runs out of valence particles thus gives zero.
Within the finite physical space, the Λ(04) < 0 term does
not generate divergences and should be kept. In order
to identify the errors of the “anharmonic” curve in Fig.
1, we plot the errors of the excitation energies for the
first four excited states in a set of calculations in Fig. 2.
The overlap of curves 1 and 2 means that convergence is
reached for the first few excitation energies in the finite
physical space {|0 ≤ n ≤ Ω〉}. Going from curve 2 to
curve 3, we remove the error owing to the inaccuracy of
the harmonic potential ω2 in the next-to-leading order in
1/Ω: We replace ω2 in Eq. (29) by ω2 = 1− κ2Ω(Ω+2),
which is correct not only in the leading order but also in
the next-to-leading order of 1/Ω. Finally in curve 4 the
“divergent” term Λ(04) < 0 is included. We see that 4 is
a much better calculation than 1. The little “kink” on
curve 4 near κ = 0.05 coincides with the phase transi-
tion of the system, where the spectrum becomes double-
degenerate inside a well-developed (large enough ω2 < 0)
double-well potential (see Fig. 1).
The microscopically calculated “divergent” terms

should always be kept in the bosonic Hamiltonian when
diagonalizing. Within the finite physical space, they mix
nearby states without causing divergences. Because we
are considering large amplitude (α2) vibrations, the effect
of the Λ(04)π4 < 0 term in the Lipkin model is small. “Di-
vergent” terms with α will have a bigger effect; also they
may influence transition rates more than energies. In
general, the exact finite physical space, bounded approx-
imately by the collectivity factor Ω, is unknown. How-
ever, Ω can be estimated by the number of effectively

nonvanishing one particle - one hole excitations in r
(10)
12

and r
(01)
12 . Changing slightly the boundary of the phys-

ical space, the lowest several states would not change
much, as they were composed mainly of the states with
the smallest phonon numbers and therefore insensitive
to the boundary. In this way the physical effects of the
microscopically calculated “divergent” terms can be in-
cluded.
From Fig. 2 we see that the next-to-leading order

terms in 1/Ω of the RPA frequency ω2 could be impor-
tant. In realistic nuclei, the critical point ω2 ≈ 0 could
be reached at a relatively small Ω. For example, 10046Pd at
the critical point [16] has only eight valence particles (al-
though pairing increase collectivity). Within the GDM
method, we should calculate the next-to-leading order
terms in 1/Ω in the RPA equations. Firstly, Eq. (11),

which is equivalent to N [a†4a
†
3a2a1] ⊜ N [a†4a1]N [a†3a2] −
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N [a†4a2]N [a†3a1] by Wick theorem (N [...] is normal or-
dering with respect to the HF ground state), should

be replaced by 2N [a†4a
†
3a2a1] ⊜ N [a†4a1]N [a†3a2] −

N [a†4a2]N [a†3a1]+N [a†3a2]N [a†4a1]−N [a†3a1]N [a†4a2], be-
cause of the apparent antisymmetry. Secondly, terms in
Eq. (11) that are not factorizable into products of one-
body GDM operators should be taken into account, prob-

ably by calculating the equations of motion of a†4a
†
3a2a1.

V. CONCLUSION

In summary, we presented the detailed procedure of
microscopic calculations of the collective bosonic Hamil-
tonian by the GDM method. The correct rotational
symmetry and effects of pairing for realistic nuclear sys-
tems were not discussed here but they are included in
the whole scheme in a straightforward manner, see Secs.
VI and VII of Ref. [14]. The most interesting realistic
problems include the microscopic description of soft nu-
clei with large vibrational amplitude and therefore strong
anharmonicity that leads to various group structures of
the dynamics and possible shape instability and coexis-
tence. Another type of problems concerns the coupling
between various collective modes, an interesting example
of recent experimental observation of clear quadrupole-
octupole correlation in Xe isotopes can be found in Ref.
[17]. We can also mention that the non-collective states
not included in the band form an environment that can
be accounted for at least in average using the statisti-
cal approach based on the ideas of quantum chaos and
complexity. The work along these lines is in progress.
This work is supported by the NSF grants PHY-

0758099 and PHY-1068217.
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FIG. 1: (Color online) The excitation energies En −E0 of the first five excited states as a function of κ in the model (24) with

Ω = 30. The red dashed-dotted lines are the RPA results (diagonalizing the harmonic Hamiltonian ω
2

2
α
2 + 1

2
π
2). The blue

dashed lines are obtained by diagonalizing ω
2

2
α
2 + 1

2
π
2 + Λ(40)

4!
α
4 in the infinite phonon space {|0 ≤ n < +∞〉}, where ω

2 and

Λ(40) are given by Eq. (29). The black solid lines show the exact results by diagonalizing the original fermionic Hamiltonian
(24) directly.
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FIG. 2: (Color online) The errors of the first four excitation energies E − Eexact as a function of κ in a set of calculations.
Panels (a), (b), (c), and (d) are for the first, second, third, and fourth excitation energy, respectively. Four lines on each
panel are obtained by diagonalizing different collective Hamiltonian in different phonon space. 1 (green dashed line): H =
ω
2

2
α
2 + 1

2
π
2 + Λ(40)

4!
α
4 in {|0 ≤ n < +∞〉}. 2 (red dotted line): H = ω

2

2
α
2 + 1

2
π
2 + Λ(40)

4!
α
4 in {|0 ≤ n ≤ Ω〉}. 3 (blue

dashed-dotted line): H = ω
2

2
α
2 + 1

2
π
2 + Λ(40)

4!
α
4 in {|0 ≤ n ≤ Ω〉}, but with ω

2 = 1− κ
2Ω(Ω + 2) replacing that in Eq. (29).

4 (black solid line): H = ω
2

2
α
2 + 1

2
π
2 + Λ(40)

4!
α
4 + Λ(04)

4!
π
4 in {|0 ≤ n ≤ Ω〉}, also with ω

2 = 1 − κ
2Ω(Ω + 2). 1 and 2 closely

overlap and are indistinguishable on the figure.


