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We discuss in this paper the subleading contact interactions, or counterterms, in the 3P0 channel
of nucleon-nucleon scattering up to O(Q3), where, already at leading order, Weinberg’s original
power counting (WPC) scheme fails to fulfill renormalization group invariance due to the singular
attraction of one-pion exchange. Treating the subleading interactions as perturbations and using
renormalization group invariance as the criterion, we investigate whether WPC, although missing
the leading order, could prescribe correct subleading counterterms. We find that the answer is
negative and, instead, that the structure of counterterms agrees with a modified version of naive
dimensional analysis. Using 3P0 as an example, we also study the cutoffs where the subleading
potential can be iterated together with the leading one.

Since its proposal [1] and first implementation [2], the
effective field theory (EFT) description of nuclear forces
has enjoyed significant phenomenological successes [2–6].
Based on naive dimensional analysis (NDA), Weinberg’s
original power counting (WPC) scheme has one crucial
assumption: each derivative on the Lagrangian terms is
always suppressed by the underlying scale of chiral EFT,
Mhi, where Mhi ∼ mσ with mσ the mass of the σ me-
son. Due to the lack of bound states or resonances near
threshold (with the delta-isobar integrated out), this as-
sumption turns out to be quite applicable in the single-
nucleon sector. However, the nonperturbative nature
of few-nucleon systems could make infrared mass scale
(Mlo ∼ 100 MeV) — such as the pion decay constant
fπ ≃ 92 MeV and the pion mass mπ ≃ 140 MeV — to
enhance NN contact interactions relative to WPC. In
fact many works have pointed out that WPC is incon-
sistent from the point of view of renormalization group
(RG) invariance [7–11]. Here renormalization is associ-
ated with ultraviolet (UV) momenta in the Lippmann-
Schwinger (LS) equation rather than with the UV diver-
gence of perturbative, NN irreducible diagrams.

One mechanism to upset WPC is the singular (diverg-
ing at least as fast as 1/r2) attraction of the tensor force
of one-pion exchange (OPE), −1/r3 at r → 0, in cer-
tain S, P and D channels where OPE needs full iteration:
3S1 −

3D1,
3P0,

3P2 −
3F2 and 3D2. The singular attrac-

tion of OPE requires a counterterm at leading order (LO)
in these channels. However, the P or D wave countert-
erms are counted as subleading in WPC since they have
at least two derivatives [8]. In other words, the LO coun-
terterm of, say, 3P0, is enhanced by O(M2

hi/M
2
lo). We

denote different orders of the EFT expansion by its rela-
tive correction to the LO. Thus, the next-to-leading order
(NLO) is labeled by O(Q/Mhi) or O(Q) for short, and
next-to-next-to-leading order (NNLO) by O(Q2/M2

hi) or

∗
Electronic address: bingwei@jlab.org

†Electronic address: cjyang@email.arizona.edu

O(Q2), and so on.
The question remains as to how to modify WPC at

subleading orders. The model study in Ref. [12] sug-
gests, referred to in the paper as modified NDA (NDA),
that in the case of the LO long-range potential being
singular and attractive, the subleading counterterms are
enhanced relative to NDA by the same amount as the
LO counterterms. As a first study, we use 3P0 in the pa-
per to investigate whether NDA is applicable in nuclear
EFT. Note that different approaches towards renormal-
ization of nuclear forces are offered in Refs. [13–18], and
that perturbative pion theory leads to a very different
renormalization program [19].
The resummation of ladder diagrams in lower partial

waves can be achieved by solving the LS equation, with
the schematic form,

T = V +

∫ Λ

V GT , (1)

where the potential V consists of short-range countert-
erms VS and long-range pion-exchange VL, G is the
Schrödinger propagator and Λ is a (sharp) momentum
cutoff. Being singular and attractive in 3P0, OPE de-
mands promotion of the leading 3P0 counterterm,

〈 3P0|V
(0)
S | 3P0〉 = C3P0

p′p ∼
4π

mN

p′p

M3
lo

, (2)

an O(M2
hi/M

2
lo) enhancement over WPC [8], where

4π/mN is a common factor associated with nucleonic
loops. For a comparison, the leading S-wave countert-
erms scale generically as CS ∼ 4π/mNM

−1
lo .

It will prove useful to have the short-range behavior of
the LO 3P0 wave function. For kr ≪ 1 < Λr where k
is the center-of-mass momentum, the LO wave function

ψ
(0)
k (r) can be solved for in powers of k2 [20, 21], up to

a normalization factor,

ψ
(0)
k (r) ∼

(

λ

r

)
1
4
[

u0 + k2r2
√

r

λ
u1 +O(k4)

]

, (3)



2

where λ =
3g2

A
mN

32πf2
π

with gA = 1.29 the nucleon axial

charge, u0 and u1 are oscillatory functions in terms of
r/λ and φ with amplitudes ∼ 1, where φ is the phase
between the two independent solutions and is related to
C3P0

.
Before two-pion exchanges (TPEs) are accounted for,

which provide O(Q2) or higher corrections to OPE, there
might exist a non-vanishing O(Q) manufactured by in-
serting subleading contact interactions alone. In fact,
Ref. [9] rated the triplet P-wave subleading contact in-
teractions as O(Q3/2), a lower-order contribution than
TPE.
We argue that a non-vanishing O(Q) does not seem

to be necessary. The study of Ref. [21] suggests that
the residual cutoff dependence of the renormalized LO
3P0 amplitude is O(Λ−5/2). Had this residual cut-
off dependence vanished slower than O(Λ−2), our ig-
norance of short-range physics would have been larger
than O(Q2/M2

hi), that is, larger than what TPE could
compensate. If this happened, one would have had to
consider an O(Q/Mhi) correction to the LO amplitude
induced by inserting a four-derivative 3P0 counterterm,
before accounting for TPE. However, the rather small
residual cutoff dependence of the LO 3P0 amplitude does
not ask for a non-vanishing O(Q).
With O(Q) vanishing, the O(Q2) and O(Q3) ampli-

tudes, T (2) and T (3), consist respectively in one insertion
of O(Q2) or O(Q3) potentials,

T (2, 3) = V (2, 3) +

∫ Λ

V (2, 3)GT (0) +

∫ Λ

T (0)GV (2, 3)

+

∫ Λ ∫ Λ

T (0)GV (2, 3)GT (0) .

(4)

Since this is equivalent to first-order distorted wave ex-
pansion, one can evaluate the “superficial” divergence of

one insertion of V
(2)
L (leading TPE) and V

(3)
L (subleading

TPE) before any counterterm is considered, by investi-
gating the short-distance behavior of the matrix element

of V
(2, 3)
L between the LO wave functions. This is fa-

cilitated by the short-distance behavior of the LO wave

function (3) and TPEs, V
(2)
L ∼ 1/r5 and V

(3)
L ∼ 1/r6.

With a radial coordinate cutoff R ∼ 1/Λ, we arrive at

T (2) = 〈ψ(0)|V
(2)
L |ψ(0)〉 ∼

∫

∼1/Λ

drr2|ψ(0)(r)|2
1

r5

∼ α0(Λ)Λ
5/2 + β0(Λ)k

2 +O(k4Λ−5/2), (5)

T (3) = 〈ψ(0)|V
(3)
L |ψ(0)〉 ∼

∫

∼1/Λ

drr2|ψ(0)(r)|2
1

r6

∼ α1(Λ)Λ
7/2 + β1(Λ)Λk

2 +O(k4Λ−3/2) , (6)

where α0,1(Λ) and β0,1(Λ) are oscillatory functions di-
verging slower than Λ. Their exact forms can be evalu-
ated [22] but are not crucial for our discussion.
It is not necessarily true that one must use two coun-

terterms to subtract the two divergent terms in Eq. (5)

or (6). In fact, WPC prescribes only one counterterm
up to O(Q3), and with the nonperturbative treatment it
did provide a good fit to partial wave analysis (PWA) for
a moderate range of cutoffs [3–5]. We first consider the
counterterms prescribed by WPC,

〈3P0|V
(2, 3)
S |3P0〉 = C

(2, 3)
3P0

p′p , (7)

where we split C3P0
into three pieces with C

(0)
3P0

deter-
mined at LO. This splitting reflects the fact that the
value of the “bare” C3P0

could be modified at each order
by, e.g., the short-range core of TPE, but the number of
physical, short-range inputs is still one.
The other scenario is to provide an equal number of

counterterms as the divergent terms in Eqs. (5) and (6):

〈3P0|V
(2, 3)
S |3P0〉 = C

(2, 3)
3P0

p′p+D
(0, 1)
3P0

p′p(p′
2
+ p2) .

(8)

Thus, up to O(Q3), every 3P0 counterterm gets enhanced
relative to WPC by the same amount, O(M2

hi/M
2
lo). This

is exactly what to be expected based on NDA [12].
There are a few versions of TPEs in the literature with

slight differences in how double counting is avoided [2–
4, 23]. For definiteness, we use the version in Ref. [3],
delta-less TPE expressions with dimensional regulariza-
tion. We adopt the following low-energy constants for
the ν = 1 ππNN seagull couplings (GeV−1): c1 = −0.81,
c3 = −4.7 and c4 = 3.4 [3].
We first test the prescription given by WPC (7). At

each order, C3P0
is determined such that the phase shift

at Tlab = 50 MeV agrees with the Nijmegen PWA [24].
Note that extra cares are needed to convert the sublead-
ing T -matrix into phase shifts, as shown in Appendix A.
Figure 1 shows the resulting phase shifts as functions

of Λ at Tlab = 40, 80 and 130 MeV. At O(Q2), the os-
cillatory cutoff dependence becomes more evident as the
energy increases. This is consistent with the superficial

divergence (5); while the α0 term is taken care of by C
(2)
3P0

,

the amplitude of the oscillation of β0(Λ)k
2 is left intact

and grows as the energy increases. Moving on to O(Q3)
we find more drastic, oscillatory cutoff dependence with
a visibly growing amplitude. This is due to the factor of
Λ that accompanies the oscillatory β1(Λ) in Eq. (6).
With the NDA counting (8), we need two physical in-

puts to determine the values of C3P0
and D3P0

. We fit
them to reproduce the PWA at Tlab = 20 and 50 MeV.
The plateaus in Fig. 2 clearly show the RG invariance of
the power counting (8), where the phase shifts are plotted
as functions of Λ at given Tlab.
In Fig. 3, the EFT phase shifts are plotted as function

of energy. The fit is refined by employing more PWA
points (Tlab =25, 50, 75 and 100 MeV) in the fitting
procedure. We see that both O(Q2) and O(Q3) are in
good agreement with the PWA.
Although the perturbative treatment of WPC does not

lead to cutoff independent results, the nonperturbative
treatment does seem to fulfill RG invariance [17]. It is
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FIG. 1: With the subleading counterterms (7), the O(1),
O(Q2) (upper row) and O(Q3) (lower row) 3P0 phase shifts
as functions of the momentum cutoff at Tlab = 40 (a), 80 (b)
and 130 (c) MeV.
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FIG. 2: With the subleading counterterms (8), the O(1),
O(Q2) and O(Q3) 3P0 EFT phase shifts as functions of the
momentum cutoff at Tlab = 40 (a), 80 (b) and 130 (c) MeV.

therefore instructive to compare the following three sce-
narios for 3P0: (i) the perturbative (Pert-CD) and (ii)
nonperturbative calculations with the modified power
counting (8) (Iter-CD), and (iii) the nonperturbative cal-
culation with WPC (Iter-WPC).

Shown in Fig. 4 are the 3P0 phase shifts calculated
at O(Q3) with the aforementioned three schemes, where
the fit of C3P0

and D3P0
in Eq. (8) is performed with

the PWA inputs up to Tlab = 50 MeV. At the lower end
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FIG. 3: With the subleading counterterms (8) and the im-
proved fitting procedure, the 3P0 EFT phase shifts at O(Q2)
and O(Q3) as function of Tlab for Λ = 1500 MeV.
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FIG. 4: The 3P0 phase shifts by Iter-CD, Pert-CD and Iter-
WPC as functions of laboratory energy. Panel (a) is plotted
with Λ = 400 MeV and (b) with Λ = 1200 MeV.

of cutoffs (as exemplified by Λ = 400 MeV), the three
curves differ drastically from each other above Tlab = 50
MeV, with the Pert-CD curve agreeing somewhat better
with the PWA. As the cutoff goes higher (exemplified
by Λ = 1200 MeV), the difference between Iter-CD and
Iter-WPC becomes smaller and eventually vanishes, in
accordance with the finding of Ref. [25]. We note that
this does not necessarily mean that the fitting drivesD3P0

to 0. Rather, the quality of the fit is not sensitive to
D3P0

Λ2/C3P0
when the ratio is tuned from 0 to 1.

In summary, we conclude:

• WPC does not accommodate a cutoff independent
T -matrix at O(Q2) or O(Q3) when subleading po-
tentials are treated as perturbations on top of the
LO.

• RG invariance can be achieved by the modified
power counting (8), based on modified naive di-
mensional analysis. This suggests that −1/r2, the
LO long-range potential in the model of Ref. [12],
is not crucial for NDA to be applicable.

• At O(Q3), Iter-CD, Pert-CD and Iter-WPC show
that in a limited range of cutoffs these three ap-
proaches produce similar phase shifts for 3P0, a
conclusion similar to that of Refs. [17, 18]. While
it is instructive, we refrain from drawing the same
conclusion for other channels; it may well be that
the “common” window of cutoffs appears at differ-
ent location for different channels.

A simultaneous, coordinate-space calculation in
Ref. [11] has come to our attention. The conclusion
drawn there for 3P0 agrees with ours, that is, in agree-
ment with NDA. However, Refs. [10, 11] concluded a
proliferation of six counterterms in each of the coupled
channels, 3S1 −

3D1 and 3P2 −
3F2, whereas NDA sug-

gests three once WPC is corrected at LO. We defer to a
further momentum-space calculation of the triplet chan-
nels [26] that are subject to the singular attraction of
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OPE to investigate whether NDA or the conclusion of
Refs. [10, 11] on the coupled channels can be verified.
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Appendix A:

In distorted wave expansion, the unitarity of the S-
matrix no longer rigorously holds. Therefore, the nor-
malization of the T -matrix we adopt in the paper, T =
−eiδ sin δ /mNk, is no longer exact at subleading or-
ders. Suppose that, with T (1) vanishing, the T -matrix
and the phase shifts have the following expansion: T =
T (0)+T (2)+T (3)+· · · , δ = δ(0)+δ(2)+δ(3)+· · · . Treating
T (2), (3) and δ(2), (3) as perturbations, one finds

T (2), (3) = −δ(2), (3)
e2iδ

(0)

mNk
. (A1)
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