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A scheme that elucidates the nature of critical point symmetries in deformed odd-A nuclei by linking them to
critical point symmetries of neighboring even-even nucleiis introduced. Specifically, a new symmetry, called
SX(3), is advanced that shows primary characteristics of anassumed strong-coupling limit for odd-A systems.
It is found that the SX(3) symmetry can be used to identify thesoft collective structures in odd-A system. A
preliminary application of the new scheme to describe the lowest positive parity bands of193Ir is also shown.
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Critical point symmetries (CPS) [1–3] play an important
role in understanding the evolution of nuclear collective struc-
tures in medium and heavy mass regions because they pro-
vide benchmark results for nuclei undergoing phase transi-
tions [4]. Particularly, CPS can be used to provide parameter-
free predictions of nuclear spectra, many having been con-
firmed by experiment [2, 3, 5, 6]. Since CPS have been ob-
served in even-even nuclei, it is reasonable to extend the CPS
concept to a description of odd-A systems. The first case,
called E(5/4) [7], was introduced by Iachello to describe a
γ-soft E(5) CPS coupled to aj=3/2 particle through a spin-
orbit interaction.135Ba was suggested as an empirical exam-
ple of the E(5/4) CPS. A detailed analysis of the agreements
as well as the discrepancies between experimental results and
theory was also reported [8]. Another case, called E(5/12) [9],
was developed by Alonso, Arias, and Vitturi, when they ex-
tended the E(5/4) CPS case with a particle in thej = 3/2 orbit
to a multi-j scheme withj = 1/2, 3/2, 5/2. Similarly, an
X(5/2 j+1) scheme [10] was proposed by coupling the X(5)
core with a single-j particle.

These formulations are close in spirit to a weak-coupling
picture, where the angular momentum of the collective core
and that of the particle are both considered to be conserved
quantities. Collective cores in odd-A nuclei, on the other
hand, are often strongly deformed. As a consequence, the
associated single-particle orbits can no longer be spherical.
In such cases the particle-rotor model provides an alternative
formulation [11], in which the core is assumed to be an axial-
deformed rotor with the particle constrained to the field cre-
ated by the core. Although collective rotation is also involved
in the various CPS descriptions, the motion of the core is quite
different from that of a rigid rotor described in the particle-
rotor model. Actually, the collective core of nucleus described
by the CPS models is characterized as soft or perhaps even as
having a floppy shape in contrast to the rigid rotor description.
Moreover, collective vibrations are also involved in the CPS,
of which the spectrum thus become richer than that induced by
a pure rotation. Similar situations in even-even systems have
been discussed in detail within the collective model [12, 13] of
Bohr and Mottelsson, the Variable Moment of Inertia (VMI)
model [14], and so on. The purpose of this work is to provide

a general CPS scheme in the strong-coupling limit for odd-
A nuclei with the even-even core close to a critical point of
a shape phase transition to explore whether or not such soft
collective features confirmed in even-even nuclei show them-
selves in odd-A systems. The procedure outlined can be ex-
tended directly to odd-odd systems, which may be of interest
as well.

To describe a deformed odd-A nucleus with an even-even
core around the critical point of a shape phase transition, the
Hamiltonian and wave function of a single valence particle
may be expressed in the intrinsic frame of the deformed core
described by the corresponding CPS. Thus, the Hamiltonian
of the odd-A nucleus in the strong-coupling limit can be writ-
ten as

H = HCPS+Hsp (1)

whereHCPS andHsp are the Hamiltonian of the core and the
single particle, respectively. It is assumed that there is no ad-
ditional interaction between the core and the particle except
that included in the strong-coupling limit itself [11]. It will be
proven that analytical solutions of the model Hamiltonian (1)
may be found with similar approximations to those used in the
original CPS approach [1–3].

As a concrete example, we consider a core with the X(3)
CPS [3], which can be regarded as theγ-rigid limit at the crit-
ical point of the spherical to axially deformed shape phase
transition. In contrast to a rigid rotor, the X(3) CPS corre-
sponds to a soft rotor. When the core is coupled with a spinj
particle, the collective part in Eq (1) is given asHCPS= HX(3),
which is the Hamiltonian of the X(3) CPS. The total angu-
lar momentum of the odd-A nucleus may be expressed as
Ĵ = L̂+ ĵ, where ĵ is the angular momentum operator of the
single-particle, and̂L is that of the even-even core. The ex-
plicit Hamiltonian of the X(3) CPS [3] is shown as

HX(3) =− h̄2

2B
[

1
β 2

∂
∂β

β 2 ∂
∂β

− 1
3(β h̄)2 L̂2]+V(β ) (2)

with

L̂2 =−h̄2[
1

sinθ
∂

∂θ
sinθ

∂
∂θ

+
1

sin2 θ
∂ 2

∂φ2 ] (3)



2

and

V (β ) =
{

0, β ≤ βW ,
∞ , β > βW .

(4)

As analyzed in [15], the potential at the critical point of the
spherical-axially deformed shape phase transition in odd-A
nuclei is rather flat forγ = 0, thus the square wellV (β ) in (4)
is adopted to describe the flat potential as used in the related
even-even cases [1]. The single particle part may be taken as
the Hamiltonian of the deformed-shell model [16] with

Hsp= ∑
i

E i
Ωi

f †
iΩi

fiΩi , (5)

where f †
iΩi

( fiΩi ) is the creation (annihilation) operator of the

valence particle in thei-th Nilsson orbit, andE i
Ωi

is the corre-
sponding single-particle energy. By using

L̂2 = (Ĵ − ĵ)2 = Ĵ2+ ĵ2−2(Ĵz ĵz)− Ĵ+ ĵ−− Ĵ− ĵ+ , (6)

where j± =∓( jx ± i jy), (1) can be regrouped as

H = H ′
X(3)+Hsp+H ′ (7)

with

H ′
X(3) =− h̄2

2B
[

1
β 2

∂
∂β

β 2 ∂
∂β

− 1
3(β h̄)2 Ĵ2]+V(β ) , (8)

and

H ′ =
ĵ2

6B < β 2 >
− 2(Ĵz ĵz)+ Ĵ+ ĵ−+ Ĵ− ĵ+

6B < β 2 >
, (9)

where< β 2 > is the average ofβ 2 over the eigenvector of
(8). In the strong-coupling limit,H ′ is often neglected [11].
As a result, the Schrödinger equationHΨ = EΨ can be
separated into two parts:H ′

X(3)ϕ(β ,θk) = Eβ ϕ(β ,θk) with

ϕ(β ,θk)=
√

2J+1
8π2 ξ (β )DJ

M,K(θk) and Hsp|φΩi〉 = E i
Ωi
|φΩi〉

with jz|φΩi〉 = Ωi|φΩi〉 if the single valence particle is in the
i-th Nilsson orbit. Then, it is easy to get the total wave func-

tion Ψ(β ,θk;Ωi) =
√

2J+1
8π2 ξ (β )DJ

M,K(θk)|φΩi〉 and the total

energyE = Eβ + E i
Ωi

. It should be noted that the poten-
tial in the X(3) CPS [3] is only a function of theβ variable
since theγ variable is frozen atγ = 0 representing the ax-
ial shape. The axial symmetry leads to the total angular mo-
mentum projected onto the intrinsic symmetric axis the same
as that of the single particle withK = Ωi because rotations
around the symmetric axis of a quantum system are unob-
servable [11]. It is clear that theH ′

X(3) describes the collec-
tive excitation, andHsp describes the single-particle excita-
tion. In odd-A nuclei, the head of a collective band is often
determined by single-particle excitation, but intra-bandstruc-
ture is dominated by collective motion. The single-particle
energyE i

Ωi
in Eq. (5) is simply adjusted to accord with band

heads determined in experiment. In the following, we will

focus on the collective part described byH ′
X(3). After in-

troducing the reduced energiesε=2BEβ/h̄2 and reduced po-
tentials u=2BV/h̄2, one can rewrite the Schr ¨odinger equa-
tion, H ′

X(3)ϕ(β ,θk) = Eβ ϕ(β ,θk), by separating variable in
the standard way

Ĵ2DJ
M,K(θk) = J(J+1)h̄2DJ

M,K(θk) , (10)

[− 1
β 2

∂
∂β

β 2 ∂
∂β

+
1

3β 2 J(J+1)+ u(β )]ξ (β ) = εβ ξ (β ) .

(11)
SubstitutingF(β ) = β 1/2ξ (β ) andz = β√εβ , one can trans-
form Eq. (11) inside the well into the Bessel equation

F ′′+
F′
z
+[1− v2

z2 ]F = 0, (12)

where v =

√

J(J+1)
3 + 1

4. With the boundary condition

ξ (βW ) = 0, one gets the eigenvaluesεβ ;s,J = (ks,J)
2, ks,J =

xs,J
βW

, wherexs,J is thes-th zero of the Bessel functionJv(ks,Jβ ).
While the relevant eigenfunctions are given byξs,J(β ) =
cs,Jβ−1/2Jv(ks,Jβ ) with cs,J being the normalization constant

determined by the condition
∫ βW

0 ξ 2
s,J(β )β 2dβ = 1. As men-

tioned in [1], the Bessel functions with irrational order can be
associated with projective representations of the E(n) group.
The solution shown above are also relevant to the E(3) dynam-
ical symmetry [17]. Finally, the total wave function shouldbe
symmetrized according to the axial symmetry as

Ψ(β ,θk;η) =
√

2J+1
16π2 ξ (β )[DJ

M,K(θk)|φK〉

+(−)J+KDJ
M,−K(θk)|φK̄〉] , (13)

whereη represents generically the coordinates of the single
particle, and|φK̄〉 is the time-reversal state of|φK〉. Since the
Hamiltonian (7) is built from the core with the X(3) CPS cou-
pled to a single particle in the strong-coupling limit, the cor-
responding CPS for odd-A nuclei is called SX(3).

B(E2) transition rates can be calculated by taking the
quadrupole operatorT (E2) = TB +TF , whereTB acts only on
the core andTF acts only on the particle part. For simplicity,
we only consider the term ofTB in this model, and its specific
form is shown as

TB = tβ [D2
u,0(θk)cosγ +

1√
2
(D2

u,2(θk)+D2
u,−2(θk))sinγ] ,

(14)
wheret is a scale factor. Thus, all B(E2) values are given in
terms of only an overall scale,t. As mentioned above, theγ
variable is frozen at zero so only theD2

u,0(θk) term survives
in (14), for which only the∆K = 0 transitions are allowed. In
this approximation the B(E2) values are given by

B(E2;KsJ → Ks′J′) =
1

2J+1
|〈Ks′J′||TB||KsJ〉|2 . (15)
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FIG. 1: Energy levels in the ground band (s=1) andβ band (s=2) of the X(3) CPS [3] and those in the SX(3) CPS based on theK = 3/2
Nilsson single-particle level, normalized to the energy ofthe lowest excitedK+2 state, together withB(E2) transition rates, normalized to the
transitionB(E2;(K +2)+1 → K+

1 ). It should be noted thatK = 0 is taken for the even-even system described by the X(3) CPS,and only the
transitions rates involved the lowest two states in theβ band are shown as examples to illustrate the features of the interbands transition.

TABLE I: Typical energy ratios and B(E2) ratios in the X(3) and SX(3) CPS, whereK = 0 is taken for the even-even system, and the results
characterized by SX(3)K are those calculated from the SX(3) CPS withK = 1/2, 3/2, 5/2, 7/2 and 9/2.

Even-Even Odd-A

CPS X(3) SX(3)1/2 SX(3)3/2 SX(3)5/2 SX(3)7/2 SX(3)9/2
E(K+4)1

−EK1
E(K+2)1

−EK1
2.44 2.34 2.26 2.22 2.19 2.17

E(K+6)1
−EK1

E(K+2)1
−EK1

4.23 3.98 3.77 3.65 3.57 3.51
EK2−EK1

E(K+2)1
−EK1

2.87 2.68 2.63 2.67 2.72 2.78

B(E2;(K+4)1→(K+2)1)
B(E2;(K+2)1→K1)

1.90 1.85 2.17 2.52 2.82 3.08
B(E2;K2→(K+2)1)
B(E2;(K+2)1→K1)

1.64 0.88 0.43 0.28 0.20 0.15
B(E2;(K+2)2→K2)
B(E2;(K+2)1→K1)

0.81 0.77 0.74 0.73 0.73 0.73
B(E2;K2→K1)

B(E2;(K+2)1→K1)
0.00 0.00 0.10 0.21 0.30 0.39

By using the orthonormality condition〈φK′ |φK〉 = δKK′ ,
Eq. (15) can be explicitly expressed as

B(E2;KsJ → Ks′J′) = t2〈JK20|J′K〉2I2
sJ;s′J′ , (16)

where

IsJ;s′J′ =

∫ βW

0
β ξs,J(β )ξs′,J′(β )β 2dβ . (17)

To show the spectral patterns of the SX(3) CPS, in the
following, we consider the case based on the single-particle
state withK = 3/2, namely the single valence particle is in a
K =3/2 Nilsson level. The results are shown in the right panel
of Fig. 1. The spectral pattern of the X(3) CPS [3] is shown in
the left panel of Fig. 1 in order to identify the similaritiesand
differences of the criticality in odd-A and even-even systems
since the SX(3) and X(3) CPS are proposed to describe the
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FIG. 2: The Same as those in Fig. 1 but for those of the SX(3) CPSbased on theK = 1/2 andK = 5/2 single-particle level, respectively.

spherical to axially deformed shape phase transition in odd-
A and even-even nuclei in this case, respectively. Moreover,
in order to understand dynamic characters of the SX(3) CPS
based on different single-particle levels, spectral patterns of
the SX(3) CPS forK = 1/2 andK = 5/2 cases, and those
for theK = 7/2 andK = 9/2 cases are shown in Fig. 2, and
Fig. 3, respectively. It should be noted that both the energy
levels and E2 transition rates are obtained analytically from
the model only up to an overall scale factor.

As shown in the right panel of Fig. 1, the levels in each
collective band in the SX(3) CPS form a rotational band with
∆J = 1 for any two of adjacent levels in the band. As a re-
sult, the energy level density in the SX(3) symmetry should be
much larger than that in the X(3) CPS, where∆L = 2 should
be satisfied for adjacent levels within each collective bandas
shown in the left panel of Fig. 1. The predictedB(E2) values
in the SX(3) CPS with∆J = 2 are definitely larger than the
ones with∆J = 1, except the lowest several transitions with
comparable strength in each band. Moreover, the intraband
B(E2) values are generally larger than those of interband in
the SX(3) CPS. The same situation is also observed in the
X(3) CPS. All in all, the spectral structure in the SX(3) CPS is
more complex than that in the X(3) CPS. In addition, single-
particle excitations are often involved in the low-lying part of
spectra in odd-A nuclei besides the collective rotational and
vibrational excitations. As shown from Fig. 2 and Fig. 3, the

collective spectra in the SX(3) CPS built on different single-
particle states exhibit similar characters to theK = 3/2 case
shown in Fig. 1, which only differ in band-head. However,
the difference of the E2 transition rates with∆J = 2 and those
with ∆J = 1 gradually becomes small with the increasing of
K as shown in Figs. 1-3.

Some typical quantities calculated from the SX(3) and X(3)
CPS are presented in Table I in order to closely compare the
specific features of the CPS in even-even and odd-A systems
with differentK. Since the order of the Bessel functions as-
sociated with the solutions of SX(3) CPS is different from
that related with the X(3) CPS only by changingL for J, it
is expected that the typical features provided with the X(3)
CPS may also be observed in the SX(3) CPS, which is indeed
shown by the typical energy ratios listed in Table I, where
the energy ratios in the X(3) CPS vary little from those in the
SX(3). However,B(E2) ratios in the two cases are different.
For example,B(E2;K2 → K1) is forbidden in the X(3) CPS
and in the SX(3) CPS withK = 1/2, but the transition be-
comes allowed in the SX(3) CPS whenK > 1/2. It is easily
understood from Eq. (16) that the selection rule for the E2
transition is solely determined by the corresponding CG co-
efficients. WhileB(E2;(K+2)2→K2)

B(E2;(K+2)1→K1)
almost keeps unchanged in

both even-even and odd-A systems as shown in Table I.

To further investigate the global characters of the related
CPS, the collective rotational energies with differentK in the
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FIG. 3: The Same as those in Fig. 1 but for those of the SX(3) CPSbased on theK = 7/2 andK = 9/2 single-particle level, respectively.

SX(3) CPS and those obtained from theJ(J +1) rule, which
represents those of the rigid-rotor, together with the corre-
sponding quantities calculated from even-even system, are
shown in Fig. 4. It can be clearly seen from Fig. 4 that the
SX(3) CPS plays a similar role in odd-A system as the X(3)
CPS does in even-even system, namely the collective struc-
tures described by them are definitely soft. But the rigidity
shown in the collective bands of the SX(3) will be enhanced
with the increasing ofK. Therefore, it is easier to identify the
softness described by the SX(3) CPS in experiment whenK
is small. It should be emphasized that the SX(3) CPS is not
a soft-core version of the particle-rotor model. The particle-
rotor model only describes rotational motion based on single-
particle excitations, while the collectiveβ vibration is also
involved in the SX(3) CPS as shown in Figs. 1-3. Because the
γ variable has been frozen atγ = 0 in the SX(3) CPS, there
is noγ vibrational motion involved. In order to describeγ vi-
brational modes, the X(3) core may be replaced by the X(5)
core in Eq. (1), for which the potential related to theγ de-
gree of freedom is assumed to be harmonic aroundγ = 0. The
corresponding CPS in the strong-coupling limit may be called
SX(5), which, however, is not a topic of this paper.

Some typical observables such those listed in Table I may
be used to identify the experimental signals of the SX(3) CPS.
Especially, the soft collective structure may be the most im-
portant indication of the SX(3) CPS. As a typical description

of experimental results by the model, the lowest positive par-
ity bands of193Ir, the ground band and the nearby band with
K = 1/2, are taken to be fitted by the SX(3) CPS, which
is shown in Fig. 5. According to the experimental assign-
ments [18], the ground bandK = 3/2 is built on the3

2
+
[402]

Nilsson level, while theK = 1/2 band is built on the12
+
[400]

Nilsson level [18]. The two collective bands involve most
low-lying positive parity states of193Ir. As a comparison, the
corresponding results calculated from the particle-rotormodel
(PRM) [11] are also shown in Fig. 5. It can be clearly seen
from Fig. 5 that the experimentally observed energy levels in
the ground band are described by the SX(3) CPS much better
than those by the particle-rotor model. As for theK = 1/2
band, the spectrum in the experiment seems more rigid than
that obtained from the SX(3) CPS but still softer than that de-
scribed by the particle-rotor model. The experimental E2 tran-
sition rates among the states in the two positive parity bands
are also taken to be compared with those calculated from the
SX(3) CPS and the particle-rotor model. The results are listed
in Table II. However, it can be observed from Table II that
there is no obvious difference in the results of the E2 tran-
sition rates obtained from the two models, which both agree
with the corresponding experimental data well. Therefore,the
softness shown in the energy spectrum is the unique signal of
the SX(3) CPS in this case. Other higher excited bands, for
which multi-particle excitations may need to be consideredin
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CPS and theJ(J +1) rules in odd-A system. All levels are normalized to theL = 2 state for the even-even system, and theJ = K +2 state for
the odd-A system.

order to determine the position of band heads according to the
deformed shell model, should display similar soft rotational
feature. We conclude that the spectrum of193Ir displays its
soft nature especially in the ground band, which can be de-
scribed to some extent by the SX(3) CPS. It should be noted
that the quantum numberK assumed to be a good quantum
number is only an approximation in the calculation even for
the band-heads of the two bands of193Ir, in which there is no
K-mixing mechanism considered with each band-heard being
assigned by that of the specific Nilsson level according to the
experiment [18]. Actually,193Ir was also discussed in other
models previously [19–21], in which the asymmetry was con-
sidered in describing the rotational-like bands in193Ir. There-
fore, further extension of the SX(3) CPS model to including
the asymmetry may be needed in order to describe experimen-
tal results better. In addition, the interactionH ′ in Eq. (9),
which leads to theK-mixing, can also be considered as done
in the particle-rotor model [22]. But it is ignored in the present
work because detailed calculation shows that it only changes
the energy values of each level less than four percent for193Ir.
Anyway, it seems that the SX(3) CPS can be taken as a bet-
ter starting point than the particle-rotor model to describe the
softness in the odd-A nuclei.

In summary, a general scheme for the description of CPS
in the strong-coupling limit for odd-A nuclei is presented.
The scheme provides a new way to investigate CPS driven

TABLE II: Experimentally observed intraband E2 transitionrates
for the K = 3/2 and K = 1/2 positive parity bands [18] of193Ir
with those predicted from the SX(3) CPS and the particle-rotor
model (PRM), where all the transition rates are normalized to
B(E2;7/2+1 → 3/2+1 ).

Jπ
i − Jπ

f exp. SX(3) PRM Jπ
i − Jπ

f exp. SX(3) PRM

7/2+1 → 3/2+1 32 32 32 11/2+1 → 7/2+1 47 69 57

7/2+1 → 5/2+1 24 53 48 3/2+2 → 1/2+1 54 37 45

5/2+1 → 3/2+1 82 75 77 5/2+2 → 1/2+1 21 39 47

9/2+1 → 5/2+1 61 54 48 5/2+2 → 3/2+2 7 12 13

collective modes in deformed odd-A systems. Moreover, the
scheme outlined can also be used to study shape phase tran-
sitions in deformed odd-A nuclei with a corresponding CPS
core in addition to the existing CPS models [7, 9, 10]. The
SX(3) model is established as a specific example. It has been
shown that the SX(3) CPS inherits the main characters of the
corresponding CPS of the even-even core. As a typical ap-
plication of the model, the first two positive parity bands of
193Ir are taken to be fitted by the new CPS, and compared
with the results obtained from the particle-rotor model. Itis
shown that the results of the new CPS theory agree with those
of the experiment better than those obtained from the parti-
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FIG. 5: Comparison of the experimental levels in theK = 3/2 ground band andK = 1/2 positive parity band [18] of193Ir with those calculated
from the SX(3) CPS and the particle-rotor model (PRM), whereall the levels are normalized to the first 7/2+ state, and the single-particle
energy gap of the two bands is adjusted to accord with the bandhead observed in experiment.

cle plus rigid rotor model. Parallel studies in other algebraic
models, such as the IBFM [15, 23, 24] should also be inter-
esting. The strong-coupling scheme for the X(3) CPS can di-
rectly be extended to include multi-particle excitations,and
also be applied to describe odd-odd systems, which can be
treated as an even-even core coupled with a valence proton
and a valence neutron. The scheme should also be applica-
ble to other experimentally confirmed CPS [1–3], such as the
X(5), Y(5), Z(5), and Z(4), which have been successfully used
to elucidate various shape phase transitions in even-even nu-
clei. Finally, approximate analytical solutions of the CPSin
the strong-coupling limit can always be realized as shown in
the SX(3) CPS. Related study is in progress.
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