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A scheme that elucidates the nature of critical point symie®in deformed odd-A nuclei by linking them to
critical point symmetries of neighboring even-even nuiddntroduced. Specifically, a new symmetry, called
SX(3), is advanced that shows primary characteristics @&ssumed strong-coupling limit for odd-A systems.
It is found that the SX(3) symmetry can be used to identifysbf collective structures in odd-A system. A
preliminary application of the new scheme to describe thek positive parity bands &#4Ir is also shown.

PACS numbers: 21.60.Fw, 21.60.Ev, 21.10.Re, 64.70.Tg

Critical point symmetries (CPS) [1-3] play an important a general CPS scheme in the strong-coupling limit for odd-
role in understanding the evolution of nuclear collectivas- A nuclei with the even-even core close to a critical point of
tures in medium and heavy mass regions because they pra-shape phase transition to explore whether or not such soft
vide benchmark results for nuclei undergoing phase transieollective features confirmed in even-even nuclei show them
tions [4]. Particularly, CPS can be used to provide paramete selves in odd-A systems. The procedure outlined can be ex-
free predictions of nuclear spectra, many having been cortended directly to odd-odd systems, which may be of interest
firmed by experiment [2, 3, 5, 6]. Since CPS have been obas well.
served in even-even nuclei, it is reasonable to extend tf& CP To describe a deformed odd-A nucleus with an even-even
concept to a description of odd-A systems. The first casegore around the critical point of a shape phase transitio, t
called E(5/4) [7], was introduced by lachello to describe aHamiltonian and wave function of a single valence particle
y-soft E(5) CPS coupled to g&3/2 particle through a spin- may be expressed in the intrinsic frame of the deformed core
orbit interaction.’3®Ba was suggested as an empirical exam-described by the corresponding CPS. Thus, the Hamiltonian
ple of the E(5/4) CPS. A detailed analysis of the agreementef the odd-A nucleus in the strong-coupling limit can be writ
as well as the discrepancies between experimental resqudts aten as
theory was also reported [8]. Another case, called E(5A)
was developed by Alonso, Arias, and Vitturi, when they ex- H = Hcps+Hsp )

tended the E(5/4) CPS case with a particle injthe3/2 orbit whereHcps andHsp are the Hamiltonian of the core and the

to a multi-j scheme withj = 1/2, 3/2, 5/2. Similarly, an  gjnq1e particle, respectively. It is assumed that therevigaa

X(5/2j+1) scheme [10] was proposed by coupling the X(5)gjtional interaction between the core and the particle pice

core with a singlej particle. that included in the strong-coupling limit itself [11]. Itlbe
These formulations are close in spirit to a weak-couplingproven that analytical solutions of the model Hamiltoniah (

picture, where the angular momentum of the collective corgnay be found with similar approximations to those used in the

and that of the particle are both considered to be conservestiginal CPS approach [1-3].

quantities. Collective cores in odd-A nuclei, on the other As a concrete example, we consider a core with the X(3)

hand, are often strongly deformed. As a consequence, theps [3], which can be regarded as hggid limit at the crit-

associated single-particle orbits can no longer be spdieric jcal point of the spherical to axially deformed shape phase

In such cases the particle-rotor model provides an altéenat transition. In contrast to a rigid rotor, the X(3) CPS corre-

formulation [11], in which the core is assumed to be an aXialspondS to a soft rotor. When the core is Coup|ed with a §p|n

deformed rotor with the particle constrained to the field cre particle, the collective partin Eq (1) is givenldsps= Hy(3),

ated by the core. Although collective rotation is also ineal  which is the Hamiltonian of the X(3) CPS. The total angu-

in the various CPS descriptions, the motion of the core IHE'CIUI lar momentum of the odd-A nucleus may be expressed as

different from that of a rlgld rotor described in the paﬂl'Cl J= |:+ jA' Wheref is the angu|ar momentum operator of the

rotor model. ActuaIIy, the collective core of nucleus désed Sing|e-partic|e, and’l\_ is that of the even-even core. The ex-

by the CPS models is characterized as soft or perhaps even gicit Hamiltonian of the X(3) CPS [3] is shown as

having a floppy shape in contrast to the rigid rotor des@ipti

Moreover, collective vibrations are also involved in theSCP _Ez[i iﬁzi 1 (2+v(B) ()

of which the spectrum thus become richer than that induced by 2B B29B" 9B 3(Bh)?

a pure rotation. Similar situations in even-even systerng ha .

been discussed in detail within the collective model [1203 with

Bohr and Mottelsson, the Variable Moment of Inertia (VMI) f2_ —ﬁz[iisinei . 1 92

model [14], and so on. The purpose of this work is to provide -

X(3) =

sin6ab> 3o %W] ®)



and

0, B<Bw,
o,  B>pPw.

As analyzed in [15], the potential at the critical point oéth
spherical-axially deformed shape phase transition in Add-
nuclei is rather flat foy = 0, thus the square well(3) in (4)

vie)={ )

2

focus on the collective part described by((3). After in-

troducing the reduced energiesZBEﬁ/ﬁ2 and reduced po-

tentials u=2BV /R?, one can rewrite the Sabdinger equa-
tion, H>’<(3)¢(B, 6) = Egd (B, 6), by separating variable in
the standard way

F*Diy k (8) = I(I+ 1)FPDyy « (6k) . (10)

is adopted to describe the flat potential as used in the tklate

even-even cases [1]. The single particle part may be taken as

the Hamiltonian of the deformed-shell model [16] with

Hsp: Z EiQi fiBi fiQi ) (5)
i

where figi (fig;) is the creation (annihilation) operator of the

valence particle in theth Nilsson orbit, ancE}2i is the corre-
sponding single-particle energy. By using

P=-])?=F+P-2Li)-dij- -3, (6)

wherej+ = F(jx*ijy), (1) can be regrouped as

H = Hy )+ Hsp+ H' )
with
o= el B s VB, ®
and
r_ 2 _ 2(Jz)) + I -+ ) )
6B < B2 > 6B < B2 > ’

where< 82 > is the average oB? over the eigenvector of
(8). In the strong-coupling limitH’ is often neglected [11].
As a result, the Schidinger equatiortH¥Y = EW can be
separated into two partsj:-|>’<(3)¢([3,6k) = Eg¢ (B, 6) with

9(B.80=\/ 3¢ (B)Dwk (68) and Hslgn) = Eglen;)
with jz|@o,) = Qil@n;) if the single valence patrticle is in the

i-th Nilsson orbit. Then, it is easy to get the total wave func-

tion W(B,6; Qi) = /25 & (B)Dy « (B)|@;) and the total

energyE = Eg + EiQi. It should be noted that the poten-
tial in the X(3) CPS [3] is only a function of thg variable
since they variable is frozen ay = 0 representing the ax-

10 1
[_Fﬁ B + WJ(J‘F 1) +u(B)E(B) = fgf(ﬁz- |
11
SubstitutingF (B) = B*/2¢ (B) andz = B, /&5, one can trans-
form Eq. (11) inside the well into the Bessel equation

5 0

2
v
—?]F

Fr
z

where v = w@—i—%. With the boundary condition
&(Bw) = 0, one gets the eigenvaluggs ; = (ksg)?, key =

%J, wherexs j is thes-th zero of the Bessel functiak(ks 3 3).
While the relevant eigenfunctions are given By;(f) =
Cs3B /23 (ks3B) with cs 3 being the normalization constant
determined by the conditioﬁfW £2,(B)B%dB = 1. As men-
tioned in [1], the Bessel functions with irrational ordendae
associated with projective representations of the E(nligiro
The solution shown above are also relevant to the E(3) dynam-
ical symmetry [17]. Finally, the total wave function shobiel
symmetrized according to the axial symmetry as

F'+—+[1 0, (12)

2J+1
1672

W(B,6;n) = & (B) Dk (6)]x)

+(=)DY k (B)le)]

wheren represents generically the coordinates of the single
particle, and¢y) is the time-reversal state ¢fk ). Since the
Hamiltonian (7) is built from the core with the X(3) CPS cou-
pled to a single particle in the strong-coupling limit, thar-c
responding CPS for odd-A nuclei is called SX(3).

B(E2) transition rates can be calculated by taking the
quadrupole operatoF (2 = Tg + T, whereTg acts only on
the core andg acts only on the particle part. For simplicity,
we only consider the term @& in this model, and its specific
form is shown as

(13)

ial shape. The axial symmetry leads to the total angular mo-

mentum projected onto the intrinsic symmetric axis the same T, — tB[D2 () cosy+

as that of the single particle with = Q; because rotations

around the symmetric axis of a quantum system are unob-

servable [11]. It is clear that tHd>’<<3) describes the collec-
tive excitation, andHsp describes the single-particle excita-

tion. In odd-A nuclei, the head of a collective band is often

determined by single-particle excitation, but intra-batrdc-
ture is dominated by collective motion. The single-paeticl
energyE}2i in Eq. (5) is simply adjusted to accord with band

heads determined in experiment. In the following, we will

ﬁ(oﬁﬁz(ek) +D _2(6K)) siny],
(14)

wheret is a scale factor. Thus, all B(E2) values are given in
terms of only an overall scalé, As mentioned above, the
variable is frozen at zero so only i ;(6) term survives

in (14), for which only theAK = 0 transitions are allowed. In
this approximation the B(E2) values are given by

B(E2;KsJ — KsJ)

(15)
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FIG. 1. Energy levels in the ground band (s=1) ghthand (s=2) of the X(3) CPS [3] and those in the SX(3) CPS basettheK = 3/2
Nilsson single-particle level, normalized to the energsheflowest excite& + 2 state, together witB(E2) transition rates, normalized to the
transitionB(E2; (K 4+ 2); — K;"). It should be noted thdt = 0 is taken for the even-even system described by the X(3) @®Sonly the
transitions rates involved the lowest two states inHzand are shown as examples to illustrate the features oftbdands transition.

TABLE I: Typical energy ratios and B(E2) ratios in the X(3)da8X(3) CPS, wher& = 0 is taken for the even-even system, and the results
characterized by SX(g)are those calculated from the SX(3) CPS wWith-=1/2, 3/2, 5/2, 7/2 and 92.

Even-Even Odd-A
CPS X(3)  SX3)1/2 SX(3)3/2 SX(3)s5/2 SX(3)7/2 SX(3)g2
% 2.44 2.34 2.26 2.22 2.19 2.17
(K+2)1 K1
Sy 4.23 3.98 3.77 3.65 3.57 3.51
SK2)1 -5
e 2.87 2.68 2.63 2.67 2.72 2.78
k-2, B
B(E2;(K+4 K+2
s S 190 18 217 252 28  3.08
B(E2Ko—(K+2)1)
m 1.64 0.88 0.43 0.28 0.20 0.15
B(E2;(K+2)2—K;
B 0.8l 077 074 073 073  0.73
B(E2;Ko—K:
el 0.00 000 010 021 030  0.39
By using the orthonormality conditioqgk:|@) = Ok, To show the spectral patterns of the SX(3) CPS, in the
Eq. (15) can be explicitly expressed as following, we consider the case based on the single-particl

state withK = 3/2, namely the single valence patrticle is in a
B(E2;Ks) — KSJ') =t*(JK20IK)?I5,9y,  (16) K =3/2 Nilsson level. The results are shown in the right panel
of Fig. 1. The spectral pattern of the X(3) CPS [3] is shown in
the left panel of Fig. 1 in order to identify the similaritiaad
B 5 differences of the criticality in odd-A and even-even syste
lggy = /0 Bésa(B)és.y(B)B°dB. (A7)  since the SX(3) and X(3) CPS are proposed to describe the

where
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FIG. 2: The Same as those in Fig. 1 but for those of the SX(3) I&38d on th& = 1/2 andK = 5/2 single-particle level, respectively.

spherical to axially deformed shape phase transition in- oddcollective spectra in the SX(3) CPS built on different seg|
A and even-even nuclei in this case, respectively. Moreoveparticle states exhibit similar characters to te- 3/2 case

in order to understand dynamic characters of the SX(3) CPShown in Fig. 1, which only differ in band-head. However,
based on different single-particle levels, spectral past@f the difference of the E2 transition rates wiih = 2 and those
the SX(3) CPS folK = 1/2 andK = 5/2 cases, and those with AJ =1 gradually becomes small with the increasing of
for theK = 7/2 andK = 9/2 cases are shown in Fig. 2, and K as shown in Figs. 1-3.

Fig. 3, respectively. It should be noted that both the energy some typical quantities calculated from the SX(3) and X(3)
levels and E2 transition rates are obtained analyticaynfr cpg gre presented in Table | in order to closely compare the
the model only up to an overall scale factor. specific features of the CPS in even-even and odd-A systems
with differentK. Since the order of the Bessel functions as-
sociated with the solutions of SX(3) CPS is different from
that related with the X(3) CPS only by changihdor J, it

is expected that the typical features provided with the X(3)
CPS may also be observed in the SX(3) CPS, which is indeed
shown by the typical energy ratios listed in Table I, where
the energy ratios in the X(3) CPS vary little from those in the
SX(3). HoweverB(E2) ratios in the two cases are different.

As shown in the right panel of Fig. 1, the levels in each
collective band in the SX(3) CPS form a rotational band with
AJ =1 for any two of adjacent levels in the band. As a re-
sult, the energy level density in the SX(3) symmetry shoeld b
much larger than that in the X(3) CPS, whéie = 2 should
be satisfied for adjacent levels within each collective basnd
shown in the left panel of Fig. 1. The predictB(E2) values
in the SX(3) CPS withAJ = 2 are definitely larger than the : : :
ones With(Ag =1, except the lowest sever);ll trgnsitions with For exampleB(E2;K; — Ky) is forbidden in the X(3) CPS

comparable strength in each band. Moreover, the intraban%rld in the SX(3) CPS witlK = 1/2, but the transition be-
B(E2p) values are generall larger tﬁan those c;f interband i oo allowed in the SX(3) CPS when> 1/2. Itis easily
9 ylarg understood from Eq. (16) that the selection rule for the E2

the SX(3) CPS. The same situation is also observed in thFransition is solely determined by the corresponding CG co-
X(3) CPS. Allin all, the spectral structure in the SX(3) CBS i _ B)(/EZ'(K+2) Ky) y P grh
efficients. Whilegi=: 2720 almost keeps unchanged in

more complex than that in the X(3) CPS. In addition, single- B(EZ;(K+2)1—K1)
particle excitations are often involved in the low-lyingipaf ~ POth even-even and odd-A systems as shown in Table .
spectra in odd-A nuclei besides the collective rotatiomal a  To further investigate the global characters of the related
vibrational excitations. As shown from Fig. 2 and Fig. 3, theCPS, the collective rotational energies with differ&nin the
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FIG. 3: The Same as those in Fig. 1 but for those of the SX(3) I&38d on th& = 7/2 andK = 9/2 single-particle level, respectively.

SX(3) CPS and those obtained from thd + 1) rule, which  of experimental results by the model, the lowest positive pa
represents those of the rigid-rotor, together with the eorr ity bands of**3Ir, the ground band and the nearby band with
sponding quantities calculated from even-even system, af€ = 1/2, are taken to be fitted by the SX(3) CPS, which
shown in Fig. 4. It can be clearly seen from Fig. 4 that theis shown in Fig. 5. According to the experimental assign-
SX(3) CPS plays a similar role in odd-A system as the X(3)ments [18], the ground bari = 3/2 is built on the3 ' [402

CPS does in even-even system, namely the collective struggijsson level, while th& = 1/2 band is built on th%+[40q
tures described by them are definitely soft. But the rigidity \jiisson level [18]. The two collective bands involve most
shown in the collective bands of the SX(3) will be enhancerW_|ying positive parity states d3Ir. As a comparison, the
with the increasing oK. Therefore, it is easier to identify the corresponding results calculated from the particle-rotodel
softness described by the SX(3) CPS in experiment when (ppn) (11] are also shown in Fig. 5. It can be clearly seen
is small. It should be emphasized that the SX(3) CPS is nof,, Fig. 5 that the experimentally observed energy levels |

a soft-core version of the particle-rotor model. The p&@tic o 4round band are described by the SX(3) CPS much better
rotor model only describes rotational motion based on eingl -1 those by the particle-rotor model. As for tie= 1/2
particle gxcitations, while the collec.tivﬁ.vibration is also band, the spectrum in the experiment seems more rigid than
involved in the SX(3) CPS as shown in Figs. 1-3. Because thg, ¢ gptained from the SX(3) CPS but still softer than that de
y variable has been frozen pt= 0 in the SX(3) CPS, there g ipaq py the particle-rotor model. The experimental B-r

is noy vibrational motion involved. In order to descripevi-  gyion rates among the states in the two positive parity band
brational modes, the X(3) core may be replaced by the X(S)e 5150 taken to be compared with those calculated from the

core in Eq. (1), _for which the potential re_lated to thele- SX(3) CPS and the particle-rotor model. The results aredist
gree of freedom is assumed to be harmonic arquad. The i Tahje |1, However, it can be observed from Table Il that

corresponding CPS in the strong-coupling limit may be calle o6 is no obvious difference in the resuits of the E2 tran-
SX(5), which, however, is not a topic of this paper. sition rates obtained from the two models, which both agree

Some typical observables such those listed in Table | maﬁ?’ith the corresponding experimental data well. Thereftre,

be used to identify the experimental signals of the SX(3) CPSS0tness shown in the energy spectrum is the unique signal of
Especially, the soft collective structure may be the most im 1€ SX(3) CPS in this case. Other higher excited bands, for

portant indication of the SX(3) CPS. As a typical descriptio which multi-particle excitations may need to be considéned
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g(rac:s:%oe?je;ﬁrernlrr;eo?eel p;?gﬁg gl;sbpellgs Zﬁ?;ricc;?rr%ltgﬁ;thTABLE II: Experimentally observgq intrapand E2 transitioates

' > ‘ for the K = 3/2 andK = 1/2 positive parity bands [18] of%3Ir
feature. We conclude that the spectrum'®ir displays its  ith those predicted from the SX(3) CPS and the particlerrot
soft nature especially in the ground band, which can be demodel (PRM), where all the transition rates are normalized t
scribed to some extent by the SX(3) CPS. It should be note8(E2;7/2] — 3/2]).
that the quantum numbét assumed to be a good quantum
number is only an approximation in the calculation even for JT-J exp. SX@) PRM  JT-Jf  exp. SX(3) PRM
the band-heads of the two bands'#ir, in which there is no 7/2;7 —»3/27 32 32 32 1J27 —7/2] 47 69 57
K-mixing mechanism considered with each band-heard being 7/2{ +5/2f 24 53 48 32, —1/2] 54 37 45
assigned by that of the specific Nilsson level accordingéo th  5/27 —+3/2; 8 75 77 527 —1/2; 21 39 47
experiment [18]. Actually!93r was also discussed in other ~ 2/2{ —+5/2] 61 54 48 52 »3/2) 7 12 13
models previously [19-21], in which the asymmetry was con-
sidered in describing the rotational-like band$3Ar. There-
fore, further extension of the SX(3) CPS model to including

the asymmetry may be needed in order to describe experimegg)iactive modes in deformed odd-A systems. Moreover, the
tal results better. In addition, the interactibl in Eq. (9),  scheme outlined can also be used to study shape phase tran-
Wh'Ch 'ea‘?'s to th&-mixing, can alslo.b(_e conS|d.ered as donesitions in deformed odd-A nuclei with a corresponding CPS
in the partlcle-rotor_model [22]. I_Sut itis |gnored_|nthe peat . .o in addition to the existing CPS models [7, 9, 10]. The
work because detailed calculation shows that it only changeSX(3) model is established as a specific example. It has been
the energy values of each level less than four percedffor oo that the SX(3) CPS inherits the main characters of the
Anyway, it segmshthat rt]he SX_("’;) CPS can de taléen aﬁé‘ belorresponding CPS of the even-even core. As a typical ap-
ter starting point than the particle-rotor model to deset plication of the model, the first two positive parity bands of
softness in the odd-A nuclei. 1931 are taken to be fitted by the new CPS, and compared
In summary, a general scheme for the description of CPvith the results obtained from the particle-rotor modelisit

in the strong-coupling limit for odd-A nuclei is presented. shown that the results of the new CPS theory agree with those
The scheme provides a new way to investigate CPS driveaf the experiment better than those obtained from the parti-
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