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Abstract
We reexamine several issues related to the physics of scaling in electron scattering from nuclei.
A basic model is presented in which an assumed form for the momentum distribution having both
long- and short-range contributions is incorporated in the single-particle Green function. From this
one can obtain saturation of nuclear matter for an NN interaction with medium-range attraction
and short-range repulsion, and can obtain the density-density polarization propagator and hence
the electromagnetic response and scaling function. For the latter, the shape of the scaling function

and how it approaches scaling as a function of momentum transfer are both explored.

PACS numbers: 24.10.Cn; 25.30.-¢



I. INTRODUCTION

Scaling phenomena as realized in electroweak interactions with nuclei at intermediate-to-
high energies have several facets, including scaling of the first kind [1] (independence of the
momentum transfer ¢) and second kind [2, 3] (independence of nuclear species, for instance,
as characterized by the Fermi momentum kr). In addition, universality for different reaction
channels (longitudinal, transverse, etc.) has been called scaling of the zeroth kind [3, 4],
while universality in the isoscalar and isovector channels has been called scaling of the third
kind [5]. All four types of scaling are reasonably well respected by data at sufficiently high
energies, namely away from threshold and for momentum transfers typically twice the Fermi
momentum or larger, although there are observed to be scaling violations and their origins
provide interesting insights into the dynamics of the scattering processes. For example,
the transverse EM response is known to involve both the familiar one-body currents and
two-body Meson-Exchange Currents (MEC) which do not scale in the same way [6-10].

In the present study we focus on one particular aspect of scaling, namely, scaling of the
first kind. Our motivation is to explore the interconnections between the strong interaction
dynamics of a representative NN potential that is chosen to provide the correct binding
energy and saturation density of nuclear matter, on the one hand, and a corresponding Green
function that is made to be consistent with those properties of nuclear matter, on the other.
Having such a Green function one can immediately obtain the density-density polarization
propagator and hence the longitudinal response R and scaling function Fj. For brevity
these are called simply R and F'in the rest of this work. In contrast to the usual approach,
in the present study we “work backwards” assuming a form for the momentum distribution
n(k) and, given this, obtaining the corresponding energy per particle as a consequence. In
particular, the chosen momentum distribution is taken to have both long-range contributions
(those below and slightly above the Fermi surface) and short-range contributions which
give rise to a tail that extends to high momentum, but which are in fact operative at any
momentum.

To be able to carry out this study with much of the development still analytic we restrict
our attention to the non-relativistic situation and assume a translationally invariant (infinite,
homogeneous) many-body system of point nucleons. Our goal is not to provide a detailed

numerical study of scaling phenomena for comparison with experiment, as this is better



done with relativistic modeling, but is to provide insight into how the short-range part of
the momentum distribution which is important for obtaining saturation of nuclear matter
also has a role to play in the corresponding scaling phenomena. We shall thus explore several
properties of scaling and scaling violations that are observed experimentally, namely, how
scaling is approached for large momentum transfers ¢ (in the scaling region it is approached
from above, something most models fail to explain) and whether or not the present model
is capable of explaining the observed asymmetry found in the scaling function.

In passing let us draw some comparisons with Deep Inelastic Scattering (DIS) of leptons
on the proton which has been understood on the basis of the Bjorken scaling law and the
parton model. There also one observes scaling violations which in the high-energy situation
are coped with using the so-called evolution equations. Two basic assumptions lie at the
foundations of Bjorken scaling (see, for example [11]): (1) the highly virtual photon interacts
with the proton through point-like constituents (the partons) and (2) the partons cannot
change their momenta during the extremely short time interval available for the DIS process
and the parton-parton interactions are very weak, a situation referred to as asymptotic
freedom. When taken into account the latter leads to scaling violations. In contrast, the
situation of interest in the present work on electron scattering from strongly interacting
nucleons in nuclei is apparently quite different. The model we use does not display the
equivalent of asymptotic freedom and yet scaling is quite well obeyed, despite the strength of
the partonic (nucleonic here) interactions. Of course our model will not be able to account
for all types of scaling violations, namely those which stem from partonic sub-structures
(gluons in QCD versus mesons in nuclei via meson exchange currents; the latter have been
the subject in other studies, for instance, [7, 8]). In other words our nucleons (partons)
are viewed as point-like. The very strong correlations between the nucleons induced by the
short-range repulsion appear, at least in our model, to lend themselves to a description in
terms of a mean field framework, in which the nucleons do not interact, apart from Pauli
correlations. In other words the effect of the hard core is embedded in the modification
of the nucleon momentum distribution with respect to that of the Fermi gas, still keeping
an independent-particle model for the system. Thus to the extent that our single-particle
propagator of mean-field type provides a realistic description of nuclei at large momenta,
then scaling should occur, as we have found.

This paper, which is closely connected to the research developed in [12], outlines the



model in Sect. II. Section III addresses the problems of linking the model to conventional
perturbation theory and focuses on the Coulomb Sum Rule (CSR), a quantity crucially
dependent upon the pair correlation function (pcf) or, equivalently, upon the momentum
distribution n(k) of the nucleons in the nucleus. Indeed the CSR represents one of the
best testing grounds for the pcf and n(k). In Sect. IV a model for the fermion propagator,
the key element in constructing the response of our system to an external probe and hence
the scaling function, is set up. All the issues connected with scaling and the results we
have obtained with our approach are collected in Sect. V, and then finally in Sect. VI we

summarize our main conclusions from this study.

II. THE MODEL

The basic formula we start with reads [13] (we use h = ¢ = 1)

E 4V [ dk K

1 e s
A = T (2W)3%n(1€)+ﬂ/d7’1d7’gv(7’1—T2>C(T1—7’2), (1)

where the factor of 4 accounts for the spin-isospin degeneracy (a summation over these
variables is of course understood in the second term as well) and A is the particle number.
Equation (1) yields the ground-state energy of the system (actually the energy per particle).
We apply it to an infinite, homogeneous, non-relativistic ensemble of nucleons, viewed as
enclosed in a large volume V to be let to go to infinity at the end of the calculation. We
assume that a two-body force acts between the nucleons and that this is described by the
potential v(r), where r = |7}, — 7|. In Eq. (1) C(7; — 73) is the pcf simply related by a
Fourier transform to the n(k) in our spatially homogeneous system.

Now, rather than attempting to compute n(k) starting from the potential v(r) adopting
one of the various many-body techniques available for the purpose (for example a perturba-
tive one), we assume the momentum distribution to be parametrized as

n(k) = 0(kr — k)(1 - allj—j) Ok — kp)fre PR, 2)

F
accounting both for the existence of a high-momentum tail in n(k), as suggested by the
presently available experimental information, as well as standard theory (see, for example,
a recent treatment of the momentum distribution and spectral function in [14]), and for

the Luttinger theorem which guarantees the existence of a Fermi surface for a “normal”
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interacting Fermi system. Of course n(k) (Eq. 2) should fulfill the constraint

R 4/ — / 2 1 — a— / 2 Bz(kF
v (271' 7r2{ k dk al{;2 + 61 . k*dke
2k} i 2k3,
) (1 - ar + 35_2(522 + 20+ 2)) = ﬁh(%ﬁl,ﬁ&) = Mo, (3)

ngo being the system’s constant density.

It should be stressed that Eq. (2) is just meant to be a simple parametrization of what has
been done in the literature with more sophisticated modeling (see for instance Refs. [15-18])
and is supposed to capture both short- and long-range correlations in a simple form that
allows for analytic calculations. Moreover here we are dealing with an infinite system; when
finite-nucleus Hartree-Fock (HF) calculations are done with typical (soft) interactions n(k)
does have a softened Fermi surface; however, without strong repulsive cores as in Brueckner-
Hartree-Fock theory [15, 17] one does not see a tail extending to very large momenta, but
has a very rapid drop-off with k& once one goes only slightly beyond kp.

JFrom Eq. (2) the pcf is obtained according to the definition

C(i — 1) = Y < To| Wl (7)) Wl (%) Ws (%) U (7)) W >

7,6

= (8 - alhte s [ e =il -t} @

and one gets

C(r) =n3{1 1{ k:i [Jl(krFr) @J‘W(s((kFr)2—2)sin(kFr)—

—kpr((kpr)? — 6) COS(kFT)) + 51((]{:17:;%522)2 g ?

x(sin(kpr)(ﬁ2 + 5(2]{:;;)&2 _ 1) + COS(]fFT)(]fFT + 2527;53))} }2} :

In Eq. (4) [¥y > is the system’s ground state and W.,(7,) and Ws(7) are the fermion fields.

Furthermore the above formula holds valid for infinite nuclear matter. If we need the pcf
only for protons, as in the case of the CSR, then the factor i should clearly be replaced
with a factor % in front of the second term on the right-hand side of Eq. (5) and one should
set ng = Z/V, Z being the number of protons. As seen in the above equations the pcf
naturally splits into a direct and an exchange contribution (the first and the second terms

on the right-hand side of Eq. (4)).



In passing we note that by setting & = #; = 0 for any y > 0 in Eq. (5), we recover
in Eq. (2) the theta-function momentum distribution of a non-interacting Fermi system,
whereas from Egs. (3) and (5), but with 8y > 0, we get back the well-known density
no = 2k%/37? and pcf of a Fermi gas

- -]

kpr
which identifies g(r) with %ﬁf’")
Now by inserting Egs. (2) and (5) into Eq. (1) we obtain the binding energy per particle
of the nuclear system providing the potential v(r) is known. For the latter we employ a
schematic model which retains only the basic features of the nucleon-nucleon force since,
as already emphasized, our aim is not a precise reproduction of the experimental data.

Accordingly we employ a mixture of a Wigner and a Majorana force, namely
+Uy v=0 r<a

v(r) =ur)l=y+9P] =1 -y y=L1a<r<b, (7)
0 b

IA

T,

where P, is the space exchange operator and ~ a parameter varying in the range 0 <
v < 1. In accord with common wisdom we choose for v the values indicated in Eq. (7)
where one recognizes the strong short-range repulsion and the moderate intermediate-range
attraction characterizing the nucleon-nucleon interaction. Actually, in the present scheme,
the istantaneous potential (7) is meant to represent an effective NN interaction in the medium
arising from the the ladder diagrams summed up via the Bethe-Goldstone equation, but
ignoring all the energy and momentum dependence.

Now all of the elements to compute the behaviour of the E/A versus kp are available.

We get
E_44W \ ;
A ng(21)32m / dkkn _47T/ drr? er(a —7) - g%e(b —r)0(r — a)} (8)

— —47T / drr? Uoﬁ(a —r)+ Voﬁ(b— r)0(r — a)}g (r) .

The numerical factors appearing in the potential terms stem from summing over the spin-
isospin variables of the interacting nucleons; they of course enter differently in the direct and
exchange contributions to E/A, namely the second and the third terms on the right-hand
side of Eq. (8).



Before actually displaying the behaviour of E/A versus kr we have to face the crucial
problem of fixing the values of the seven parameters (four for the potential v(r), three for
the momentum distribution n(k)) needed to render our approach predictive. In order to
tackle this problem we proceed as follows: we start by choosing “reasonable” values. Next
we compute Eq. (8) using these chosen values and repeat the procedure adjusting at each

step the parameters until they yield F/A ~ -16 MeV and, for the compression modulus,

_ kp 9?E/A
9 k%

~ 14 MeV [19] at the minimum of the curve, that should occur at a value of
kr which, when inserted into Eq. (3), provides the experimental density of nuclear matter,
namely 0.17 fm=3.

The three above mentioned constrains (energy, density and compressibility) turn out to
be fulfilled by choosing
a=02 [ =04, pr=14 9)

and
Uy =25 GeV, Vy5=53MeV, a=0465fm, b=210fm. (10)

With these values the minimum of the curve yielding E/A versus kg occurs at kp=1.23

fm~—!, which is obviously different from the value of the pure Fermi gas, namely kp=1.36

fm=! .
The associated E/A versus kp is displayed in Fig. 1 which yields

E
(Z) = 1568 MeV,  (Kp)win = 123 ), (K)uin = 138 MeV , (1)

namely the experimental values.

We also display the momentum distribution n(k) in Fig. 2. Concerning the results of this
section, it should be clear that the choice of the parameters given in Eq. (10) is far from
unique, and that these values should be viewed as providing a first orientation on a complex
problem. Our goal is only to use something representative for the potential in attempting to
shed light on the connections between saturation of nuclear matter and electron scattering
scaling phenomena. Yet in Section V we shall briefly address the issue of the sensitivity of
our results to the values chosen for the parameters, specifically in connection with the pcf

and the asymmetry of the scaling function.
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FIG. 1: The binding energy (F/A) versus kr, as given by Eq. (8).
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FIG. 2: (color online) Solid (blue online): the momentum distribution n(k) versus k. Also displayed

(dashed, green online) is the Fermi gas n(k) = 0(kp — k) with kr = 1.36 fm~!.
III. THE MANY-BODY CONTENT OF n(k) AND THE CSR

Next the question arises: which are the Feynman diagrams one has to take into account
in order to obtain the n(k) given by Eq. (2)? This is equivalent to asking: what kind of
correlations among nucleons are responsible for changing the theta-function into our n(k)
which we assumed to be the true momentum distribution of our system?

To help in better grasping the relevance of this question it is of importance to realize that



if we replace in Eq. (1) n(k) with 8(kp — k) and C(7, — 72) with Eq. (6) we obtain

E k? 2
E_3k + no[—ﬁa?’UO - %(b3 —a*)Vp

A 52m 3
1 3 , cos(2kpa) —3  cos(2kpa) — 1 sin(QkFa)}
- (UO > V°> {Sl(%pa) LT 2(kpa)? (kpa)?
cos(2krb) —3  cos(2kpb) — 1  sin(2kpb)
kb 2(kpb)? (krb)?

namely the result provided by HF theory [19], which, as is well known, captures the content

3 .
el [sl(zkpm 4

: (12)

of the two first-order perturbative diagrams shown in Fig. 3. It is instructive to look at

o)

@) (b)

FIG. 3: First-order proper self-energy 7, in (a) and (b) are shown the direct and exchange terms,

respectively.

the result one gets in HF with the parameters given in Eq. (10) for the double square
well potential of Eq. (7). This is displayed in Fig. 4: here we see that E/A in HF still
saturates, although at a far too low density (kr = 1.02 fm™!) and with a far too low energy
(E/A = —1.56 MeV).

To prove that by summing all perturbative diagrams one would recover the n(k) of Eq. (2)
(and hence the E//A of Fig. 1) is clearly an impossibility. In the present study our approach
is only to explore a simple model while attempting to maintain as high a level of coherence
as we can. To achieve the latter we first resort to Calogero’s theorem [20], which states that

for a homogeneous infinite system asympotically one should have

0(k)71?
n(k) ~ [zmn(]%] , (13)
where, in the present case,
5 - 4 371(ka) b* 351 (kb)  3j1(ka) }
o ik-T _ .3 _ _ —
(k) = /dre v(r) = 57a {UO ' 0|5 1p ' . (14)
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FIG. 4: E/A versus kr in HF theory employing the potential of Eq. (7) with the parameters of
Eq. (10).
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FIG. 5: (color online) Solid line (blue online): the momentum distribution of Eq. (2). Dashed line

(red online): Calogero asymptotic behaviour Eq. (13), multiplied by a factor 2 x 10~* (see text for

the origin of this factor).

In Fig. 5 we compare our n(k) with the Calogero’s theorem predictions: we do so in the
range of momenta starting from the Fermi surface (k = kr = 1.23 fm™!) up to k ~ 3.6 fm ™',
since for larger momenta both distributions become so small that they render the comparison
meaningless. In Fig. 5 one sees that the two curves are not too different; hence our n(k) and

0(r), while not exactly the same, nevertheless display an acceptable degree of coherence. It
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should be stated that in carrying out such a comparison, unfortunately, Calogero’s theorem
does not quantify the value of ¢ signalling the onset of the asymptotic regime, and hence
we have arbitrarily normalized the Calogero’s asymptotic momentum distribution in such a
way to have it coincide with our n(k) at the Fermi surface.

Concerning the question related to the measurement of n(k), we recall that access to
information on this is offered by the CSR, which in fact essentially depends “only” upon
the momentum distribution at least within the context of the present model. Indeed from

unitarity one has

1 -
S(a) = Z =gV [ die” T g(r), (15)

where g(r) (see Eq. (5)) is directly fixed by the Fourier transform of our n(k).

For sake of completness we display in Fig. 6 the CSR predicted by our n(k). Actually
this curve was already shown in [12], however we revisit it once more here to illustrate how
the attainement of the asymptotic value (namely one) is postponed by the nucleon-nucleon
correlations, in particular, the repulsive short-range ones, to larger values of ¢ (=2 4.6 fm~!)

than for the Fermi gas situation (& 2.46 fm™!).
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FIG. 6: (color online) The CSR for a free Fermi gas (dashed line, green online) and for a correlated

one according to our model (solid line, blue online).

To illustrate our second path toward coherence we commence by recalling the alternative
model of [21], which deals with the same issues treated in the present paper, namely the

scaling function and momentum distribution, but with a different philosophy. The study
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of [21] is based on the use of PWIA (Plane-Wave Impulse Approximation) and has as its
starting point the assumption of the factorization of the one-particle exclusive cross section
(namely the cross section for the process (e, e’ N)) according to the expression

do PWIA

pr— K EN . ) 1
de'dVdpndQy o (q,w;p, E,0n)S (D, E) (16)

In the above K is a kinematical factor, oV the eN single-nucleon cross section and S(p, £)
the nucleon spectral function expressed in terms of the so-called missing-energy and missing-
momentum variables (for their definition see, for instance, [22]). We do not dwell here on
the procedure leading from Eq. (16) to the scaling function: this topic has been addressed
a number of times in the literature. Suffice it to say that the key step is the integration
of Eq. (16) over the variables p and £ in a domain which has been analyzed in the past
and whose boundaries are set by energy and momentum conservation. The above procedure
corresponds to passing from the semi-inclusive (e, e’ N) cross section to the inclusive (e, e’)

cross section. Indeed one has

do N
= ¢ N = —= F 1
Toag — 0 (@wip=yl.&€=0)F(g,w), (17)
where 7°V is evaluated at the minimum values of £ and p allowed by kinematics and F'(q, w),

referred to as the scaling function, is easily found to read

F(q,w) = 27?//2(qw) pdpdES(p, E) (18)

in PWIA. Now if the integration domain ¥(¢,w) in Eq. (18) extends up to encompass the
limiting value & — oo then the scaling function can be linked to the momentum distribution

according to [23]
np) = [ dES(p.€). (19)

Thus, at variance with our method which is based on the coherence between the momen-
tum distribution and the scaling function, in the sense of having both of them emerge within
the same theory, in [21] the strategy is to exploit the link between the scaling function and
the momentum distribution and hence the possibility of extracting information on n(k) from

(e,€’) experimental data.
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IV. SETTING UP THE SINGLE-NUCLEON PROPAGATOR

Our scheme is based on the central role played by the single-fermion propagator G (E, w)
for nucleons in the nucleus. In fact, as is well known, knowledge of the latter gives access

to the £//A according to the expression [24]

E=

ZW( uQﬂG@M) (20)

77—)07L

and to the scaling function according to the formula
qV
F = —— —ImlI : 21
(4,0) =~ = Tl (g, ) (21)

This represents the content of linear response theory and, as in [21], assumes the factorization
of the single-nucleon cross section. In Eq. (21) II(q,w) is referred to as the polarization
propagator or, in coordinate space, as the density-density correlation function. In field
theory language it corresponds to a particular choice of the field arguments in the two-

particle propagator and in momentum space reads

1 d*k
H(Qaw) = _5 (271')4

Gk + q)G(k). (22)

Knowing G ensures control of II(g,w) and this, in turn, through Eq. (21), permits the
determination of the scaling function F'(q,w). Also, in a coherent scheme, G(k) should yield
the correct momentum distribution (namely our n(k)).

Can such a propagator be derived on the basis of the knowledge of n(k) alone? The answer
is yes in the simple approach taken in the present work where an infinite, homogeneous
many-body system of nucleons has been assumed. In this framework we propose a kind of
mean-field approximation for G which, however, possesses a remarkably coherent structure;
whether this remains true in a more sophisticated many-body framework has yet to be
proven. Continuing to work within the context of our simple model, as a first step to
achieve this goal we rewrite our basic expression in Eq. (1), exploiting the Faltung theorem

of Fourier analysis. For this purpose, we start from

i T <dk>3k2 w5 [ (1= G00))

- L R ] [ arentr) - [ st 23)
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with g?(r) given by Eq. (4) and the direct and the exchange potential terms by Eq. (8) in

coordinate space and introducing the Fourier representations according to

- iR 4dm 371(ka s 371(kb 3j1(ka
wolk) = [ e upte) = Fon B - T (v 02T oy
N - A 3j1(l{:a)< 3 ) 3 3]1(1{:6)]
_ ik-T A v 3
op(k) = /dre vp(r) = 5 {a T Up 2Vo + Wb b (25)

and
= —ik- L, 35(1 49 dp i
[ e (1 30°0)) = o) — h*(0, 81, 8a) [ i in(E =) (26)

Then, with the help of Eqgs. (24-26), we obtain

E_ 4 dk B one o W puB) [ AT - 4o odn
A _/ (27T)3n(k‘) [__l__vD(O)_ /(QW)?,”(Q)UE(%‘I’Q_])] = _/ (27T)3€](€h)’

o 2m = 2 2 UN)

(27)

where
2 1

) _ k:[k 2055 (0 M/d [ .d H—E} 28

) = (k) g + 50(0) — 5 [ dmtoely) [ den(p-F)] @9

is the single-hole energy displayed in Fig. 7. For comparison, in Fig. 8 the single-particle
energy

1—71(]{3) h
&= (29)

is shown. Note the discontinuity of ~ 6.5 MeV in both e](j” and e,(f ) at the Fermi surface,

the vanishing at large k of e,ih) and the value

e = 25p(0) - ﬁl’ﬁQ / dpp*og (p)n(p)

b3
Uo—g%—lﬂ

_M{ (Uo — gv0> {Si(l{:pa) — (1 — o) sin(kpa) — 3aji(kra)

%VO {Si(ka) — (1 — @) sin(krd) — 3aj(krb)

3 krasin(kra) — o cos(kra) ,
- —V) 2 B TmE, (B, — ik
+51( 0 0)|kFa (hra)® + 32 + e”ImE; (B — ikpa)
kpbsin(kpb) — fBacos(kpb) = 4 :
— 77.90 MeV (30)

of the latter at the origin.
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FIG. 7: (color online) Single-particle energy (hole) of our model shown for kp = 1.23 fm~! which

corresponds to the saturation density of the system. The dashed line represents the fit given by

Eq. (32).

80C~

FIG. 8: (color online) Single-particle energy (particle) of our model shown for kr = 1.23 fm™!

which corresponds to the saturation density of the system. The dashed line represents the fit given

by Eq. (33).

The above single-particle energies yield the poles of the fermion propagator which, as a
consequence, can then be cast into the form
n(k)
w —n(k)[2e + 220p(0) — AP [ dpp2ip(p) [y dan (| — K[)] — in

2m

(31)

Gk,w) =

15



1 —n(k)

+ k2 no 5 h2(a,B1,82) 1 A i
w—[1=n(k)][g, + 50p(0) — 55> Jo® dpp*0e(p) J2; dan(|p — k|)] + in

This structure of the propagator tells us that in our model the holes (associated with the
poles in the upper energy plane) exist below, but also above, the Fermi surface. Likewise
the particles (associated with the poles in the lower energy plane) exist above, but also
below, the Fermi surface. These occurrences clearly reflect the behaviour of our momentum
distribution. The important point to be stressed, however, is that the propagator in Eq. (31)
provides the correct system energy and n(k).

Now, to pave the way to the actual evaluation of II, it helps to realize that, although
the expression of the single-particle energies is far from being simple (in fact it cannot be
expressed analytically), nevertheless its k& dependence lends itself to be suitably represented,
apart from the factor n(k), by a parabola. This is reminiscent of HF theory. Hence we use

the following quite faithful representation

w%mzn%x&m+3w#w=nwx&m+2£%) (3)

with Ay = —77.16 MeV and By, = 41.10 MeV fm?, yielding an effective mass me,y = 0.50

m for holes and

<) = (1 ) (g + B = (1) (Ao + ) (33)

with A,y = —43.09 MeV and B, = 22.72 MeV fm?, yielding an effective mass m{, = 0.91
m for particles. It is indeed startling to realize how large the impact of our two-body
interaction in Eq. (7) is on the effective hole mass, the generally accepted ratio being actually
m*/m =~ 0.83 [25]. How faithful Eq. (32) and Eq. (33) are in providing the single-particle
energies, can be garnered from Figs. 7 and 8.

Finally, the response function of the system is easily derived,
Vv
s

and from the response one immediately obtains the scaling function per proton according to

Flg.w) = q R(qv w) (35)

_ iii/ dek?n /11dx[1—n(|1%’+q1)] w — €D (I + @) + €D (),

mmngy T2
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where the trivial frequency and azimuthal integrations have been performed. The results of
our numerical calculations of Eq. (35) are reported in the next section. Following standard

practice when discussing scaling we shall show results for the dimensionless scaling function

.f(%w) = kF X F(%w) (36)

which takes on an especially simple form for the relativistic Fermi gas (see, e.g., [2, 3]).

V. RESULTS

In Figs. 9 and 10 the results for the response R(q,w) (Eq. (34)) and scaling function
f(q,w) (Eq. (36)) are shown versus w for a range of momentum transfers. The response and

the scaling function for the free Fermi gas are also displayed for comparison.

400
w [MeV]

FIG. 9: (color online) The response function of our model (solid line, blue online) and the response
function of a free Fermi gas (dashed line, green online) plotted versus w for ¢ = 2kp = 2.46 fm ™!
up to ¢ = 4.5kp = 5.53 fm~! in steps of 0.5kp. Results for lower values of ¢ peak at lower values

of w.
We observe the following:

e The response and scaling function obtained using our model, as expected, span a range
of energy loss that extends to larger values than that seen for the Fermi gas model —

a clear indication of the role of correlations among the nucleons. The widths seen in
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FIG. 10: (color online) The scaling function of our model (solid line, blue online) and the scaling
function of a free Fermi gas (dashed line, green online) plotted versus w for the same values of ¢

used in Fig. 9.

our model are somewhat larger than those of the Fermi gas and the peak heights are

somewhat lower, both in better accord with experimental data.

e The peak positions in our model are shifted to higher energy loss than for the Fermi

gas (see also the discussions to follow).

e Unlike for the Fermi gas model our R(q,w) and f(q,w) are no longer perfectly sym-
metric around their maxima. While approximately so, they have tails that extend
both to higher and lower values of w. However, the degree of asymmetry is not as

large as what is observed experimentally.

e Note that while the height of R(q,w) decreases with ¢, the height of f(¢,w) remains

constant.

To investigate the scaling behaviour of our results we follow the usual procedures and
display f, not versus w as above, but versus the well-known non-relativistic scaling vari-

able [26]

Vnr = é(% = %) (37)

Now we indeed see in Fig. 11 that the scaling functions for different values of ¢ tend to

group together very closely when displayed versus 1,,, that is they scale. Noting that the
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coalescence in our model occurs at a peak value other than 1,, = 0, it is interesting to
investigate whether a simple modification of the scaling variable different from the one of
Eq. (37) can be devised to shift the peak position to zero. Omne can always do this by

employing the variable
1 /
v = — (22 -1), (39)

where W' = w — Egp1(q), and where Eg,7,(q) is a g-dependent energy shift. If one uses the

simple parametrization

Eanige(q) = Eo + E1(q/kr) (39)

with By = —17.4 MeV and F; = 15.9 MeV (see Fig. 13), then almost perfect scaling
centered about ¢/, = 0 is attained, as seen in Fig. 12. It appears that the impact of the NN
interactions that have been incorporated in the present model is felt via a ¢g-dependent shift
in the definition of this new scaling variable, although a direct connection to the underlying
dynamics is not obvious. As is clear from Fig. 13 similar shifting is seen using relativistic
mean field theory. One of course should not expect these to be identical, since the present
model is non-relativistic while the RMF results are obtained using a relativistic model. In
either case, while the shift is qualitatively what is observed experimentally, it is probably
somewhat too strong in both cases [27, 28].

In Fig. 14 we show the same results as in Fig. 12, but now on a semilog scale. The

asymmetry, while small, is clearly apparent. More strength is shifted to higher values of

/

.. and, whereas the Fermi gas cuts off abruptly and is only nonzero within the Fermi

/

cone, the present model produces strength extending to very large and small values of 9/ .

in accord with experiment. It is worth remarking that if the high momentum tail in the
momentum distribution in Eq. (2) is set to zero (i.e., 5 is set to zero) then these tails
extending to large [¢/ | essentially disappear. While setting (31 to zero is not simply setting
the part of the momentum distribution arising from short-range correlations to zero, since the
long-range correlations also move some strength from below the Fermi surface to somewhat
above it, it is very suggestive that in the present model the origin of the tails in the scaling
function are principally due to the short-range physics, as is often assumed to be the case.
Interestingly, the position of the peak is largely unaffected by “turning off” the high-k part
of the momentum distribution, suggesting that the peak position is not strongly correlated

with the short-range physics, but rather with the long-range physics.
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0.0-

FIG. 11: (color online) The scaling function of our model (blue online) displayed versus the non-
relativistic variable v,,,.. The momentum transfer range is the same as in the previous two figures.
For reference the Fermi gas result is shown as a dashed curve (green online); clearly, by construction,

it scales perfectly.

0.6

FIG. 12: The scaling function of our model displayed versus the scaling variable of Eq. (38) for the

same values of ¢ used in Fig. 11.

As previously anticipated, aiming at a deeper understanding of the role of the tail of
n(k) of our results, and thus exploring the sensitivity to variations of the parameters, we
have repeated the entire calculation using a stronger high momentum tail. The latter is

ruled by the parameters §; and f5: we have found a strong sensitivity to Sy, which controls
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25 30 35 40 45 50 55 6.0
q[fm™]

FIG. 13: (color online) The ¢-dependent energy shift in Eq. (39) (solid curve, blue online) together

with the energy shift obtained in RMF studies of '?C (dashed curve, red online).

0.1

0.01:

FW'n)

0.001

W

FIG. 14: (color online) As for Fig. 12, but now on a semilog scale.

the extension of the tail. Indeed with [y small enough, i.e., with a long tail, the pcf
becomes negative at short distances and thus physically unacceptable. We have therefore
limited ourselves to varying only f;. In particular, we have performed the calculations
with #; = 0.65 (to be compared with the previous value §; = 0.4), namely with a tail
for the momentum distribution that is somewhat stronger. Also in this case we are able
to reproduce the density, binding energy and compressibility and also in this case we find

scaling. However, interestingly, the scaling function occurring in this case is found to be
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FIG. 15: (color online) As for Fig. 14, but now adding (red curves) the results obtained with a
different set of parameters: a = 0.464 fm, b = 1.917 fm, Uy = 2.9 GeV, Vj = 48 MeV, a = 0.2, 54
— 0.65, By = 4.

1.1

1.0———

-0.2

0.9’ 04 4
(=) i W'lo= ~06
= 0.8

0.7;

0.6

0.5 ‘ ‘ ‘ ‘ ‘ ‘
25 30 35 40 45 50 55
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FIG. 16: The scaling function versus ¢ for [¢],.]o = —0.6, -0.4 and -0.2, i.e., in the scaling region.

more asymmetric than the previous one, as shown in Fig. 15. This raises important issues
on the origin of the experimental asymmetry of the scaling function.

In concluding this section we address the problem of how the scaling regime is approached.

/

! ]o, where, to make this closer to what has been used

We do so using the scaling variable [¢)
in analyses of experimental data [1] a constant energy shift Ej; s = 30 MeV has been chosen

in using Eq. (38); this is indicated by the subscript “0”. We display f as a function of ¢
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for three values of the scaling variable in the scaling region, i.e., to the left of the QE peak.

The curves are shown normalized at ¢ = 2kp, namely, the ratio

p(a) = f(a: [¥h.lo)/ ] (2kp, [¢r,]0) (40)

is displayed. From Fig. 16 it clearly appears that the scaling regime is approached from

above, an occurrence which is qualitatively in accord with experimental findings.

VI. CONCLUSIONS

In the present study we have developed a model centered around an assumed form for the
momentum distribution of nucleons in nuclei. The momentum distribution has been chosen
to reflect current understanding of how dynamical effects underlying the nuclear many-body
problem lead to a form for n(k) with low- and high-k components coming from both long
and short range NN interactions. We have restricted the scope of the study to infinite,
homogeneous nuclear matter, have employed only point nucleons, have assumed a strictly
non-relativistic model (although in future work we hope to extend the scope to relativistic
modeling), and have restricted our attention to the longitudinal electromagnetic response,
for the present.

Working with this as a basis we have developed the formalism in two different directions,
maintaining as much consistency as possible. First, we have devised a single-particle Green
function that leads to the know saturation properties of nuclear matter and to realistic
particle and hole single-particle energy spectra. Second, we have taken the same Green
function to obtain the density-density polarization propagator and, through its imaginary
part, have obtained the longitudinal electron scattering response function R(q,w) and the
scaling function f(q,w). For the latter we have explored several aspects of scaling and of
scaling violations.

We find that scaling is quite well respected, despite the strength of the NN interactions
implicit in the problem. There are seen to be some scaling violations, for instance, those
observed as shifts of the quasielastic peak positions as functions of ¢ — indeed these are
also seen in relativistic mean field theory. The shape of the scaling function is observed to
be more spread out than is the Fermi gas scaling function and the former yields a somewhat

lower peak height than the latter, both in rough accord with experiment. Where it is large
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the scaling function in our model is somewhat asymmetric; however, it is not enough so
to agree with experiment. When the tails of the scaling function are examined in detail
the asymmetry is more apparent and, indeed, the strength at both very large and very
small values of the scaling variable is significant, in accord with experiment. If the high-
k contributions to the momentum distribution are “turned off” then these tails disappear,
suggesting that their origin lies in the part of the momentum distribution arising from short-
range correlations. The position of the peak, however, appears to be due to long-range
physics.

We are of course aware that our modeling of the propagator is rather simplistic: its poles
do not lie close to the real axis, but actually move in the complex energy plane. This occurs,
in particular, in the presence of a strong short-range NN force, as show, for instance, by the
work of Mahaux and Sartor [29]. We are currently working in the direction of extending our
approach to single-particle states with finite lifetimes and accounting for the modification
of the Green’s function due to correlations.

To clarify further the role of the strong short range repulsion (srr), namely where it is
active, we refer again to past work on the hard sphere Fermi gas [29], i.e. a system of
fermions interacting only via a strong srr. This study computes the momentum distribution
n(k) accounting for the so-called correlation (or rearrangement) second-order diagrams. It
is plainly apparent from it that the srr modifies n(k) with respect to the pure Fermi gas
not only in the high momentum tail but also in the range 0 < k < kg, the only interval
where the Pauli correlations are active; these alone would yield, of course, the well-known
step-function distribution.

In summary, the present study has demonstrated that a high level of consistency can be
maintained in simultaneously representing both the saturation properties of nuclear matter
and the scaling properties of the longitudinal electron scattering response.

Before concluding, we would like to stress once more that the main purpose of the pa-
per has been to tie the ground-state properties as embodied by the Green function to the
particle-hole propagator, the EM response and scaling. This could be achieved, all strictly
numerically, with the most sophisticated n(k) existing in the literature; however our ap-
proach has been to employ a “reasonable” parametrization to keep the formalism as analyt-

ically tractable as long as possible.
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